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We present a fractionalized metallic phase which is indistinguishable from the Fermi liquid in conductivity and
thermodynamics, but is sharply distinct in one-electron properties, such as the electron spectral function. We dub
this phase the “orthogonal metal.” The orthogonal metal and the transition to it from the Fermi liquid are naturally
described using a slave-particle representation wherein the electron is expressed as a product of a fermion and
a slave Ising spin. We emphasize that when the slave spins are disordered, the result is not a Mott insulator
(as erroneously assumed in the prior literature), but rather the orthogonal metal. We construct prototypical
ground-state wave functions for the orthogonal metal by modifying the Jastrow factor of Slater-Jastrow wave
functions that describe ordinary Fermi liquids. We further demonstrate that the transition from the Fermi liquid
to the orthogonal metal can, in some circumstances, provide a simple example of a continuous destruction of a
Fermi surface with a critical Fermi surface appearing right at the critical point. We present exactly soluble models
that realize an orthogonal metal phase, and the phase transition to the Fermi liquid. These models thus provide
valuable solvable examples for phase transitions associated with the death of a Fermi surface.
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Despite tremendous effort in the last two decades, our
theoretical understanding of non-Fermi liquid phases of
metallic matter in spatial dimension d > 1 is still in its infancy.
Important examples of such non-Fermi liquids are provided
by phases where the electron is fractionalized into multiple
parts. Here, we present a particularly simple example of a
fractionalized non-Fermi liquid phase, which behaves in every
respect like a Fermi liquid, except that the charge carriers are
orthogonal to the underlying electrons. In some circumstances,
this phase is accessed via a direct second-order phase transition
from a Fermi liquid, which is marked by a sharp change in the
electron spectral function. The transition proceeds via a critical
point that is characterized by a sharp critical Fermi surface
where the Landau quasiparticle is critically destroyed.1

To study this fractionalized non-Fermi liquid phase and the
associated phase transition to a Fermi liquid, we employ a
slave-particle representation where the electron is expressed
as a product of a slave Ising spin and a fermion. Unlike the
more traditional “slave-boson” representations, which have
a U(1) gauge redundancy, and hence require introducing a
compact U(1) gauge field,2 the slave-spin representation has
only a Z2 gauge redundancy. A “slave-spin representation”
of this type was first introduced to study the multiorbital
Hubbard model3–6 and the possibility of orbital selective
Mott transitions in such models. The slave-spin formulation
has gained in popularity over the last few years, and has
been employed to describe correlation effects in multiband
metals such as the iron pnictides, and also to investigate
nonequilibrium physics in quantum quenches.7 However, in
the existing literature, the phase transition where the slave Ising
spin disorders has been misidentified as a Mott (or in some
cases orbital selective Mott) transition. Here, we point out that
the correct identification is instead as a metallic phase in which
all orbitals participate in transport and thermodynamics (just
as in the usual Fermi liquid) but where some, possibly all, of
the charge carriers are orthogonal to the physical electrons.
For instance, in the one-band models considered in Ref. 6,
the zero-temperature electrical conductivity is nonvanishing

on both sides of the slave-spin disordering transition, which
should thus be interpreted as a transition between two metallic
phases, one of which is a Fermi liquid, while the other is a
fractionalized phase which has gapless charge carriers that are
orthogonal to free electrons. The electron spectral function, in
fact, has a gap even though the state is a compressible metal.
We dub this phase an “orthogonal metal” to emphasize that
the charge-carrying fermions are orthogonal to the underlying
electrons.

The orthogonal metal (and some simple generalizations
described below) is a minimal example of a non-Fermi liquid
phase, quite possibly the simplest. Its low-energy physical
properties are readily determined reliably. The orthogonal
metal is separated from the conventional Fermi liquid by a
simple quantum phase transition driven by the condensation
of the slave spin. In some situations, this transition is second
order, and the Landau quasiparticle of the Fermi liquid is
critically destroyed at the transition point. The properties of the
resulting critical Fermi surface state can be straightforwardly
obtained as we demonstrate later in the paper.

In the multiorbital case (for instance, Refs. 3–5), the
disordering of the slave spin of some orbital signals a frac-
tionalization of the electrons corresponding to that orbital into
a charged fermion and a gapped Ising variable. The resulting
charged fermion continues to be gapless and contributes to
thermodynamics and transport just as in a Fermi liquid.
However, the fractionalization of the electron leads to a loss
of the Landau quasiparticle in the electron spectral function
corresponding to that particular orbital. We dub this phase an
“orbital selective orthogonal metal” and emphasize that it is
not in an orbital selective Mott state.

Two other generalizations are important to mention here.
First, there is no restriction on commensuration of the particle
density with the underlying lattice for such a phase to exist.
Thus, we expect that the orthogonal metal phase can occur
even for interacting electrons in the continuum. Clearly, we
can imagine generalizations of the simplest orthogonal metal
to situations in which the slave spin is chosen to be some
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other discrete variable, for instance, a Zn rather than Ising,
degree of freedom. In that case, the gauge redundancy is also
Zn and the corresponding orthogonal metal is obtained when
the slave spins are disordered, the fermions form a gapless
Fermi surface, and the Zn gauge fields are gapped. For most of
the paper, we will discuss only single-band models and Ising
slave spins as it most clearly and simply illustrates the main
results. Generalization to other situations is straightforward
and we will comment on these briefly when we discuss phase
transitions to the conventional Fermi liquid.

For further insight, we show how the orthogonal metal
may also be accessed within the more standard slave-boson
formulation.8 With this understanding, we write down proto-
typical wave functions for an orthogonal metal and show how
they differ from the wave function of a conventional Landau
Fermi liquid.

We also display exactly soluble models for the orthogonal
metal phase and the associated transition to the Fermi liquid.
As a stepping stone to this end we first discuss a quantum
Ising model on a square lattice, which displays both a trivial
paramagnetic phase and a nontrivial paramagnetic phase
with Z2 topological order. These phases are separated by a
continuous confinement/deconfinement transition in the Ising
universality class. Introducing electron degrees of freedom
into this Ising model leads us to our desired exactly soluble
model for an orthogonal metal phase and its phase transition
to the conventional Fermi liquid.

We also consider a second exactly soluble model where
the underlying quantum Ising model realizes both an Ising
ferromagnetic phase and an Ising paramagnet which has
nontrivial Z2 topological order. This model has a soluble
non-Landau transition between these two phases where the
Ising ferromagnetic order parameter has critical correlations
with a large anomalous exponent η. Such transitions have
been studied for a number of years now,9 although there
have been no previous soluble examples that we are aware
of. Introducing electron degrees of freedom, we again obtain
an orthogonal metal phase and a ferromagnetically ordered
Fermi liquid phase connected by a continuous transition. Thus,
we have constructed two soluble simple models for a phase
transition associated with the continuous disappearance of the
single-particle Fermi surface. In both of these models, the
transition between the Fermi liquid and the orthogonal metal
proceeds via a critical Fermi surface. A curious feature of
the second model is that a second “mirror Fermi surface”
appears at the critical point. We explain the origin of this mirror
surface. We also point out that the critical Fermi surface of this
second model encloses a volume that violates the Luttinger
theorem (by a factor of 2). This exactly soluble model thus
also illustrates the fact that non-Fermi liquids with sharp Fermi
surfaces need not satisfy the Luttinger theorem.

Previous tractable examples of phase transitions where
the electron Fermi surface is critically destroyed in-
clude the Kondo breakdown transition in Kondo-Heisenberg
models,10–12 and Mott metal-insulator transitions between a
Fermi liquid and a spin liquid.13,14 In all these prior examples,
the critical theory is characterized by the appearance of an
emergent gapless U(1) gauge field that couples to a Fermi
surface and other gapless excitations. The example discussed
in this paper provides a “baby” version of such a transition

where there is an emergent gapped gauge field, which plays
no direct role in determining universal critical properties. The
properties of the resulting critical Fermi surface state can
therefore be obtained rather straightforwardly.

Issues related to the death of a Fermi surface potentially also
play a central role in the observed non-Fermi liquid physics
near heavy-fermion quantum critical points.11,15,16 The simple
examples studied in this paper will, we believe, help develop
intuition about these phenomena.

The paper is structured as follows: First, we provide a
brief outline of the slave-spin representation. We demonstrate
that in the low-energy effective theory, the electric charge
is carried by the orthogonal fermions. We construct the
current operator, and demonstrate that the ferromagnetic and
paramagnetic phases of the slave spins are thus both metals,
if the orthogonal fermions are in a metallic phase. We then
discuss the relationship between the slave-spin and the more
usual slave-boson formulations. This then leads to a discussion
of prototypical wave functions for the orthogonal metal phase.
The orthogonal metal is argued to have a structure similar
to a Slater-Jastrow wave function, but with a Jastrow factor
replaced by a different function.

