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Multiorbital physics in Fermi liquids prone to magnetic order
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The interplay of spin-orbit coupling and strong electronic correlations is studied for the single-layer and the
bilayer compound of the strontium ruthenate Ruddlesden-Popper series by a combination of first-principles
band-structure theory with mean-field rotationally invariant slave bosons. At equilibrium strongly renormalized
(spin-orbit-split) quasiparticle bands are traced and a thorough description of the low-energy regime for the
nearly ferromagnetic bilayer system in accordance with experimental data is presented. The metamagnetic
response of Sr3Ru2O7 in finite magnetic field H is verified and a detailed analysis of the underlying correlated
electronic structure provided. Intriguing multiorbital physics on both local and itinerant level, such as competing
paramagnetic and diamagnetic contributions, is observed with important differences depending on the magnetic-
field angle θ with the crystallographic c axis.
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I. INTRODUCTION

Ternary ruthenium-based oxide compounds condense in a
rich variety of different crystal-structure types with associated
rather delicate electronic and magnetic properties.1 Within the
perovskite-like Ruddlesden-Popper series of the ruthenates
An+1RunO3n+1 (A =Sr, Ca), where n labels the layers of
corner-sharing RuO6 octahedra (separated by SrO or CaO
rocksalt layers), the interacting electrons pose a specifically
challenging problem. In that family of seemingly rather
similar compounds, intriguing competitions between Fermi-
liquid, Mott-insulating, and superconducting behavior occur
in conjunction with particular complex magnetic response.
For instance, albeit Ca and Sr are isovalent, the respective
single-layer compounds A2RuO4 exhibit drastically differ-
ent phenomenology, since Sr2RuO4 displays unconventional
superconductivity below Tc ∼ 1.5 K,2–4 while Ca2RuO4 be-
comes an antiferromagnetic (AFM) Mott insulator below
TMI ∼ 77 K.5,6 As an important generic distinction, compared
to the Sr compounds the Ca subclass in the series exhibits
stronger distortions and deviations from an ideal high crystal
symmetry.

A prominent aspect of the intricate physics in the overall
metallic strontium ruthenates is the onset of ferromagnetism
with n. Concerning the series end members, the perovskite
SrRuO3 (n → ∞) is ferromagnetic (FM) below Tc ∼ 165 K
and tetragonal Sr2RuO4 (n = 1) is paramagnetic (PM) at ambi-
ent temperature T , but shows FM tendencies as well as incom-
mensurate spin fluctuations at q = (±0.6π/a, ± 0.6π/a,0).7,8

The (n = 3) Sr4Ru3O10 and the (n = 2) Sr3Ru2O7 compounds
are both orthorhombic, but whereas the former is verified FM,9

the latter is still PM down to low temperatures. However
the bilayer system appears to be located rather close to the
transition towards FM order,10 with puzzling metamagnetic
(MM) behavior in applied field below TMM ∼ 1 K (see
Ref. 11 for a recent review). As revealed from de Haas–van
Alphen (dHvA),12 angle-resolved photoemission spectroscopy
(ARPES),13–16 optics,17 and resistivity10 measurements, the
n = 1,2 compounds (see Fig. 1) both belong to cases of
quasi-two-dimensional (2D) electron systems, i.e., show a
strong anisotropy between transport in the ab plane and
along the c axis of the crystal structure. Signatures of

strong electronic correlations are compelling for these layered
ruthenates, e.g., from large mass renormalizations,10,18,19 and
originate from the less-screened Coulomb interactions within
the Ru(4d) shell. Nominally four electrons occupy this l = 2
manifold; i.e., an Ru4+ oxidation state may be assumed. The
metamagnetism with applied field H in Sr3Ru2O7 is well
documented by a large slope ∂M

∂H
|HMM around HMM = 5.5(7.7)

T for H ||ab(c).20,21 Furthermore this MM region may be
associated with being in the neighborhood of a quantum-critial
point that can be approached via tuning the polar angle θ

between magnetic field and the c axis.22,23 Reachable within
fields H < 10 T, the MM phenomena are acting on a very low
energy scale of the order of at most a few meV. In this respect,
the Fermi-liquid regime in vanishing field exists below 10–
15 K, however can be driven to zero temperature with applied
field.24

In this work we present a theoretical investigation of the
n = 1,2 compounds in the normal state of the low-temperature
regime with an emphasis on the intriguing physics of the
bilayer system in applied magnetic field. The study is based on
the combination of a first-principles band-structure approach,
spin-orbit-interaction treatment in the Russell-Saunders limit,
and mean-field many-body theory. The peculiar low-energy
physics of the layered ruthenates ask for a very detailed
examination of the single- and many-particle terms in the
Hamiltonian in order to capture the important processes that
drive the physics of these systems.3,7,16,25–47 Besides the
thorough description of the crystal bonding which leads to
a multiorbital-based band manifold at the Fermi level, it was
shown28,30,32 that additionally spin-orbit effects play a vital
role in the low-energy regime. Focusing on the many-body
part, e.g., the relevance of the Hund’s coupling JH in addition
to the larger Hubbard U was elucidated in several works.25,27,31

Much theoretical effort has also been devoted to the description
of the MM phenomena in Sr3Ru2O7, either based on effective
single-band modelings35–39,44 or with including multiband
degrees of freedom.40–43,45 The existing model studies are able
to account for the principle appearance of metamagnetism,
often accompanied by nematic order,37 i.e., broken rotational
symmetry. Important ingredients for the MM behavior are
van Hove singularities close to the Fermi surface, already
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revealed in the single-band approaches.35 More sophisticated
multiorbital investigations have been employed to discriminate
between the importance of dxz, dyz (formally quasi-1D-like
dispersions) and dxy (formally quasi-2D-like dispersions)
orbital degrees of freedom together with spin-orbit coupling
(SOC). However often the broken fourfold symmetry in
Sr3Ru2O7 is neglected, when modeling the electronic states.
In addition, most theoretical works treat the many-body
interactions in the Hartree-Fock approximation, not allowing
for explicit self-consistent renormalizations and ill defined for
the metallic regime.

A combination of the local density approximation (LDA) to
density functional theory (DFT) with slave-boson48–51 theory
in a rotationally invariant representation52,53 was utilized in
Ref. 46 in order to account for renormalized quasiparticle
(QP) behavior. Here an extension of that work is provided by
including the effect of the spin-orbit coupling on the Fermi-
liquid regime of the layered ruthenates including applied
magnetic fields. In the case of Sr3Ru2O7 the main focus
is on a many-body modeling that starts from the realistic
low-symmetry band structure. Because of the fact that the
MM problem involves very low energy scales in an underlying
low-symmetry lattice, we believe that the bilayer system serves
as a challenging test case for the reliability and accuracy of
current extended-LDA approaches.

II. THEORETICAL APPROACH

The LDA part of this work is performed using an
implementation54 of the highly accurate mixed-basis pseu-
dopotential (MBPP) technique,55 employing norm-conserving
pseudopotentials56 and an efficient combined basis consisting
of plane waves and additional localized orbitals. For the
inclusion of spin-orbit coupling and to treat local many-body
interactions, the realistic Hamiltonian

H =
∑

kijmm′σ

ε
(ks)′
kijmm′ d

†
kimσ dkjm′σ +

∑
α

H(loc)
α (1)

is used, where k denotes the wave vector, α numbers the unit
cells with i,j marking the Ru ions within, the spin-projection
is given by σ =↑ , ↓, and d (†) annihilates (creates) electrons in
the t2g-like Wannier orbitals m, m′. The Kohn-Sham dispersion
εk in the latter basis is here obtained from a maximally
localized Wannier-function (MLWF) construction57,58 based
on the band structure revealed from the MBPP calculation. The
prime in (1) indicates that strictly local (on-site) contributions
are excluded in the k-dependent dispersion [see Eq. (3)]. More
details on the determination of the dispersive part in the case of
Sr3Ru2O7, where the band Hamiltonian amounts to a 12×12
matrix due to the fact that the primitive unit cell encloses four
Ru ions, is provided in Ref. 46. For Sr2RuO4 the primitive unit
cell contains only one Ru ion and the Kohn-Sham problem
asks for the diagonalization of a 3×3 matrix. The unit-cell
Hamiltonian H(loc)

α decomposes into the four terms, reading

H(loc)
α = H(cf)

α + H(soc)
α + H(zm)

α + H(int)
α , (2)

and is evaluated in each particle sector of an effective t2g

problem. The first contribution includes the on-site crystal

field through

H(cf)
α =

∑
imm′σ

ε
(ks),loc
imm′ d

†
imσ dim′σ , (3)

with ε
(ks),loc
imm′ = 1/Nk

∑
k ε

(ks)
kiimm′ computed from the complete

Kohn-Sham dispersion. We continue with the spin-orbit
interaction H(soc)

α of Russell-Saunders type (or LS coupling
scheme) on each of the rather light Ru ions. Summing over the
individual ion contributions leads to

H(soc)
α = λ

∑
i

Li · Si = λ

2

∑
i

(
J2

i − L2
i − S2

i

)
, (4)

where λ is the spin-orbit coupling parameter, Li the total
orbital momentum operator, Si the total spin operator, and Ji =
Li+Si the total angular momentum operator for each Ru ion,
respectively. Note that in the Russell-Saunders approximation
these three operators are true many-particle operators, given
by the sum over the respective operators for each individual
electron p within the t2g shell, e.g., Li = ∑

p Lip for the
total orbital momentum operator. For the t2g orbitals a valid
choice for the matrix elements 〈m|Lip|m′〉 reads component-
resolved42

Lx =
⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠ , Ly =

⎛
⎝ 0 0 0

0 0 −i
0 i 0

⎞
⎠ , Lz =

⎛
⎝ 0 −i 0

i 0 0
0 0 0

⎞
⎠ .

(5)

Due to the cubic crystal-field terms in the ruthenates, this
representation is obtained by truncating the appropriate matrix
elements of a full 4d shell based on cubic harmonics to a pure
t2g shell including the states 4dxz, 4dyz, and 4dxy . Although
there is some minor intermixing with the eg states at low energy
for Sr3Ru2O7 (see Sec. III), that approximation proves to be
adequate on the present level of the investigation.

The third contribution to Eq. (2) describes the local
interaction of the Zeeman type with a magnetic field H and
can be written as

H(zm)
α = μB

∑
i

(Li + 2Si) · H. (6)

Notice that in the weak-coupling regime |H|
λ considered
in our calculations, the spin-orbit coupling dominates the
magnetic-field interaction. Thus eigenvalues of Lz and Sz are
no good quantum numbers of the system, but {J 2,Jz} are
now commuting with H(loc)

α . Therefore we have to perform
the projection of Li , Si onto Ji according to the Wigner-
Eckart theorem using the operators’ common eigenspace
representation. The term H(zm)

α has then the following form:

H(zm)
α = μB

∑
i

(
〈Li · Ji〉LSJ〈

J 2
i

〉
LSJ

+ 2
〈Si · Ji〉LSJ〈

J 2
i

〉
LSJ

)
Ji · H

= μB
∑

i

(
3

2
+

〈
S2

i

〉
LSJ

− 〈L2
i 〉LSJ

2
〈
J 2

i

〉
LSJ

)
Ji · H

= μB
∑

i

(
3

2
+ S(S + 1) − L(L + 1)

2J (J + 1)

)
Ji · H

≡ μB
∑

i

gi(LSJ ) Ji · H, (7)
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where the notation 〈. . . 〉LSJ indicates the expectation value
in that eigenspace defined by the eigenvalues of the operators
L2, S2, and J 2, labeled by the quantum numbers L, S, and
J , respectively.59 Notably, the object gi(LSJ ) is the generic
matrix representation of the Landé factor (or g factor) in
that eigenspace. After that eigenspace computation one has
to transform H(zm)

α back into the original Hilbert space, where
all other parts of the local Hamiltonian were derived. Note
that in this way the g factor is calculated separately for each
considered state.