We then turn our attention to the phase transition, and
explain that the transition between the two metallic phases is
marked by a change in the electron spectral function. We show
that in a mean-field approximation, there appears a “critical
Fermi surface,” i.e., a sharp Fermi surface that remains well
defined, even when there is no Landau quasiparticle. The
stability of the mean-field description is determined by the
relevance of the coupling of the energy density of the slave
spins to fluctuations of the gapless modes of the orthogonal
fermion sectors at the critical point. For continuum realizations
of the orthogonal metal with Ising slave spins in the presence of
long-range Coulomb interactions, such coupling is irrelevant
at the critical point, so that the mean-field description is
robust. However, for generic lattice systems or in the absence
of long-range Coulomb interactions, the coupling is weakly
relevant in two space dimensions, and marginally relevant in
three, so that the mean-field description necessarily fails close
to the critical point, unless the bare coupling is fine tuned to
zero, as is the case in the exactly soluble models presented
in Sec. V. For a nonzero bare coupling, the orthogonal
metal–Fermi liquid (OM–FL) transition may be first order, and
the existence of a critical Fermi surface can not be guaranteed.
Nonetheless, for generalized orthogonal metals with, say, Z4

slave spins, a continuous OM–FL transition with a robust
mean-field description and a sharply defined critical Fermi
surface can be obtained for general lattice models.

We then present exactly soluble models that realize a Z2

fractionalized, orthogonal metal phase. Finally, we discuss the
types of physical systems in which an orthogonal metal phase
might be realized.

I. GENERAL ARGUMENTS

A. Introduction to slave spins

In the slave-spin representation, the electron operators
are represented as a product of a fermion operator and a
pseudospin operator. The works of Refs. 3–6 use two slightly
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different slave-spin formulations. We will use the formulation
of Ref. 6, although our essential points apply equally to the
formulation of Refs. 3–5. In line with Ref. 6, we write the
electron operator as

ciσ = fiσ τ x
i , (1)

where ciσ is the electron annihilation operator on site i, with
spin σ , f is a fermion operator, and τ x is a Pauli matrix
acting on an Ising pseudospin. Occupied states have τ z = +1,
whereas the unoccupied/doubly occupied states have τ z = −1.
To focus on the issues in the simplest possible context,
we consider a model with only one orbital; the extension
to multiorbital models is straightforward, and involves the
introduction of a separate slave spin for each orbital.

It may readily be seen that the slave-spin representation
expands the Hilbert space. The physical Hilbert space has two
states per site per spin (the electron is either present or absent),
whereas the slave-spin representation has four states per site
per spin (the fermion may be present or absent, and the slave
spin may point up or down). To obtain a good representation of
the original problem, we must restrict ourselves to the physical
Hilbert space. This is accomplished by enforcing the constraint

τ z
i = −(1 − 2f

†
↑f↑)(1 − 2f

†
↓f↓). (2)

If the constraint (2) is implemented exactly, then the slave-spin
representation is identical to the original fermion representa-
tion. In the low-energy effective theory, however, the constraint
is implemented on average by the method of Lagrange
multipliers.

What types of phases and phase transitions can we access
using the slave-spin representation? The general approach is
to start with an electron Hamiltonian, rewrite the electrons
in terms of slave spins and f fermions, and then decouple
the spin and fermion sectors in a mean-field approximation
[implementing the constraint (2) approximately, by the method
of Lagrange multipliers]. For example, we could start with the
Hamiltonian

H = −
∑
ijσ

tij c
†
iσ cjσ +

∑
ij

Vijninj − μ
∑

i

ni, (3)

where μ is the chemical potential and ni = ∑
σ c

†
iσ ciσ is the

total electronic density on the site i. For some of our results
it will be important to include the long-range part of the
Coulomb interaction in Vij , but for now we will leave its
detailed form unspecified. After writing this Hamiltonian in
terms of the fermion and slave-spin operators, using Eq. (1),
we then decouple the f fermions and the slave spins in
a saddle-point approximation, implementing the constraint
Eq. (2) by using Lagrange multipliers. One then obtains the
coupled Hamiltonians

Hf = −
∑
ijσ

t ′ij f
†
iσ fjσ −

∑
iσ

(μ + 4λi)f
†
iσ fiσ

+
∑
ij

(Vij + 2λiδij )

(∑
σ

f
†
iσ fiσ

)(∑
σ ′

f
†
jσ ′fjσ ′

)
, (4)

HI = −
∑
ij

Jij τ
x
i τ x

j +
∑

i

λiτ
z
i . (5)

We have defined renormalized parameters

Jij = 1

2
tij

∑
σ

〈f †
iσ fjσ 〉 + c.c., t ′ij = 〈

τ x
i τ x

j

〉
tij , (6)

where 〈· · · 〉 denotes the ground-state expectation value and
λ is a Lagrange multiplier enforcing Eq. (2) on average. The
coupled Hamiltonians in Eqs. (4) and (5) must be diagonalized
self-consistently.

Note that the Hamiltonian, after a mean-field decoupling of
the slave spins and f fermions, takes the form of a standard
fermion Hamiltonian coupled to a (generalized) transverse-
field Ising model. In the f -fermion sector, there can clearly
be a large number of phases. As we will show, the f fermions
carry all the quantum numbers of the electron. In addition,
they carry a Z2 gauge charge so that they can not be directly
identified with the physical electron. The Ising spin created by
τ x
i also carries Z2 gauge charge, but is electrically neutral and

does not carry the physical electron spin.
In this paper, we consider situations where the f fermions

are in a Fermi liquid state. When the Ising spin is also ordered,
the resulting phase is just an ordinary Fermi liquid of the
underlying electrons. What if the Ising spin is disordered? In
previous literature, this phase has been misinterpreted as a
Mott insulator. In fact, we will demonstrate that it corresponds
to a Z2 fractionalized metallic phase where the charge carriers
are orthogonal to the underlying electrons: the orthogonal
metal. We note in passing that the orthogonal metal is just
one of a large family of phases that may be constructed by
Z2 fractionalization of the electron. For example, in Ref. 17
the f electrons were placed in a quantum spin Hall state,
which is insulating in the bulk but has gapless f -fermion edge
states. When the slave spins are disordered, the edge states are
orthogonal to the regular quantum spin Hall edge states.18 This
phase could be dubbed an “orthogonal spin Hall state” or an
“orthogonal helical metal” according to taste.

B. Interpretation of the slave-spin results

To correctly interpret the slave-spin ordering transition, we
must first establish whether the electric charge is carried by
the f fermions or the slave spins. This is because the slave
spins and the f fermions have independent dynamics, once the
constraint (2) is implemented only on average. It is therefore
meaningful to ask whether it is the slave spins or the f fermions
that couple to the external electromagnetic field.

The electric charge is the Noether charge that corresponds
to a global U(1) phase rotation symmetry, while the electric
current is the coupling of the system to a U(1) (electromag-
netic) gauge field. The appropriate form of the current operator
in the effective low-energy theory must be determined based on
symmetry by determining how the slave spins and f fermions
couple to the U(1) gauge field.

In the slave-spin representation Eq. (1), a U(1) rotation
of the c operator c → c exp(−iϕ) can only be matched by a
U(1) rotation of the f -fermion operator since the operator τ x is
purely real. Accordingly, the effective low-energy Hamiltonian
for the f fermions [Eq. (4)] exhibits a global U(1) symmetry
under the transformation f → f exp(−iϕ), but the effective
low-energy Hamiltonian for the slave spins [Eq. (5)] does
not exhibit a U(1) symmetry. Since the electric charge is the
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Noether charge associated with a U(1) symmetry, it follows
that the electric charge must be carried purely by the f

fermions, and can not be assigned to the slave spins. From
this it follows that any phase where the f fermions form a
gapless Fermi surface must be conducting, since they carry
the electric charge.

We now illustrate this point by deriving the current operator
in the slave-spin representation. To obtain the form of the
current operator, we promote the global U(1) symmetry to a
gauge symmetry, and determine how the theory couples to the
gauge field. Since only the f -fermion Hamiltonian exhibits
a U(1) symmetry, it follows that the current operator must
be constructed exclusively out of f fermions. If we assume
that the f -fermion Hamiltonian takes the form (4), then a
site-dependent U(1) rotation fiσ → fiσ exp(−iϕi) must be
matched by a transformation t ′ij → t ′ij exp(iAij ), where the
gauge field transforms as Aij → Aij + ϕj − ϕi . The electric
current operator is the term in the Hamiltonian that couples to
the U(1) gauge field Aij . It must therefore take the form

jij = ie
∑

σ

(f †
iσ t ′ij fjσ − H.c.). (7)

The factor of e converts the number current into the electrical
current. This is of course the expected form of the current
operator for a theory in which the f fermions carry the electric
charge.