Last but not least, Eq. (2) includes the electron-electron
interaction H(int)

α provided by a multiorbital Hubbard model,
which reads

H(int)
α = U

∑
im

nim↑nim↓ + 1

2

∑
i,m�=m′,σ

{U ′ nimσ nim′σ̄

+U ′′ nimσ nim′σ + JH d
†
imσ d

†
im′σ̄ dimσ̄ dim′σ

+ JH d
†
imσ d

†
imσ̄ dim′σ̄ dim′σ } (8)

with n=d†d. In Eq. (8) the first term marks the intraorbital
Coulomb interaction with Hubbard U and the second term
provides interorbital Hund’s rule corrected interaction with
U ′ = U − JH and U ′′ = U − 2JH for unequal and equal spin
projections σ , respectively. The last two parts account for spin-
flip and pair-hopping processes, vital to enforce the rotational
invariance. These terms are especially important concerning
the magnetic response of an interacting system.52

The complete Hamiltonian (1) embodies three interaction
parameters, namely the spin-orbit interaction λ, the Hubbard
U , and the Hund’s exchange JH. For both systems the value
λ = 0.09 eV, as obtained from LDA calculations for Sr2RuO4

by Haverkort et al.,30 is used for the SOC. Concerning the
Coulomb interactions, previous works25,26,29,31,47 located the
Hubbard U for the layered ruthenates in the region 1.5–3.1 eV.
Here we choose the moderate value U = 2 eV. With including
SOC, that order of magnitude is sufficient to account for the key
renormalization effects at low energy. The Hund’s exchange is
fixed to JH = 0.35 eV25,26,31,60 throughout this work.

Our interacting ruthenate problem is solved via the rota-
tionally invariant slave-boson (RISB) formalism52,53 in the
saddle-point approximation. It amounts to a decomposition of
the electron’s QP (fermionic fνσ ) and high-energy excitations
(taken care of by the set of slave bosons {φ}) on the operator
level through dνσ = R̂[{φ}]σσ ′

νν ′ fν ′σ ′ , where ν is a generic
orbital/site index. Additional constraints for the normalization
and to match the fermionic and bosonic contents are enforced
on the mean-field level. The RISB electronic self-energy
�(ω) at saddle-point is local and incorporates terms linear
in frequency as well as static renormalizations. It is thus given
by

�(ω) = ω(1 − Z−1) + �stat, (9)

with

�stat = [R†]−1R−1 − ε(ks),loc, (10)

whereby Z is the QP-weight matrix and  describes the matrix
of Lagrange multipliers for the enforcement of the constraints.
Expectation values of any given local operator O may be

computed via the slave bosons according to

〈O〉 =
∑
AB

〈A|O|B〉
∑

q

φ∗
AqφBq, (11)

with A,B denoting atomic states and q as the QP index.
For more details see Ref. 53. In the present scope the
method may also be interpreted as a simplified approach to
solve the dynamical mean-field theory (DMFT) equations
(see, e.g., Ref. 61 for a review), compared to, e.g., more
elaborate quantum Monte Carlo (QMC) techniques. Since
we are interested in the low-energy physics of the layered
ruthenates at rather small temperatures (where QMC usually
becomes very challenging), this approach is thus well suited
to access the Fermi-liquid regime including its extension to
magnetically ordered phases.

III. CORRELATED ELECTRONIC STRUCTURE OF THE
n=1,2 COMPOUNDS

Let us start by picturing the interacting electronic systems
within Sr2RuO4 and Sr3Ru2O7 at equilibrium for H = 0.
Besides the different number of Ru ions in the primitive unit
cell, there are important differences in the crystal symmetry
(see Fig. 1). The n = 1 compound has ideal tetragonal
symmetry (space group I4/mmm) with the fourfold rotation
Cz

4 around the c axis. On the contrary, the n = 2 ruthenate
shows orthorhombic symmetry (space group Bbcb), whereby
the RuO6 octahedra display a small rotation of 6.8◦ in the
ab plane,62 resulting only in the twofold symmetry element
Cz

2. Basic structural and electronic differences may also be
understood from a

√
2×√

2 reconstruction of the Sr2RuO4

unit cell within the ab plane.
Figure 2 depicts the band structure and the local Ru(4d)

density of states (DOS) of the two-layered compounds as

FIG. 1. (Color online) Crystal structures of Sr2RuO4 (left) and
Sr3Ru2O7 (right). Large gray: Sr, blue (dark): Ru, and small red
(dark): O.
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FIG. 2. (Color online) Comparison of band structure (top) and
local Ru(4d) DOS (bottom) on the LDA level between Sr2RuO4

(left) and Sr3Ru2O7 (right) when neglecting SOC. The red curves in
the top pictures display the Wannier-like dispersion as obtained from
the MLWF scheme. The angular-momentum resolution is obtained
from projecting the Bloch states onto cubic harmonics with a radial
extension of 2.0 a.u.

retrieved from conventional LDA calculations without SOC.
The low-energy regime is dominated by the t2g manifold
of the Ru(4d) shell and can be downfolded to associated
Wannier-like states. In both systems the latter leak into the
oxygen-dominated block of bands. The overall t2g bandwidth
of the bilayer compound is slightly smaller (∼3.1 eV) than
for the single-layer system (∼3.4 eV). The eg contribution
close to the Fermi level is minor for Sr2RuO4; however the
dx2−y2 character is nonnegligible close to εF for Sr3Ru2O7,16

as may be seen from the local DOS. Note that this contribution
is included in the effective t2g-MLWF construction.46 In this
respect it is important to record that we use in the following
the (xy, xz, yz) terminology, though the corresponding orbitals
are only t2g-like in the sense of the present minimal MLWF
construction. Note that these orbital functions (as true low-
energy states) are pointing in between the Ru-O-Ru bonds of
the in-plane square lattice (compare also Fig. 9).