An alternative way to derive (7) is to start from the
expression for electric charge density ρi = e

∑
σ c

†
iσ ciσ =

e
∑

σ f
†
iσ τ x

i τ x
i fiσ = e

∑
σ f

†
iσ fiσ . Using the Ehrenfest rela-

tion ∂t Ô = −i[Ô,Ĥ ], where the Hamiltonian is given by
Eq. (4), we obtain

∂tρi −
∑
j,σ

ie(f †
iσ t ′ij fjσ − H.c.) = 0. (8)

A comparison with the continuity relation ∂tρi − ∑
j jij = 0

then leads us to identify the expression (7) with the current
operator.

Thus, we see that the electric current is carried purely by
the f fermions. If the charge-carrying f fermions are in a
metallic phase, it follows inexorably that the state must have
a nonvanishing electrical conductivity. This point is discussed
further in the Appendix 1.

Similarly, it follows that the total particle number of the
physical electrons is again given simply by the number of
f particles. These f particles are coupled only weakly to
the slave Ising spins. Thus, a phase where the f particles
are compressible will also be compressible for the under-
lying electrons. We conclude that when the slave spins are
disordered, the result is a compressible metal rather than a
Mott insulator. The Fermi surface of the f fermions will be
visible in quantum oscillation or other experiments that do not
add/remove electrons.

We now make a few comments regarding the low-energy
effective theory of the orthogonal metal phase. The only
degrees of freedom in this theory are the f fermions in the
vicinity of their Fermi surface. Thus, the low-energy theory
for the f fermions is precisely the same as Landau’s Fermi
liquid theory. Namely, the f fermions interact via forward and
BCS scattering interactions. Forward scattering interactions

are exactly marginal and lead to renormalization of response
functions such as, e.g., compressibility and conductivity. BCS
scattering is marginally irrelevant/relevant depending on the
sign of the BCS amplitude. Attractive BCS interactions will
lead to pairing of the f fermions. The resulting state has been
discussed in Ref. 19. Since the f fermions carry physical
electric charge e, the paired phase would be a superconductor
with hc/2e vortices. However, this state is distinct from a con-
ventional superconductor as its “Bogolioubov quasiparticles”
are orthogonal to electrons and, in fact, carry an emergent Z2

gauge charge. This phase, therefore, is topologically ordered.
It was dubbed the SC∗ phase in Ref. 19 to distinguish it from
a conventional superconductor.

C. Generalizations

1. Multiband systems: Orbital selective orthogonal metals

Exactly the same issues as above arise for the slave-spin
descriptions of multiorbital systems considered in Refs. 3–5.
Specifically, these papers introduced a separate slave spin for
each orbital and considered mean-field states where the slave
spins associated with some orbitals were disordered while
other slave spins stay ordered. Such states were interpreted to
be examples of orbital selective Mott states where the electrons
associated with some but not all orbitals in a multiorbital
system are localized. As the discussion above shows, in
general, this interpretation is incorrect. Even when some of
the slave spins disorder, the f bands will still contribute to
thermodynamics and transport in exactly the same way as
in the Fermi liquid metal. In particular, quantum oscillation
experiments will see a continuous evolution of the Fermi
surfaces of all the bands across the slave-spin disordering
transition provided that the transition itself is continuous.
(Here and below we assume that the Fermi surfaces of different
bands do not intersect.) The only signature of the orbitally
selective slave-spin disordering transition is in photoemission
experiments, and the disordered phase should be viewed as a
phase with “orbitally selective orthogonality.”20

2. Orthogonal metals in the continuum

Mott insulating phases require the presence of an under-
lying crystalline lattice with which the electron density is
commensurate. In contrast, the orthogonal metal phase, being
compressible, clearly has no such restriction on commensura-
bility. Thus, we expect that even in the absence of an underlying
lattice (i.e., with translation symmetry present), interacting
electrons can display an orthogonal metal phase. As with
the lattice realizations, this phase will have low-temperature
thermodynamic properties identical to the Landau Fermi
liquid, but will have a hard gap in the single-particle spectral
function. Quantum oscillation experiments will, however, see
a conventional Fermi surface with volume determined by the
usual Luttinger theorem. Moreover, for a Gallilean invariant
system in the continuum, the parameters of the effective
“Fermi liquid” theory of f fermions will satisfy the standard
relations, such as m∗ = (1 + Fc

1 )m, with m the bare electron
mass, m∗ the effective mass of the f fermion, and Fc

1 the
forward scattering amplitude in the charge channel with
angular momentum 
 = 1.
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3. Other discrete slave spins

Clearly, the construction above can be generalized to
describe a family of orthogonal metals where the slave Ising
spin is replaced by some other discrete spin variable. One
example which we will consider below is when the slave
spin is taken to be a Zn clock variable. This representation
naturally leads to generalized orthogonal metal phases where
the electron fractionalizes into a charged spinful fermion
and the Zn slave spin. Such generalized OM phases will be
useful examples to consider when we discuss phase transitions
between the conventional Fermi liquid and OM phases in
Sec. C. Unless otherwise specified, we will restrict attention to
the simplest OM phase in single-band models with Ising slave
spins in the rest of the paper.

II. RELATIONSHIP TO SLAVE ROTORS

It is useful to understand how the orthogonal metal
phase may be described within more standard slave-particle
frameworks where the electron operator is split into a charge-e
spin-0 boson b (the chargon) and a charge-0 spin-1/2 fermion
diα (the spinon):

ciα = bidiα. (9)

An example is the slave-rotor representation of Ref. 2. As is
well known, this representation has a U(1) gauge redundancy
associated with letting bi → bie

iθi , diα → e−iθi diα at each site
i. Associated with this there is a local constraint

nbi =
∑

α

d
†
iαdiα (10)

with nbi being the boson number on each site.
If the diα form a Fermi surface and the bi condense, then

we get the usual Fermi liquid phase. At commensurate filling,
it is possible for the bi to form a Mott insulator while retaining
the diα Fermi surface. This results in a description of an exotic
quantum spin liquid Mott insulator, which has a gapless spinon
Fermi surface.

Now, consider a situation where the bi are not condensed
but boson pairs are condensed, i.e., 〈bi〉 = 0 but 〈b2

i 〉 	= 0. This
reduces the U(1) gauge structure to Z2. The unpaired boson
then survives as an Ising variable that carries the residual Z2

gauge charge and is gapped in such a phase. However, the
boson pair condensate glues back the electrical charge to the
spinon and converts it into a charge-e spin-1/2 fermion that
also carries Z2 gauge charge. Thus, we get back the slave-spin
representation of the electron operator. Since the single boson
is not condensed, the electron operator develops a gap in its
spectrum. However, the gapless Fermi surface now describes
the f particles and we get a compressible metal. This is just
the orthogonal metal phase.

III. PROTOTYPICAL WAVE FUNCTIONS

The insights above enable us to write down prototypical
wave functions for the orthogonal metal phase. The many-
particle wave function for a fermion system must be antisym-
metric under exchange. A class of such suitably antisymmetric
wave functions can be easily constructed by multiplying
the Slater determinant wave function of free fermions by a

completely symmetric function of just the particle coordinates:

ψF (r1α1,r2α2, . . . r2Nα2N ) = ψb({ri})ψSlater({riαi}). (11)

Any choice of ψb that is completely symmetric yields a
legitimate electron wave function ψF . Being completely
symmetric, the function ψb can be thought of as a wave
function of a system of bosons. These bosons carry no spin
(as ψb does not depend on spin) and their coordinates are
“slaved” to the coordinates of the fermions that form the Slater
determinant. It is clear that there is a close connection between
this class of wave functions and the slave-boson description of
interacting fermionic systems.

The noninteracting Fermi gas is obtained if we choose ψb to
simply be the ground-state wave function of a noninteracting
Bose condensate

ψb({ri}) = 1. (12)

Correlations in a Fermi liquid may be introduced by taking ψb

to be the wave function of an interacting bosonic superfluid.
A good choice is given by the Jastrow wave function

ψb({ri}) ∝
∏
i<j

f (ri − rj) (13)

with f (r) → const as r → ∞. This of course just yields the
familiar Slater-Jastrow wave function for a Fermi liquid.

Based on the discussion in the previous section, we now see
that a wave function for the orthogonal metal will be obtained
if we choose the boson wave function to be that of a paired
boson superfluid rather than an ordinary superfluid. Thus, we
write

ψOM(r1α1,r2α2, . . . r2Nα2N ) = ψPSF ({ri}) ψSlater({riαi}),
(14)

where the paired boson superfluid wave function takes the
form

ψPSF ∝ S [g(r1 − r2)g(r3 − r4) · · · g(rN−1 − rN)] . (15)

Here, S denotes the symmetrization operator, and g(r1 − r2)
is the wave function of a “molecule” of two bosons satisfying
g(r) → 0 as r → ∞. Equation (15) represents a condensate of
these molecules analogous to the single-boson condensate in
Eq. (12). Further correlations between molecules can be built
in by a molecular Jastrow factor as in Eq. (13).

IV. ELECTRON SPECTRAL FUNCTION:
EVOLUTION THROUGH TRANSITION

We now demonstrate that the slave-spin ordering transition
is associated with a dramatic change in the nature of the
electron spectral function (which may be measured directly
through photoemission experiments). In particular, the ordered
phase of the slave spins is a Fermi liquid, whereas the
paramagnetic phase is an exotic metal where the charge
carriers are orthogonal to free electrons. Thus, even though
the thermodynamics and transport are identical to a Fermi
liquid, the disordered phase of the slave spins is not really in
a Fermi liquid phase. Rather, the electron spectral function
acquires a hard gap everywhere in the Brillouin zone. (In
the multiorbital case, the hard gap will appear just for the
electron operator associated with the orbital whose slave spin
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was gapped). We therefore dub this phase an orthogonal
metal. The orthogonal metal is quite possibly the simplest
non-Fermi liquid phase. Nevertheless, it starkly illustrates
how photoemission and quantum oscillation experiments may
give seemingly completely contradictory results for the Fermi
surface in a non-Fermi liquid metal. In the orthogonal metal,
quantum oscillations will see a full Fermi surface, while
photoemission sees a hard gap.

A. Spectral function in the orthogonal metal

In this section, we describe the electron spectral function
in the orthogonal metal using a mean-field approximation that
neglects any coupling between the slave-spin and orthogonal
fermion sectors. We expect this approximation to be at least
qualitatively correct deep inside the OM phase.

To calculate the spectral function, we note that in Eq. (1)
the electron operator is a product of a slave-spin operator and a
fermion operator. Therefore, in the mean-field approximation,
the imaginary-time electron Green’s function is the product
of the slave-spin Green’s function and the fermion Green’s
function. In momentum space, the imaginary-time electron
Green’s function is then given by the convolution of the
Green’s functions for the slave spins and the f fermions:

G(q,iω) =
∫

k

∫
�

Gspin(q − k,iω − i�)Gfermion(k,i�). (16)

Here, Gspin and Gfermion are the Green’s functions for the
slave spins and f fermions, respectively. The electron spectral
function A, defined as the imaginary part of the retarded
Green’s function GR ,

A(q,�) = − 1

π
ImGR(q,�), (17)

may then be obtained by the analytic continuation

GR(q,�) = −G(q,iω = � + iδ). (18)

Alternatively, the spectral function may also be found using
the expression

A(q,ω) =
∫

k

∫ ω

0
d�Aspin(q − k,ω − �)Afermion(k,�). (19)

Here, Aspin and Afermion are the spectral functions of the slave
spins and the f fermions, respectively. Equation (19) may
be obtained from Eq. (16) by writing the imaginary-time
Green’s functions of slave spins and f fermions in the spectral
representation

G(q,iω) =
∫

d�
A(q,�)

� − iω
. (20)

We may use either Eq. (16) or (19) according to convenience.
In the mean-field approximation and ignoring the effects

of the interaction Vij , the f fermions are described by a
free-fermion hopping model, and therefore have the standard
fermion Green’s function

Gfermion(q,iω) = 1

−iω + E(q)
, (21)

where energies are measured relative to the Fermi energy.
The fermion Green’s function does not change across

the slave-spin ordering transition. However, the slave-spin

correlation function does change. In the ordered phase of
the slave spins, the correlation function is a delta function in
momentum space Gspin(q,iω) ∼ m2δ(ω)δ(q), where m = 〈τ x〉
is the mean magnetization of the slave spins. Convolving this
with the fermion Green’s function equation (21), continuing
to real frequency and taking the imaginary part, we find that
the electron spectral function in the ordered phase of the slave
spins takes the form

A(q,ω) = 〈τ x〉2δ[ω − E(q)]. (22)

This spectral function is characteristic of a Fermi liquid, with
the identification Z = 〈τ x〉2, where Z is the quasiparticle
residue.

Meanwhile, in the paramagnetic phase of the slave spins, the
slave-spin sector has a finite gap �. Therefore, Aspin(q,ω) = 0
for |ω| < � and so from Eq. (19), the electron spectral function
also satisfies A(q,ω) = 0 for |ω| < �. Hence, the electron
spectral function has a gap equal to �, in sharp contrast to the
Fermi liquid. This phase is the orthogonal metal.

We now review the properties of the orthogonal metal phase.
The orthogonal metal is a compressible and conducting phase
of matter, which nonetheless has a spectral gap. In quantum
oscillations experiments, a Fermi surface will be seen (the
Fermi surface of the f fermions). The thermodynamics are
indistinguishable from those of a Fermi liquid. However, in
photoemission, a single-particle spectral gap will be observed,
and no Fermi surface will be seen.

The orthogonal metal is sharply distinct from the Fermi
liquid only in its single-particle properties. It follows that the
transition from a Fermi liquid to an orthogonal metal will
manifest itself sharply only in experiments that probe single-
particle physics, such as photoemission. We therefore study the
evolution of the electron spectral function across the FL–OM
transition.

B. Phase transition: Mean-field theory

In this section, we describe the phase transition from
the Fermi liquid to the orthogonal metal using a mean-field
approximation that neglects any coupling between the slave-
spin and orthogonal fermion sectors. In the following section,
we discuss under what circumstances the mean-field approach
provides an accurate description of the critical point.

In the mean-field approximation, the transition, approached
from the orthogonal metal side, is marked by the closing of the
spectral gap along a critical Fermi surface. Approached from
the Fermi liquid side, the transition is marked by the vanishing
of the quasiparticle residue. The slave-spin ordering transition
in mean-field theory is thus a particularly simple example of a
transition between metallic phases that proceeds via a critical
Fermi surface.1

Recall that in the Fermi liquid phase, the electron spectral
function is

A(q,ω) = Zδ[ω − E(q)], (23)

with Z = 〈τ x〉2. As we approach the transition by tuning a
parameter (for instance, the interaction strength) g towards a
critical value g = gc, the magnetization vanishes as (gc − g)β ,
where β is the Ising model critical exponent.21 Thus, as we
tune the interaction strength towards the transition, starting in
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the Fermi liquid, the quasiparticle spectral weight vanishes as

Z ∼ (gc − g)2β. (24)

The vanishing of the quasiparticle residue at the slave-spin
ordering transition was first identified by Ref. 3.

Meanwhile, in the orthogonal metal phase, the spectral
function has a hard gap �. As we tune towards the critical
point, the gap closes everywhere on a momentum space surface
that corresponds exactly to the f -fermion Fermi surface (and
also to the noninteracting electron Fermi surface). Thus,
the electron Fermi surface is a privileged surface even
when the transition is approached from the paramagnetic phase
of the slave spins: it is the surface in momentum space at which
the spectral gap closes. Note that since the electron gap � is
the same as the slave-spin gap, near the transition

� ∼ (g − gc)ν (25)

with ν the correlation length exponent of the Ising model.
At criticality, the slave-spin spectral function takes the form

Aspin(q,ω) ∝ θ (ω2 − c2q2)sgn(ω)

(ω2 − c2q2)1−η/2
, (26)

where η is the anomalous exponent of the Ising model.
Substituting into Eq. (19) we find

A(q,ω) ∼
∫

k

θ [(ω − Ek)2 − c2(q − k)2]θ (Ek)θ (ω − Ek)

[(ω − Ek)2 − c2(q − k)2]1−η/2
,

(27)

where Ek is the energy of the f fermions relative to the Fermi
energy. The only contribution comes from a region in k space
with Ek < ω and c2(q − k)2 < (ω − Ek)2. These conditions
must be simultaneously satisfied to obtain a nonzero spectral
function. In the limit ω → 0, this means that A(q,ω) is only
nonzero if Eq ≈ 0, i.e., if q lies near the critical Fermi surface.
In this limit, the only contribution comes from a window with
k ≈ q, of width ω/vf perpendicular to the Fermi surface,
and breadth (ω/c)d−1 along the Fermi surface. The spectral
function for q precisely on the critical Fermi surface then
behaves as

A(q on FS,ω → 0) ∼ ωd−2+η. (28)

More generally, for q slightly off the Fermi surface,

A(q,ω) ≈ ωd−2+ηg

(
ω

vf q⊥

)
, (29)

where q⊥ is the momentum deviation from the Fermi surface.
The function g(x) → const for x → ∞ and g(x) = 0 for
−c/vf < x < min(c/vf ,1). Thus, in the present approxima-
tion,

A(q off FS,ω → 0) = 0. (30)

Contrasting Eqs. (28) and (30), we see that the Fermi
surface remains sharply defined at the quantum critical point.
Integrating the spectral function over momenta, we obtain the
local tunneling density of states at the transition

N (ω) ∼ ωd−1+η. (31)

We must note that our calculation has treated the f fermions
as noninteracting. Once interactions between the f ’s are

included, the electron spectral weight for momenta off the
Fermi surface will no longer have a hard gap as in Eq. (30).
However, as we now show, the low-frequency spectral weight
off the Fermi surface is suppressed compared to the spectral
weight on the Fermi surface by powers of ω, so that a sharp
notion of the Fermi surface persists.