In the single-layer compound the energetics of the t2g

manifold is split into (dxz, dyz) and dxy . The dxz, dyz

orbitals are truly degenerate, with crystal-field splitting �xy =
εxz,yz − εxy = 113 meV to the dxy Wannier level. With very
small quantitative differences, Sr3Ru2O7 has quasidegenerate
dxz, dyz levels (� = 0.3 meV) and �xy = 115 meV. Hence
it has to be emphasized that there is already a small but
nonzero splitting between dxz and dyz, giving rise to nominally
slightly different local occupations. Note also that the strong
local-DOS differentiation between (xz, yz) and xy no longer
holds in the bilayer compound. Albeit the dxy Wannier level
is always lower in energy, the local orbital electron fillings
in LDA for (dxy,dxz,dyz) are (1.24, 1.38, 1.38) in the case of
n = 1 and (1.40, 1.30, 1.30) for n = 2. Thus there is a change
in the t2g occupation hierarchy between both ruthenates due
to band-dispersion effects. Right at the Fermi level, the DOS
of Sr2RuO4 is close to a van Hove singularity slightly above
εF, while in the case of the bilayer the Fermi level is located

-3

-2

-1

0

1

ε-
ε F (e

V
)

LDA
LDA+SOC+CORR

Γ M X Γ Z N M Γ

FIG. 3. (Color online) Sr2RuO4 quasiparticle band structure
within standard LDA as well as with including SOC and correlations.

in a large dip of a complicated multi-valley-peak DOS at low
energy.

Solving the problem posed by the minimal Hamiltonian
(1) for each system results in modifications in the low-energy
dispersions. Figure 3 shows the t2g-like QP band structure
of Sr2RuO4 from the extended-LDA treatment. One observes
the expected combined main features already known from the
existing separate SOC28,30,32 and correlated26,29,31,47 studies,
namely the lifting of degeneracies, e.g., close to the �

point for the bands with dominant xz,yz character, also
resulting in now avoided band crossings, e.g., close to the
X point, when including SOC. Electronic correlations lead in
the present approximation to band-narrowing and -shifting.
Lifetime effects as well as incoherent spectral weight cannot
be retrieved within RISB at saddle point. But the method
captures very well the slightly modified Fermi-level band
crossings in, e.g., the �M direction as well as the shift of
the van Hove singularity towards the M point.14,15,26 The band
renormalizations are substantial, however not quite as strong
as obtained within DMFT calculations with more elaborate
frequency dependence of the self-energy26,29,31 to match the
ARPES measurements. In the present modeling quantum
fluctuations are missing and to obtain a ratio m∗/mLDA of
the order of 3–4 for Sr2RuO4, in good comparison with
photoemission15 and dHvA12 data, a value U > 3 eV would
be needed.

Accordingly, Fig. 4 depicts the comparison between the
quasiparticle bands (including SOC and correlations) with
the conventional LDA dispersions for the bilayer Sr3Ru2O7.
Due to the reduced symmetry the level of complexity is now
surely raised. The complicated low-energy manifold with its
rather flat bands already on the LDA level now shows signif-
icant effective-mass renormalization and additional splittings
within the extended electronic structure examination. From
experiment,16,63 the ratio m∗/mLDA is effectively on the order
of 6, thus even larger than in the single-layer compound.
Most interestingly, the blow-up of the computed Fermi-level
neighborhood renders it obvious that especially close to the X

point severe changes take place. For instance a twofold band
approaching from M and splitting when passing X is strongly
shifted to a low energy of about 7 meV in the occupied part.
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FIG. 4. (Color online) Same as Fig. 3, here for Sr3Ru2O7. The
lower panel provides a blow-up of the dispersions close to the Fermi
level.

Importantly, the latter small scale may only be reached by
the combination of SOC and explicit Coulomb interactions.
While the spin-orbit coupling is responsible for the appearance
of split-up bands, the electronic correlations provide the
narrowing and further shifting towards εF. Increasing U and
JH leads to an even closer placement near the Fermi level
(see Table I). Hence the present approach is truly capable of
describing the very low energy scale the bilayer compound
is famously known for. Furthermore the key features of the
named dispersive structure around X with its local minima
and maxima are in close agreement with results from ARPES
studies by Tamai et al.16 The Fermi-level crossings in this
region of the Brillouin zone (BZ) give rise to the so-called γ2

pocket, which is under strong suspicion to play a vital role in
the peculiar metamagnetic behavior of this compound.45 The
complete Fermi surface (FS) obtained from our extended-LDA
calculations exhibited in Fig. 5 is in good accordance with
the one determined from photoemission.16 However from our
study the Cz

2-symmetry character seems vital in the fermiology,
but note that the experimental data in Ref. 16 are symmetrized
along the �X direction.

An important question concerns the band characters at
low energy in order to touch base with the local-orbital
viewpoint. Figure 6 therefore shows the so-called fat bands
(orbital weight proportional to an artificial band broadening)
for the t2g manifold. Its easily seen that the bilayer system
is far from being a textbook example when it comes to
attributing bands to a certain azimuthal quantum numbers,

TABLE I. Energy (in meV) of the highest occupied band at the
X point in Sr3Ru2O7 for different U and JH combinations (both in
eV). In LDA without spin-orbit coupling that energy amounts to
−22.8 meV.

JH = 0.20 JH = 0.35 JH = 0.50

U = 1.5 −13.9 −7.8 −4.4
U = 2.0 −13.6 −6.5 −2.8
U = 2.5 −11.1 −3.8 −0.6

FIG. 5. (Color online) Interacting Fermi surface for Sr3Ru2O7

in the basal kz = 0 plane from extended LDA including SOC and
electronic correlations. The black square marks the BZ cut and the
labeling of the different sheets is according to Ref. 16.

since, e.g., the supposedly relevant bands close to X are of
strong mixed t2g character. Nonetheless small asymmetries
may be identified. The topmost occupied band at X has

dxz

dyz

dxy

FIG. 6. (Color online) Individual weights of the t2g Wannier
orbitals on the low-energy QP bands from the extended-LDA
calculation.
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FIG. 7. (Color online) Interacting quasiparticle DOS for
Sr3Ru2O7 compared to the LDA result. The QP content including
SOC and correlations is scaled with Z = 0.7 to account for the
modified integrated spectral weight resulting from the slave-boson
framework. The bottom panel shows a blow-up around the Fermi
energy.

somewhat more dxz than dyz weight, true also for the lowest
one in the given energy window. In between there is only
one with more dyz character. The dxy orbital has notably
overall the same order of weight in this region of the BZ
as its out-of-plane companions. Interestingly, from the strong
weight along �A the dxy character seems to dominate the
propagation perpendicular to the RuO6 planes.

The low-energy scales may also be confirmed from the
quasiparticle DOS plotted in Fig. 7. Therefrom it is again
obvious that the states close to εF are strongly pronounced in
extended LDA, shifting prominently to the Fermi energy. The
LDA DOS exhibits a smaller peak at the Fermi level within
a valley of ∼60 meV width. With the additional interactions
that feature is strengthened and importantly a peak in the low-
energy occupied region is sharpened and shifted towards εF,
being located at ∼10 meV. These findings of increased spectral
weight below εF within a meV range is in accordance with
photoemission studies16 and also supported from specific-heat
data.64

Finally, Fig. 8 depicts the occupation probabilities of the
local t2g-based multiplets according to the converged slave-
boson amplitudes of the lattice calculation in the metallic state.
There are various sizable multiplet weights, not surprisingly
with an overall domination of the ones from the four-particle
sector. The atomic ground-state multiplet with L = S = J =
1, an orbital and spin triplet, has also the largest weight in the
itinerant regime. Note that the deviations of J from the ideal
values results from the small eg weight intermixing within
the LDA-derived Kohn-Sham Hamiltonian based on the low-
energy t2g-like orbitals. For Sr2RuO4 the corresponding picture
looks very similar; also there the L = S = J = 1 multiplet has
the maximum weight.

FIG. 8. (Color online) Histogram showing the occupation prob-
abilities of calculated multiplets in Sr3Ru2O7 ordered by the total
angular momentum J .

IV. BILAYER RUTHENATE IN APPLIED
MAGNETIC FIELD

Since our approach is in the position to correctly address the
equilibrium low-energy correlated electronic structure, we ex-
pect a qualitatively meaningful description of Sr3Ru2O7 with
applied magnetic field H. The Zeeman-type local interaction
is now included together with the spin-orbit and Coulomb
interactions. All are adequately treated due to the generality of
our formalism, also allowing for arbitrary field directions. Note
that the crystal structure is constructed such that the in-plane
square lattice evolves along the Ru-O-Ru bonds, while the
original x, y axes point in between these bonding directions
(see Fig. 9). In the present investigation the field direction is
modified within the xz plane; i.e., the tilting of H takes place
along the diagonal of the square lattice which also agrees
with the orthorhombic a axis. Notably the x direction in real
space corresponds to the �M ′ (M rotated by 90◦) direction in
reciprocal space and therewith the �X(X′) direction amounts
to QP propagation along the Ru-O-Ru bond on the rods of
the square lattice. The resulting net magnetic moment M per
Ru ion is composed of spin and orbital-momentum parts, i.e.,

x

y
H

x

z

θ

FIG. 9. (Color online) Left: View along the c axis of sketched
Sr3Ru2O7 in order to clarify the invoked Cartesian coordinate system
with Ru ions in blue/dark and O ions in red/gray. Right: Applied
magnetic field direction where the z axis equals the crystallographic
c axis.
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M = μB〈g J · H〉, and is here computed on the local level from
the self-consistent slave-boson amplitudes [see Eq. (11)] and
not from k-integrating the associated QP contributions. While
in effective single-particle calculations both approaches would
yield identical results, in slave-boson theory those numbers
may in principle differ since the QP part only carries the
contribution to the itinerant character of the electron. Via Eq.
(11) it is ensured that the occupation number of the physical
electron is retrieved.

Because of the low-energy scales involved in this problem,
especially for the close-to-realistic investigation of the mag-
netic behavior the numerics is however in any case far from
simple. The complicated local interacting Hamiltonian asks for
about 2000 slave-boson amplitudes to solve for, interlinked
with a 24×24 QP-Hamiltonian problem (four Ru ions with
three orbitals per ion, allowing for spin degrees of freedom
within each orbital) on a properly dense k-point mesh.

A. The case H ‖ c

We first choose the crystallographic c axis (i.e., the z

direction) perpendicular to the RuO2 planes for the magnetic-
field direction, i.e., H = H ĉ. Figure 10 shows the evolution
of M with increasing field strength together with the obtained
total free energy for the bilayer system. Both curves display
a rather nontrivial behavior. In the following the values
of H are given in meV. Up to H = 5 the value of M

rises linearly (region I), with however negative free-energy
curvature, hinting towards unfavorable field penetration. In
the range 5 � H � 23 a stronger rise of M occurs, followed
by a nonmonotonic behavior (region II). In that second region
the free energy is first depleting and then again rising along
with the nonmonotonic part, overall evolving with the positive
curvature of a stable phase. Let us also note that it appears as
if in the first part 5 � H � 10 the M evolution as well as the
free-energy curve display some nontrivial modulation. Finally
for even larger H (region III) the magnetic moment enhances
further with close-to-linear development. In III the free energy
follows a novel parabolic shape at higher values than in II. The
described evolution reveals the metamagnetic behavior of M ,

M (µB

Ru
)

FIG. 10. (Color online) Sr3Ru2O7 in applied magnetic field
(measured in meV) along z. Left: Free energy vs net magnetic
moment, right: net magnetic moment per Ru ion.