As noted in Sec. B, sufficiently weak interactions between
the f fermions drive them into a Fermi liquid phase, where
their spectral function takes the form

Af (ω,k) = Kω2

(ω − εk)2 + K2ω4
, (32)

where εk is the renormalized dispersion, K is a constant,
and we assume that the imaginary part of the self-energy �

scales as Im[�(ω → 0)] = Kω2. (Strictly speaking, K has a
logarithmic dependence on k⊥ in d = 2, this, however, plays
no role in our discussion below.) Af must be convolved with
the Ising spectral function according to Eq. (19) to obtain
the spectral function for electrons. At the critical point, the
electron spectral function takes the form

A(q,ω) =
∫

ddk

(2π )d

∫ ω

0
d�

�[(ω − �)2 − c2|k − q|2]

[(ω − �)2 − c2|k − q|2]1−η/2

× K�2

(� − εk)2 + K2�4

= ω−1+η

∫ 1

0
dx

×
∫

ddk

(2π )d
�[(1 − x)2 − (c/ω)2|k − q|2]

[(1 − x)2 − (c/ω)2|k − q|2]1−η/2

× Kx2

(x − εk/ω)2 + K2ω2x2
, (33)

where we define � = ωx. We now consider the scaling limit
ω → 0. In this limit, the theta function restricts the momentum
integral to a hypersphere of volume (ω/c)d centered at q. Thus,
we obtain

A(q,ω → 0) ∼ ω−1+d+η

∫ 1

0
dx

Kx2

(x−εq/ω)2+K2ω2x4
. (34)

This has very different behavior for εq = 0 (i.e., q on the
Fermi surface) and for εq 	= 0. For εq 	= 0, the second term in
the denominator can be neglected in the scaling limit ω � εq.
As a result, the spectral function takes the form

A(q off FS,ω → 0) ∼ ωd+1+η. (35)

Meanwhile, for the special case when q is on the Fermi surface
and εq = 0, we obtain, as in Eq. (28),

A(q on FS,ω → 0) ∼ ωd−2+η. (36)

The sharp difference in the scaling limit of the spectral
function indicates that the critical Fermi surface remains
sharply defined, even when the f fermions are in a Fermi
liquid state.

C. Effects beyond mean field

In the previous section, we discussed the evolution of the
spectral function in a “mean-field” approximation wherein
the slave-spin and f fermion sectors were assumed to be
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decoupled. We now discuss the robustness of this mean-field
approximation. The Ising transition in the slave-spin sector
is described by a continuum relativistic massless ϕ4 theory.22

However, this ϕ4 theory can couple to the fermion sector,
as discussed in Ref. 23. In particular, the “energy” operator
O = ϕ2 can couple to particle-hole excitations of the f

fermions. Such a coupling is potentially dangerous due to
the existence of gapless particle-hole excitations close to the
Fermi surface. It is convenient to first discuss the situation
for continuum realizations of the orthogonal metal. In the
continuum, the most dangerous coupling is between the Ising
energy operator and the fermion density. Integrating out the
f fermions introduces “Landau damping” to the slave-spin
sector, adding a term to the Hamiltonian which takes the form23

δS = v

∫
ω,q

�(ω,q)|O(q,ω)|2, (37)

where �(ω,q) is the density-density correlator of the fermions.
If this “new” term is irrelevant [in the renormalization group
(RG) sense], then the mean-field treatment that ignores the
coupling of the slave spins to the f fermions is robust, whereas
if it is relevant, then it may change the universality class of
the transition. Note that higher composites of O induced by
integrating out the f fermions are less relevant in the RG sense
than the operator (37) and so will not be discussed further.

If the electron-electron interaction is short ranged,
�(ω,q) ∼ C(ω/q) for (ω,q) → 0. For future reference, we
note that the function C behaves as C(ω/q) ≈ κ0 + c

|ω|
q

+ · · ·
for ω/q → 0, although at present we are interested in the
limit ω/q ∼ O(1) dictated by the z = 1 dynamics of the Ising
transition, where C ∼ O(1). In D space-time dimensions, the
operator O has scaling dimension D − 1/ν at the critical point,
where ν is the correlation length exponent. The frequency-
dependent Landau damping term is then relevant if ν < 2

D
. For

the (2 + 1)-dimensional Ising transition, D = 3 and ν = 0.63
so that the coupling of the critical Ising sector to the Fermi
surface is weakly relevant. For the (3 + 1)-dimensional Ising
model, D = 4, ν = 1/2, and this same coupling is marginal
by power counting. Analysis of renormalization group flows
at one-loop level leads to flows to strong coupling both in
d = 3 and just below three dimensions so that no confident
conclusions can be drawn. Thus, both in two and three spatial
dimensions with short-ranged interactions, the Ising transition
is destabilized, but we do not know whether it is replaced
by a second-order transition in a new universality class or a
first-order transition. In either case, the near marginality of
the Fermi surface coupling means that there may be a long
crossover critical regime where the physics is controlled by
the decoupled fixed point described above.

The presence of long-ranged Coulomb interactions dra-
matically simplifies the physics. The key point is that the f

fermions are electrically charged, and the Coulomb interaction
gaps out the density fluctuations (case A of Ref. 23). Formally,
the density-density correlator is given by

�(ω,q) = �0(ω,q)

1 + V (q)�0(ω,q)
, (38)

where �0(ω,q) is the irreducible density correlator and V (q) is
the Coulomb interaction, taking the form V (q) = e2/q in two
spatial dimensions. In the scaling limit ω → 0, q → 0, ω/q

finite, we have �0 finite and V (q) → ∞. It is now convenient
to rewrite (38) as

�(ω,q) = V −1(q)

1 + V −1(q)�−1
0 (ω,q)

. (39)

By Taylor expanding (39) in small V −1(q), we find that the
Landau damping arising from coupling to a Fermi surface of
charged particles, evaluated in the scaling limit, takes the form

δS = v

∫
ω,q

q

(
1 − q

e2
�−1

0 (ω/q)

)
|O(q,ω)|2. (40)

We now find that v is irrelevant if ν > 2/(D + 1), but is
relevant if ν < 2/(D + 1). For the Ising model in 2 + 1
dimensions, ν = 0.63 > 1/2, indicating that the modified
Landau damping term (40) is irrelevant at tree level. As a result,
the slave-spin and orthogonal fermion sectors decouple at low
energies, and the mean-field treatment is robust. Likewise,
in 3 + 1 dimensions, v(q) = e2/q2 so the leading fermion
induced term in the Lagrangian for ϕ becomes ϕ2∇2ϕ2, which
is strongly irrelevant.

Very different results are obtained if we consider a sys-
tem without continuous rotation symmetry (e.g., a generic
lattice model). In this case, the Fermi surface can undergo
long-wavelength deformations which preserve the full lattice
symmetry, and also do not change the volume enclosed by the
Fermi surface. Such higher moment deformations of the Fermi
surface can also couple to the slave-spin sector, and crucially
are not gapped out by the Coulomb interaction. They introduce
a “conventional” Landau damping term into the action

δS = v

∫
ω,q

C(ω/q)|O(q,ω)|2. (41)

We are then back in the same situation as with the short-
ranged case in the continuum considered above, and thus the
decoupled fixed point is destabilized for d = 2, and may be
marginally destabilized for d = 3.

We have thus reached the conclusion that in generic lattice
models, the Ising transition from the Fermi liquid to the OM is
destabilized by coupling between the slave-spin and f -fermion
sectors. The solvable models described in the next section are
fine tuned in that there is no coupling at all between the Fermi
surface and the slave-spin sector. Perturbing about the solvable
limit will then lead to a weakly relevant flow to a different
universality class (or possibly a first-order transition) but with
a wide intermediate region controlled by the transition in the
solvable limit.

D. Phase transition in the Z4 slave-spin model

Is it possible to have a controlled theory of a sharply defined
critical Fermi surface in a lattice model without having to fine
tune the coupling to the Fermi surface to zero? The answer is
yes. To see this, consider a generalized OM where the slave
spin is a Z4 rather than Z2 variable. The slave-spin ordering
transition is described by a theory

L = �∗∂τ� + 1

2m�

|∇�|2 + t |�|2 + u

4
|�|4

+ v

4!
[�4 + (�∗)4]. (42)
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Here, � is a complex scalar field corresponding to a coarse-
grained Z4 spin and transforming as � → i� under the Z4

symmetry. Note that a first-order time derivative term �∗∂τ�

is allowed by symmetry and will be generically present (see
Appendix 2 for further discussion). Thus, at mean-field level,
the theory (42) has a dynamical exponent z = 2. This should
be contrasted with the case of a Z2 slave spin discussed in the
rest of the paper, where the slave-spin sector has an emergent
Lorentz symmetry and a dynamical critical exponent z = 1.

We can repeat the calculations of Sec. B to find how the elec-
tron spectral function evolves across the slave-spin ordering
transition. At mean-field level, we find that the quasiparticle
residue Z ∼ 〈�〉2 ∼ (tc − t) in the Fermi liquid phase and the
electron gap � ∼ (t − tc) in the orthogonal metal phase. At
the transition, using Aspin(ω,q) ∼ δ[� − q2/(2m�)], we find

A(q⊥,�) ∼
(

� − q2
⊥

2m�

)(d−1)/2

θ

(
� − q2

⊥
2m�

)
. (43)

Thus, the Fermi surface is critically destroyed at the slave-spin
ordering transition. It is amusing to note that the critical spec-
tral function is not invariant under the dynamical particle-hole
transformation � → −�,q⊥ → −q⊥ unlike what happens in
a Landau Fermi liquid. The possibility of such a dynamical
particle-hole asymmetry in correlated non-Fermi liquid metals
has recently been emphasized in Refs. 24 and 25.

Proceeding beyond mean field in the analysis of the theory
(42), the quartic couplings u and v are irrelevant in d = 3
and marginal at tree level in d = 2. In the latter case, one-
loop calculations performed in Appendix 3 demonstrate that
there exists a finite region in the (u,v) plane where the RG
trajectrories flow to the noninteracting fixed point (u,v) =
(0,0). Thus, the mean-field treatment of the theory (42) is also
valid in d = 2 up to logarithmically suppressed corrections.

Next, we consider the coupling of the slave-spin sector (42)
to the f Fermi surface. Again, the most relevant coupling is
between the operator O = |�|2 and f bilinears describing
deformations of the Fermi surface. Integrating the f ’s out,
we again generate a “Landau damping” term (37). However,
since the slave-spin sector is now characterized by dynamical
scaling ω ∼ q2 � q, it is permissible to expand the function
�(ω,q) = C(ω/q) in ω/q:

δS = v

∫
ω,q

(
κ0 + c

|ω|
q

+ · · ·
)

|O(q,ω)|2. (44)

The κ0 term in Eq. (44) simply renormalizes the coupling
constant u in Eq. (42), while the first subleading term |ω|/q ∼
O(q) is irrelevant under RG. Therefore, the coupling of the
slave-spin theory (42) to the f Fermi surface does not change
the universality class of the transition. This transition then
provides a simple example of a continuous destruction of the
electron Fermi surface that is accompanied by a critical Fermi
surface. In the Appendix 2, we discuss certain distinctions
between the present transition and transitions out of Mott-
insulating states.

V. EXACTLY SOLUBLE MODELS

We now present two exactly soluble models that realize
the orthogonal metal phase and its phase transition to the

conventional Fermi liquid. The second model will have
an extra feature, namely, a global Ising symmetry will be
spontaneously broken upon entering the Fermi liquid phase;
this will have a nontrivial effect on the critical Fermi surface at
the phase transition. As a stepping stone for our construction,
we will use a model of quantum Ising spins that possesses a
confinement-deconfinement transition between a topologically
ordered Z2 spin-liquid phase and a conventional paramagnetic
phase.

A. A model for the confinement-deconfinement transition

Consider a model of quantum Ising spins placed on the
links 〈rr ′〉 of a square lattice, and coupled according to

H = −J
∑
〈rr ′〉

σ z
rr ′ − h

∑
r

∏
r ′
r

σ x
rr ′ (45)

with J > 0 and h > 0, where the product over r ′
r denotes a

product over all four links connected to the site r . One can
introduce an infinite number of operators �

p
r that commute

with the Hamiltonian, which are defined by

�p
r1r2r3r4

= σ z
r1r2

σ z
r2r3

σ z
r3r4

σ z
r4r1

, (46)

where {r1r2r3r4} are the four corners of a square plaquette.
Since the symmetry operators �p commute with each other
as well as with the Hamiltonian, we can label the eigenstates
of the Hamiltonian by their �p eigenvalues. The ground state
always has �

p
r1r2r3r4 = 1 for all plaquettes, so we introduce

new “fractionalized” Ising spins τ that live on the sites of the
square lattice, which obey

τ x
r τ x

r ′ = σ z
rr ′ ,

∏
r ′
r

σ x
rr ′ = τ z

r . (47)

The Hamiltonian, rewritten in terms of the spins τ , takes the
form

H = −J
∑
〈rr ′〉

τ x
r τ x

r ′ − h
∑

r

τ z
r . (48)

We recognize Eq. (48) as the Hamiltonian of the transverse-
field Ising model. As we tune h/J , the Ising model undergoes
an Ising phase transition. The ordered phase of the τ x spins cor-
responds to the conventional “confined” paramagnetic phase,
while the disordered phase corresponds to the “topologically”
ordered Z2 spin liquid.

B. Soluble model for the orthogonal metal

We now introduce electrons which hop on the square lattice
according to

Ht = −t
∑
〈rr ′〉

(
c†rσ

z
rr ′cr ′ + H.c.

) − μ
∑

r

c†r cr . (49)

We also modify the Hamiltonian of the quantum Ising spins to
be

Hσ = −J
∑
〈rr ′〉

σ z
rr ′ − h

∑
r

(−1)c
†
r cr

∏
r ′
r

σ x
rr ′ . (50)

We will study the coupled Hamiltonian H = Ht + Hσ .
Changing to the τ representation, and defining

fr = τ x
r cr , (51)
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we obtain

Ht = −t
∑
〈rr ′〉

(f †
r fr ′ + H.c.) − μ

∑
r

f †
r fr , (52)

Hσ = −J
∑
〈rr ′〉

τ x
r τ x

r ′ − h
∑

r

τ z
r (−1)f

†
r fr . (53)

A further transformation

τ̃ z
r = τ z

r (−1)f
†
r fr , τ̃ x

r = τ x
r (54)

gives

Hσ = −J
∑
〈rr ′〉

τ̃ x
r τ̃ x

r ′ − h
∑

r

τ̃ z
r (55)

and ensures that the f operators commute with the τ̃ operators,
which satisfy the conventional Pauli algebra. Thus, Ht de-
scribes free fermions f , which are completely decoupled from
the τ̃ spins. The latter are still governed by the transverse-field
Ising model (55), which undergoes a phase transition as a
function of h/J .

The fermions f carry all the quantum numbers of the
electron (in particular, the electric charge), and the f fermions
are manifestly in a metallic phase. Thus, the system is
conducting. However, it is not necessarily a Fermi liquid. In
the ordered phase of the τ̃ spins, Z = 〈τ x

r 〉2 	= 0, and the f

fermions have nonvanishing overlap Z with the free electrons.
This phase corresponds to a Fermi liquid. Meanwhile, in
the disordered phase of the spins, Z = 〈τ x

r 〉2 = 0, and the f

fermions are orthogonal to free electrons (orthogonal metal).
The exactly soluble model presented above thus provides

an explicit realization of the orthogonal metal phase and its
transition into the Fermi liquid phase. Since the f and the
τ̃ sectors are decoupled in the present model, the mean-field
results of Sec. B hold exactly. In particular, at the transition a
sharp critical Fermi surface is realized.

C. Soluble model for an Ising∗ non-Landau quantum critical
point and its metallic generalization

In this section, we modify the model considered above
so that it has a global Ising symmetry. In the absence of
fermions, the model will describe a topologically ordered
paramagnetic phase, a conventional Ising ferromagnetic phase
where the global symmetry is spontaneously broken and
a non-Landau quantum critical point separating them. A
similar model was considered in Ref. 26. Following the usual
terminology,9 we will refer to this as an Ising∗ transition, where
the asterisk indicates that the critical exponents are different
to those of the usual Ising model, and that there is a large
anomalous dimension. Once the fermions are introduced, the
topologically ordered paramagnetic phase will turn into an
orthogonal metal and the conventional Ising ferromagnetic
phase into a ferromagnetically ordered Fermi liquid. At the
transition, a critical Fermi surface will be realized with a
volume that violates the conventional Luttinger count.

We consider the Hamiltonian H = Ht + Hσ where Ht is
still given by Eq. (49) and Hσ is

Hσ = −J
∑

r

∑
μ=±x̂,ν=±ŷ

σ z
r,r+μσ z

r,r+ν−h
∑

r

(−1)c
†
r cr

∏
r ′
r

σ x
rr ′ .