µ
B

R
u

FIG. 11. (Color online) Orbital-resolved local occupation (top)
and contributions to the Ru net magnetic moment (bottom) with
magnetic field. The inset shows a blow-up of the dxz, dyz curves.

with strong resemblance to the experimental data.20,21 Notably,
the observed metamagnetism is again only obtained in the
present computations if both, SOC and electronic correlations,
are included. Due to the strong signatures in the free energy,
the transition between regions I/II as well as regions II/III
are clearly of first order. We however did not investigate
the transition orders in a more elaborate fashion (e.g., via
computing the Hesse matrix).

To connect these global results to the orbital degrees of
freedom, Fig. 11 depicts the orbital-resolved local occupations
and contributions to the magnetic moment. With increasing
field the dxy filling shrinks, while the one for dxz, dyz grows.
Thus notably there is an interorbital charge transfer from dxy

to dxz, dyz with magnetic field. Whereas for H = 0 a marginal
filling difference between the latter orbitals is observed, with
growing magnetic field the occupations of the quasidegenerate
levels more or less align. The respective orbital contributions
to the magnetic moment within the t2g manifold are strongly
varying. While the dominant dxy part shows substantial
paramagnetic response with field, the generally much smaller
dxz, dyz terms exhibit intricate behavior. They start with
flat, nearly constant minor diamagnetic response for small
magnetic field and both only turn into weak paramagnetic
characteristics at H ∼ 13. Interestingly, this PM behavior
shows small differences in the amplitude for dxz and dyz

(with Mxz > Myz), with even an observable sudden increase
in that difference when the II/III transition occurs. As the
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1
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1
eV

H=18 H=26

H=6 H=10

H=0 H=4

Γ

FIG. 12. (Color online) Development of the QP band structure, DOS, and Fermi surface with magnetic field along the z direction. The
blue/gray circle on the right panel always marks the respective H value.

sole dxy response shows no definite MM signals, the para/dia
discrimination in the orbital response of dxz, dyz appears as a
key microscopic building block for the MM behavior.

The orbital discrimination in the magnetic behavior already
provides a first clue to the MM puzzle of the bilayer system.
A second important insight originates from following the
development of the QP bands with magnetic field, presented
in Fig. 12. It is seen that increasing H amounts to intriguing
changes in the low-energy manifold, most notably to relevant
shifts in the peculiar QP structure close the X point. For
H = 4, not surprisingly there are further band splittings along
X compared to the case of zero magnetic field and the
lowest-energy p-shaped band at this k-point is now placed
just below εF. A discrimination between the γ2 pockets around
X and X′ is furthermore clearly visible. Going to H = 6 the
named band is locked to the Fermi level and γ2 at X has opened
towards the BZ boundary where as γ2 at X′ has shrunk. For
H = 10 the former band is above εF and both γ2 pockets
are opened. At H = 18 the second-lowest band at X, X′
crosses the Fermi level and a minor pocket structure reappears
at X′. Moreover the α2 sheet starts to become increasingly
distorted along �X(X′) and also begins effectively shrinking
with growing field. The latter signatures are strengthened for
H = 26 with the additional onset of hybridization between
α1 and δ. The pockets close to X,X′ remain both opened in
that large-field region III, with now three low-energy bands

having crossed εF at X,X′. Along with these changes, the
QP DOS of course runs through several peaks at the Fermi
energy, but evidently exhibiting an evolution different from
a pure shifting of the H = 0 structure. Thus from the Bloch
perspective the picture of Lifshitz transitions underlying the
magnetic response emerges. Various authors have already
pointed out the importance of van Hove singularities crossing
the Fermi level and we here can verify this mechanism based
on the complete realistic starting point. The fact that not only
the γ2 sheet but also the inner sheets, most notably α2, may
play a vital role in the MM response was also retrieved in a
recent experimental study employing spectroscopic imaging
scanning tunneling microscopy.65

The applied magnetic field leaves also some signatures in
the orbital-dependent electronic self-energy (see Fig. 13). All
orbital sectors display the expected splitting in the QP weight
Z and static self-energy �stat due to the spin-filling in balance
with larger magnetic polarization. The splitting for dxz, dyz is
weaker and especially minor at small field where the nearly
constant diamagnetic response occurs. Overall there is no
strong modification of the correlation strength with H ; the MM
signatures show up somewhat stronger in the QP weight that is
associated with band renormalizations. From the calculation,
the value for Zxy is slightly larger than for the remaining
two t2g orbitals. But because of the intriguing hybridizations
(compare Fig. 6) no trivial relation may be drawn therefrom
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dxz

dyz

dxy

FIG. 13. (Color online) Orbital-dependent QP weight (right) and
static self-energy (left) with H .

in view of the respective renormalized effective masses on
the various Fermi sheets. Our RISB formalism is furthermore
able to reveal the local-multiplet behavior of the correlated
system. Via the slave-boson amplitudes the method allows us to
evaluate the occupation probability of a given eigenstate of the
local Hamiltonian (2) within the complete itinerant solution.
For instance, Fig. 14 depicts the splitting characteristics of the
4S3/2 multiplet from the three-particle sector associated with
orbital momentum L = 0, i.e., having J as purely spin defined.
As expected, the Jz degeneracy is lifted for H �= 0, showing
nontrivial signature close to the phase transitions between the
different regions I–III. Sure enough, the four-particle sector
is most dominantly occupied for the Ru(4d) t2g shell, but the

4S 3
2

3-particle sector Jz = 3
2

Jz = 1
2

Jz = −1
2

Jz = −3
2

FIG. 14. (Color online) Splitting of the 4S3/2 multiplet in the
applied field.

◦
◦

M (µB

Ru
)

FIG. 15. (Color online) Free energies (left) and net magnetic
moment (right) for θ = 20◦ (top) and θ = 90◦ (bottom), compared to
the moment for H along the z direction (θ = 0◦), respectively.

multiplets there do not exhibit a very conclusive behavior with
applied H .