(56)

Here, we have defined the model with fermionic degrees of
freedom from the outset, however, if desired, one can consider
the sector with zero fermion number and obtain a model of
quantum Ising spins alone. Note that we have modified the J

term in Eq. (50) to couple nearest-neighbor spins. As a result,
the model has a global Ising symmetry

σ z
rr ′ → −σ z

rr ′ , cr → εrcr . (57)

Here, εr = 1 for r on one sublattice of the square lattice, and
εr = −1 for r on the other sublattice. As before, the operators
�p [Eq. (46)] commute with the Hamiltonian. We again work
in the ground-state sector �p = 1 and use the transformation
to the τ̃ and f variables in Eqs. (47), (51), and (54) to obtain

Hσ = −2J
∑
〈〈rr ′〉〉

τ̃ x
r τ̃ x

r ′ − h
∑

r

τ̃ z
r , (58)

where 〈〈· · · 〉〉 denotes second neighbors. The Hamiltonian Ht

in the transformed variables is still given by Eq. (52).
The Hamiltonian Hσ [Eq. (58)] now takes the form of two

decoupled transverse-field Ising models on the two sublattices
of the square lattice. As we tune h/J , the Ising models undergo
an Ising phase transition. The “physical” order parameter that
transforms under the global Ising symmetry (57) is 〈σ z

rr ′ 〉 =
〈τ̃ x

r 〉〈τ̃ x
r ′ 〉. At the critical point, the correlations of the physical

Ising spin satisfy〈
σ z

r1r
′
1
σ z

r2r
′
2

〉 = 〈
τ̃ x
r1
τ̃ x
r2

〉〈
τ̃ x
r ′

1
τ̃ x
r ′

2

〉
. (59)

As each fractionalized τ̃ x undergoes the usual Ising transi-
tion, it follows that the physical Ising order parameter has
anomalous dimension ησ = 1 + 2η where η is the anomalous
dimension of the Ising order parameter at the usual 3D Ising
transition. The phase transition in this solvable model is thus
a very simple example of a non-Landau quantum critical
point9,27 between a conventional phase with Landau order and
a topologically ordered phase.

Note that the ferromagnetic transition takes place both at
zero and finite fermion density. Let us discuss the nature of
the phases at finite density by examining the electron Green’s
function. Since the f and τ̃ sectors are decoupled, we have

G(r − r′,τ − τ ′) = 〈cr(τ )c†r′(τ ′)〉
= 〈

τ̃ x
r (τ )τ̃ x

r′ (τ ′)
〉
Gf (r − r′,τ − τ ′). (60)

The f fermions are governed by a free-fermion hopping
Hamiltonian, and thus have some well-defined Fermi sur-
face in momentum space obeying the Luttinger count. In
the paramagnetic phase of the slave spins, the slave-spin
correlation function is gapped, and so the electrons do not have
a Fermi surface. We, thus, identify this phase as an orthogonal
metal. On the other hand, in the ferromagnetic phase of the
slave spins, the slave-spin correlator is nonvanishing at long
distances/times, and so this phase is a Fermi liquid. What is
the shape of the Fermi surface in this phase? To answer this
question, note that the ground state in the ferromagnetic phase
is twofold degenerate, spontaneously breaking the global
symmetry [Eq. (57)]. The two ground states with opposite
expectation values of the order parameter 〈σ z

rr ′ 〉 correspond to
the τ̃ x spins on the two decoupled sublattices oriented parallel
or antiparallel to each other. The τ̃ x correlation function in the
two ground states, therefore, in the long-distance/-time limit
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takes the form〈
τ̃ x

r (τ )τ̃ x
r′ (τ ′)

〉 ∼ 〈τ̃ x〉2, r,r′ on same sublattice

= ±〈τ̃ x〉2, r,r′ on different sublattices.

Hence, 〈τ̃ x
r (τ )τ̃ x

r′ (τ ′)〉 ∼ 〈τ̃ x〉2 in one ground state and
〈τ̃ x

r (τ )τ̃ x
r′ (τ ′)〉 ∼ 〈τ̃ x〉2eiQ·(r−r′) in the other ground state.

Here, Q = (π,π ). Therefore, the electron Green’s function
G(k,ω) ∼ 〈τ̃ x〉2Gf (k,ω) in one ground state and G(k,ω) ∼
〈τ̃ x〉2Gf (k + Q,ω) in the other. So, the Fermi surface in one
ground state is the same as the f Fermi surface, and the Fermi
surface in the other ground state is given by the f Fermi
surface shifted by Q. This is a direct consequence of the global
Ising symmetry (57), which maps the two ground states into
each other and transforms G(k,ω) → G(k + Q,ω). Note that
the Fermi surfaces of both ground states satisfy the Luttinger
theorem.

What happens to the Fermi surface at the critical point?
As we approach the transition from the ferromagnetically
ordered side, the quasiparticle residue Z = 〈τ̃ x〉2 continuously
goes to zero on Fermi surfaces of both ground states. At the
transition, the Ising symmetry (57) is restored, so the ground
state is unique and the electron Green’s function satisfies
G(k) = G(k + Q). Hence, we expect the electron spectral
function at the transition to inherit Fermi surfaces of both
ground states of the ferromagnetic phase, albeit as critical
Fermi surfaces. To see that this is, indeed, the case, note that
at the transition〈

τ̃ x
r (τ )τ̃ x

r′ (τ ′)
〉 = Gspin(r − r′,τ − τ ′),

r,r′ on same sublattice;〈
τ̃ x

r (τ )τ̃ x
r′ (τ ′)

〉 = 0, r,r′ on different sublattices.

Here, Gspin(r,τ ) is the correlation function of the transverse-
field Ising model on just one sublattice of the square lattice with
the asymptotic behavior Gspin(r,τ ) ∼ 1/(r2 + c2τ 2)(d−2+η)/2

at the critical point. Written more succinctly, we have〈
τ̃ x

r (τ )τ̃ x
r′ (τ ′)

〉 = 1
2 (1 + eiQ·(r−r′))Gspin(r − r′,τ − τ ′).

Therefore, from Eq. (60), G(k,ω) = G(k + Q,ω) as required
by the global symmetry. Moreover, using the analysis of Sec. B,
the electron spectral function at the phase transition displays
two sharply defined critical Fermi surfaces: one at the f Fermi
surface, and one obtained by translating the f Fermi surface
by Q. We call these “mirror” critical Fermi surfaces. Note that
the total volume enclosed by the two mirror Fermi surfaces
violates the Luttinger count by a factor of 2. However, the
state realized at the critical point is not a Fermi liquid, so there
is no reason for Luttinger’s theorem to be satisfied.

Before we conclude this section, we stress that due to
the additional global symmetry (57), the critical point of the
present model is in a different universality class compared
to the simplest orthogonal metal to Fermi liquid transition
studied in the rest of this paper and exemplified by the exactly
solvable model of Sec. B. In particular, the appearance of the
mirror critical Fermi surfaces at the critical point is a direct
consequence of the symmetry (57). Once this symmetry is
explicitly broken, only one critical Fermi surface with a volume
obeying Luttinger theorem will be realized at the transition, as
is directly seen in the model of Sec. B.

D. Orthogonal metal in one spatial dimension

A one-dimensional model with a Z2 fractionalized phase
and an Ising transition is easy to write: a suitable Hamiltonian
is

H = −
∑

i

(
Jσx

i−1,iσ
x
i,i+1(−1)c

†
i ci + hσ z

i,i+1

)
− t

∑
i

(
c
†
i σ

z
i,i+1ci+1 + H.c.

)
, (61)

where the c† operators create electrons, and the σ operators act
on Ising spins that live on the links of a 1D chain. We now make
use of the well-known self-duality of the one-dimensional
Ising model, defining σ z

i,i+1 = τ x
i τ x

i+1 and σx
i−1,i = ∏

j<i τ z
i .

The Hamiltonian then becomes

H = −
∑

i

(
hτx

i τ x
i+1 + Jτ z

i (−1)c
†
i ci

)
− t

∑
i

(
c
†
i τ

x
i τ x

i+1ci+1 + H.c.
)
. (62)

Defining fermions fi = τ x
i ci (equivalently, ci = τ x

i fi), and
making an additional change of variables

τ̃ z
i = τ z

i (−1)f
†
i fi , τ̃ x

i = τ x
i , (63)

we see that the fermion and spin sectors decouple, and the
fermion sector becomes simply a free-fermion theory, while
the spin sector becomes a transverse-field Ising model. Since
the f fermions carry the electric charge, and are described by
a free-fermion Hamiltonian, it follows that this Hamiltonian
always exhibits a nonvanishing electrical conductivity. Thus,
the system is always in a metallic phase. However, the charge
carriers are not electrons, they are f fermions, which are
nonlocal combinations of electrons and σ spins.