B. The case H ∦ c

In principle our approach works for arbitrary polar angles
θ between H and the c axis of the system. However since
the computations are rather expensive we have chosen here

90◦20◦

FIG. 16. (Color online) Orbital-resolved occupation and contri-
butions to the magnetic moment as in Fig. 11, here for θ = 20◦ (left)
and θ = 90◦ (right).
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FIG. 17. (Color online) As Fig. 12, here for θ = 20◦ (left) and θ = 90◦ (right).

only two additional specific values (besides θ = 0), namely
θ = 20◦ and θ = 90◦. The azimuthal angle is put to zero; i.e.,
the latter in-plane magnetic field points along the x direction
in between the Ru-O-Ru bond of the square lattice (see Fig. 9).
The evolution of the net magnetic moment per Ru ion for the
two new field angles together with the respective free-energy
plot is displayed in Fig. 15. When directly comparing the
magnetizations for θ = 20◦ with the former θ = 0, one first
realizes that for a given H the value of M is increased. This
seems to be in line with the experimental data from the work
of Grigera et al.22 showing an enhancement of the real part of
the differential susceptibility at the MM transition with θ (note
that θ is defined as the angle between field and the ab plane
in Ref. 22). The overall phenomenology of M(H ) for θ = 20◦
is still rather similar to the case H‖c. Note that although
the upper first-order transition happens at larger magnetic
moment for θ = 20◦, the value corresponds to nearly the same

magnetic-field strength H . On the contrary, for H ⊥ c along
x the overall characteristic is qualitatively different. After a
near linear rise for H > 5, close to H = 16 a sudden change
of slope for M(H ) takes place (with a possible signature in
the free energy) and the magnetic moment continues again
nearly linearly. The upper first-order transition is not visible
anymore in the free-energy curve. This observation shows clear
resemblance to the experimental findings of singular behavior
for in-plane magnetic field compared to strong out-of-plane
H .11 However from the present computations we cannot
draw a definite conclusion concerning the shift of the phase
boundaries with respect to H and θ . We are nevertheless
in the position to shed more light on the angular-dependent
differences by showing in Fig. 16 the orbital contributions to
the occupation and the magnetic moment for θ = 20◦, 90◦.
For the smaller θ the orbital-resolved differences compared to
H along c are marginal, with mainly an obvious occupation
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4S 3
2

3-Particle Sector

FIG. 18. (Color online) Splitting of the 4S3/2 multiplet for θ =
20◦ (left) and deferred splitting for θ = 90◦ (right).

difference between dxz, dyz (with nxz > nyz) for H > 22 which
was absent before. Comparing the results for H along x to
the case along z shows again clear signature. The stronger
occupation of dxz occurs at already small magnetic field and
becomes substantial at large H . Furthermore the former area
of diamagnetic response from dxz, dyz has nearly vanished;
both orbital responses are nearly indistinguishable from zero
within the accuracy for small H . Yet at least for H > 15 the PM
response with different amplitude is clearly observable. Thus
the dia/para competition in dxz, dyz that seemed to be crucial
for the MM behavior for H along z is nearly absent, explaining
the qualitative difference between in- and out-of-plane field.
Coming back to the phase-region shift with field and angle,
and fixing such a shift to the dia/para crossing for dxz, dyz,
one might observe that this crossing indeed shifts to the left,
i.e., towards smaller H . However again the resolution is not
accurate enough to render a unique statement concerning that
question. The impact of the finite angle θ shows also up
in the changes of the QP states with H , as documented in
Fig. 17. While again for θ = 20◦ there are no major qualitative
differences compared to the case of H along c (e.g., also here
the three low-lying bands at X cross the Fermi level with field),
the pure in-plane field leads to clear modifications. Namely, the
two originally nearly degenerate lowest-energy bands at X do
not split with H , but cross εF together. In line with this, the four
γ2 pockets in the BZ behave coherently for all field strengths
and also the δ-α1 hybridization at large H occurs now in a
fourfold manner. Importantly the third low-energy band (now
also still degenerate with the fourth one) remains below the
Fermi level within the range of the studied magnetic field. Thus
H along the x axis leads to an avoided lifting of degeneracies,
resulting in qualitative different magnetic response. However
note that this on the other hand does not imply that the
symmetry between dxz, dyz is enforced, since the local orbital
discrepancy is strongly increased for the sole in-plane field
(compare Fig. 16). Such selection-rule constraints depending
on the magnetic-field direction show up also prominently when
it comes to local-multiplet splittings, as shown in Fig. 18 for
our example of the L = 0 4S3/2 many-body state from the
three-particle sector. While the Jz splitting for θ = 20◦ remains
vital, in the case of H along x the splitting is mostly absent.
For further clarification, Fig. 19 depicts the resulting angle
between applied field and net magnetization, rendering it clear
that only at large enough field strength the moment aligns
along H . In this respect it appears as if for H ⊥ c the moment
is somewhat more easily forced into the field direction.

◦
◦

FIG. 19. (Color online) Angle between applied magnetic field H

and resulting net magnetic Ru moment for θ = 0, 20◦, 90◦.

V. SUMMARY AND DISCUSSION

The physical content of this work is twofold. First the in-
terplay of spin-orbit coupling and local Coulomb interactions
was studied at equilibrium for the n = 1,2 layered strontium
ruthenium oxides belonging to the Ruddlesden-Popper family.
Thereby we started from the realistic low-energy Kohn-Sham
dispersion as obtained from Wannier-downfolding the bands
from state-of-the-art LDA calculations. Then notably the
multiorbital many-body effects (and its interlinking with spin-
orbit effects) were treated beyond simple Hartree-Fock mean
field by utilizing proper self-consistent renormalizations due
to strong correlations within rotationally invariant slave-boson
theory at saddle point.

For both compounds it became evident that SOC and
strong correlations together are important to account for the
detailed low-energy electronic structure at small temperatures.
Already in Sr2RuO4 the local Coulomb correlations effectively
renormalized the spin-orbit interaction, leading to enhanced
band splittings for the t2g manifold close to the Fermi level. Its
is therefore surely expected that the unconventional supercon-
ductivity at low T has to be addressed by treating these both
interaction types on equal footing.33 For the bilayer compound
Sr3Ru2O7 such an approach was shown to be essential in
order to describe the intriguing low-energy quasiparticle
band structure and density of states in close resemblance
to existing ARPES and specific-heat measurements.16,64 The
renormalized spin-orbit split bands give rise to extremely small
energy scales, whereby close to the X point in the BZ an
especially rich structure appears. However a straightforward
decomposition of the complicated renormalized band structure
into distinct dxy-, dxz-, or dyz-like bands seems difficult; the
system looks like an intricate multiorbital system where subtle
differences in the orbital contributions eventually play a crucial
role.

Beyond the equilibrium study, a straightforward examina-
tion of the bilayer ruthenate in applied magnetic field, based
on the complete multiorbital t2g Hamiltonian including the
Zeeman term in the presence of SOC, was presented.
Depending on the magnetic-field direction, metamagnetic
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transitions in line with first-order phase transitions were
verified. Taking a local viewpoint in that metallic system,
the competition between paramagnetic (dxy) and diamagnetic
(dxz, dyz) contributions appears to play a significant role for
the MM phenomena. Moreover an orbital charge transfer from
dxy to dxz, dyz with increasing H was observed, though the
orbital fillings between the latter two t2g orbitals only seem
to deviate with larger field angle θ . Concerning the itinerant
QP states it became evident that Lifshitz transitions close
to the X point (i.e., around the γ2 pocket) may partly be
blamed for changes in the free energy and accompanying
Fermi-surface reconstructions across the MM transitions. But
moreover a substantial change of the α2 sheet and an additional
α1-δ hybridization is seen with larger magnetic field. While
the region around X corresponds to propagation along the
Ru-O-Ru bond with strong short-range variation, the latter
inner sheets account for rather isotropic in-plane transport with
only long-range variation in the respective QP wave function.
Thus the physics of the MM transitions involves directional,
short-range processes at smaller H and incorporates long-
range mechanisms at larger H . In addition, symmetry changes
seem to take place between certain regions of the BZ. Albeit the
overall Cz

2 symmetry of the total FS remains stable with H , the
original Cz

4-like symmetry between the γ2 pockets is disturbed
towards Cz

2 in the central MM phase region II, if H||c holds.
However that symmetry change is absent for H⊥c and a well-
defined bounded MM region cannot be identified. Thus the
present calculations reveal the qualitative differences between
out-of-plane and in-plane magnetic field in accordance with
experiment (see Ref. 11 for a recent review).

There remain however open questions. For instance, we
may not draw definite conclusions on the shifting of the MM
transitions with field angle, whereas in some model studies40,44

the shift of the MM phase region to lower magnetic fields
with θ in line with experimental work was verified. Besides
several other possible reasons, this angle-dependent behavior
might also be sensitive to the specific choice for the magnitude
of the interaction parameters U , JH, and λ within the local
Hamiltonian, also in conjunction with the nesting properties
between the various spin-polarized Fermi sheets.44

Another important point concerns the appearance of ne-
matic order, revealed in transport studies for Sr3Ru2O7 to
escort the MM region.66 We evidently see symmetry changes in
the FS geometry and standard representations of nematic order
parameters for a certain angular-momentum ordering channel
l of the form Nl = ∑

k n(k) exp[ilϕ(k)] (see, e.g., Ref. 67 for
a review) display nontrivial behavior with H depending on l

and on the number of included bands. However the computed
data do not exhibit convincing evidence for a well-defined
quantification of nematicity along that definition. Note that
we also did not incorporate such a symmetry-breaking (i.e.,
forward-scattering) term explicitly in the Hamiltonian, as
done in some model studies,37,38,40,41,44 and it might therefore
be possible that we miss additional (energetically favorable)

symmetry breakings in our mean-field approach. For the
present problem, the nematic order parameter has frequently
also been defined via the filling difference between the dxz,
dyz orbitals.40,41 Yet this definition seems dangerous, since
the Cz

2 symmetry of Sr3Ru2O7 is broken already by the
equilibrium crystal structure and LDA calculations reveal such
a nominal filling difference for H = 0. On the other hand our
extended-LDA calculations point towards an initial alignment
of these suborbital fillings with magnetic field. Only for larger
(H , θ ) a true dxz, dyz filling differentiation occurs. In this
respect its also noteworthy that here the magnetic-field tilting
towards the ab plane takes place in between the Ru-O-Ru bond,
i.e., along the diagonal a axis of the in-plane square lattice.
It would therefore be interesting to check further additional
in-plane directions, especially along Ru-O-Ru.

This brings us to possible extensions of the current work
on Sr3Ru2O7. For present numerical reasons, the different
Ru ions in the bilayer unit cell were assumed equivalent by
symmetry (as true for the equilibrium crystal structure). But
we easily expect that the MM phase regions would generally
benefit from such a symmetry breaking within the unit cell. If
orbital-liquid scenarios or the physics of domain structures11,68

in the compound are vital, one has to come up with even
more sophisticated real-space picturings. Intersite Coulomb
interactions are here neglected, but may also be a source
for the observed symmetry breakings.45 Furthermore since
this work was performed by using a postprocessing scheme
to existing LDA calculations, elaborating on a complete
charge-self-consistent approach with the proper feedback of
the electronic self-energy onto the Kohn-Sham charge density
could surely enhance the MM response. Accounting for
finite-temperature effects is an additional further important
aspect in order to reveal the intricate thermodynamics of the
MM region.69 Last but not least, at the moment the method
relies on mean-field theory. Since in other strongly correlated
materials it is already found that intricate self-energy effects
especially take place close to van Hove singularities,70 local
quantum fluctuations should be included in future Sr3Ru2O7

studies. Nonlocal quantum spin fluctuations may have relevant
impact on the low-energy physics, since the material is
prone to magnetic order. Nonetheless the present realistic
formalism yields promising results and shows that extended-
LDA calculations are in principle capable of addressing the
challenging low-energy physics of the layered ruthenates.
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