To understand the nature of the charge carriers, note that
fi = τ x

i ci , where τ x
i = ∏

j<i σ z
jj+1 creates a domain wall in the

σ spin ferromagnet. In the paramagnetic phase of the original
Ising model, h � J , the domain walls are condensed, and fi ∝
ci . This phase corresponds to the Fermi liquid (short-range
four-fermion interactions would drive it into a Luttinger liquid
state.28) Meanwhile, in the ferromagnetic phase of the original
Ising model, h � J , the domain wall is a (gapped) topological
defect. In this phase, the f -fermion charge carriers are
orthogonal to the electrons and correspond to a bound state of a
domain wall and an electron. The model is constructed so that
this bound state can hop freely, producing an orthogonal metal.

VI. REALIZING AN ORTHOGONAL METAL

We have thus far demonstrated the existence of the
orthogonal metal phase and described its properties in some
detail. We have presented several solvable models that realize
such a phase, however, none of these models is particularly
realistic as a description of experimental systems. In what more
realistic setting could an orthogonal metal phase be realized?

The structure of the orthogonal metal wave function
provides some clues as to when this phase might occur.
Briefly, the orthogonal metal is similar to the Fermi liquid,
except that there are strong correlations between electron
pairs. At the same time, there is no phase coherence between
electron pairs (no superconductivity). This suggests that a

045128-11



RAHUL NANDKISHORE, MAX A. METLITSKI, AND T. SENTHIL PHYSICAL REVIEW B 86, 045128 (2012)

promising Hamiltonian for potentially realizing an orthogonal
metal should contain strong electron-electron repulsion (to
prevent superconductivity), but should also contain strong
pair hopping (to favor pair correlations). For example, the
half-filled triangular lattice with a single orbital species of
spinful electrons governed by the Hamiltonian

H = −
∑
〈ij〉

[(∑
σ

t1c
†
iσ cjσ

)
+ t2c

†
i↑c

†
i↓cj↓cj↑ + H.c.

]

+U
∑

i

c
†
i↑c

†
i↓ci↓ci↑ (64)

may exhibit an orthogonal metal phase. Applying the slave-
boson representation (9) and the constraint (10) and decoupling
the slave bosons from the fermions in a mean-field approxi-
mation, we obtain in the boson sector the Hamiltonian

Hb = −
∑
〈ij〉

(t ′1b
†
i bj + t ′2b

†
i b

†
i bj bj + H.c.)

+U
∑

i

b
†
i bi(b

†
i bi − 1), (65)

where t ′1 = 2t1〈d†
iσ djσ 〉 and t ′2 = t2〈d†

i↑d
†
i↓dj↓dj↑〉. In the limit

t2 � U , we expect superfluidity of boson pairs. Meanwhile,
in the limit U � t1, we expect no superfluidity of individual
bosons. This is precisely the condition for realization of an
orthogonal metal. Thus, we expect that the Hamiltonian (64),
defined on the triangular lattice at half-filling for a single
species of (spinful) fermions, may possess an orthogonal metal
phase at t2 � U � t1. Such a Hamiltonian could conceivably
be produced by strong electron-phonon coupling.29

We also note that since the original discussion of multiband
Hubbard models of Ref. 3, many other studies have emerged
where the slave-spin mean field has been employed and found
regions of parameter space where the slave spins are disor-
dered. We have emphasized that these should be interpreted
as orthogonal metals or orbitally selective orthogonal metals.
To the extent that these mean-field studies reliably capture
the ground state in some parameter regime of the microscopic
models investigated, they provide evidence for the occurrence
of such non-Fermi liquid phases in these models.

VII. CONCLUSION

We have shown that the slave-spin representation provides
a natural description of an orthogonal metal, a phase that is
indistinguishable from the Fermi liquid in conductivity and
thermodynamics, but has a sharply different spectral function.
The phase transition from a Fermi liquid metal to an orthogonal
metal proceeds via a critical Fermi surface. In contrast to more
traditional slave-boson or slave-rotor representations,2,8 where
the death of the Fermi surface is associated with development
of a Mott insulator, the slave-spin ordering transition does not
describe a Mott transition. This is because the ordering transi-
tion involves an object (the slave spin) which does not carry the
electric charge (or any other quantum numbers of the electron).

We have shown that the electronic spectral function shows
a hard gap in the orthogonal metal phase, even though this is
a compressible and conducting state of matter. As a result, the
transition between the orthogonal metal and the Fermi liquid is

marked by a dramatic change in the electron spectral function.
We have demonstrated that a continuous transition is possible
in a model with continuous rotation symmetry when Coulomb
interactions are included, or in a generic lattice model with
Z4 slave spins with either short-ranged or Coulomb electron
interactions. When the transition is continuous, then when
the critical point is approached from the Fermi liquid side, it
is marked by a vanishing of the quasiparticle residue. When
the critical point is approached from the paramagnetic phase
of the slave spins, it is marked by a closing of the electron
spectral gap at a critical Fermi surface. We have also provided
two exactly soluble models that realize the orthogonal metal
phase, which can be accessed from the Fermi liquid via a
continuous transition. A critical Fermi surface appears at the
phase transition in both models. In the first model, the critical
Fermi surface volume obeys the Luttinger count, while in the
second model two mirror critical Fermi surfaces are present,
the total volume of which violates the Luttinger count by a
factor of 2. The emergence of such mirror critical surfaces can
be traced to a global Z2 symmetry of the second model.

We have argued that the prototypical wave function of
the orthogonal metal takes the form of a Slater determinant,
multiplied by the wave function of a paired boson superfluid.
This is in contrast to the Slater-Jastrow wave function of the
Fermi liquid. The form of the orthogonal metal wave function
suggests that an orthogonal metal phase may be realized if
there is strong pair hopping coexisting with strong electron-
electron repulsion. However, the definite identification of an
orthogonal metal phase in an existing material or “realistic”
Hamiltonian remains an open problem.

Note added. Following the arXiv submission of our paper,
Yu and Si have acknowledged the correctness of our inter-
pretation of the transition within the Z2 slave-spin theory.4

They have also developed a U(1) slave-spin theory of the Mott
transition, which is conceptually identical to the familiar U(1)
slave-rotor theory.30
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APPENDIX

1. T = 0 electrical conductivity in paramagnetic phase
of slave spins

We consider a slave-spin ordering transition of the form
discussed in Refs. 3–6, and we demonstrate that the paramag-
netic phase of the slave spins has a nonvanishing conductivity
at zero temperature, and thus can not be interpreted as a Mott
insulator.

We begin with the mean-field treatment of the Hubbard
model in the slave-spin representation reviewed in Sec. A.
Here, one writes the Hamiltonian in terms of fermion and
slave-spin operators using Eq. (1). The f fermions and the
slave spins are then decoupled in a saddle-point approximation
and the constraint Eq. (2) is implemented on average by
using a site-independent Lagrange multiplier λi = λ. This
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gives the coupled Hamiltonians (4) and (5) with renormalized
parameters (6).

The slave-spin Hamiltonian (5) admits the following
phases. When Jij � λ, the slave spins are ferromagnetically
ordered, with a nonzero expectation value 〈τ x

i 〉. Meanwhile,
when λ � Jij , the slave spins are in a paramagnetic phase,
with 〈τ x

i 〉 = 0. We assume that the f fermions are in a metallic
phase, and study the ordering transition in the slave-spin
sector. How now should we interpret the slave-spin ordering
transition?

Consider the effective Hamiltonian for the f particles
(the charge carriers) in Eq. (4). For simplicity, let us take
the original electron hopping tij to be only between nearest-
neighbor sites. The effective f -fermion hopping t ′ij is given
by Eq. (6) and is nonvanishing provided the nearest-neighbor
slave-spin correlations are nonvanishing, i.e., 〈τ x

i τ x
j 〉 	= 0. In

a single-site mean-field approximation 〈τ x
i τ x

j 〉 ≈ 〈τ x
i 〉2, the

effective hopping does indeed vanish in the paramagnetic
phase of the slave spins where 〈τ x

i 〉 = 0. However, once
effects beyond the single-site mean-field approximation are
taken into account, the nearest-neighbor correlator is nonzero,
for any finite values of U and λ. It follows therefore that
once fluctuations beyond mean field are taken into account,
the paramagnetic phase of the slave spins has a nonzero
electrical conductivity, and should be interpreted as a metallic
phase. Comparison with the Hubbard model Eq. (3) at Vij = 0
indicates that the f -fermion band structure is identical to
the noninteracting tight-binding band structure of the original
material, with the bandwidth renormalized by 〈τ x

i τ x
j 〉. The

filling factor for f fermions is also the same as the filling
factor for the original electron model.

The conductivity may be estimated in the Drude model, and
takes the form

σ (ω) = ν0e
2v2

f τ

1 − iωτ
, (A1)

where ν0 is the density of states at the Fermi surface, vf is
the Fermi velocity, and we have introduced a transport time τ .
To avoid worrying about the details of the disorder, which
govern the transport time, it is convenient to characterize
the conductivity by the Drude weight, denoted D, which is
defined as the integral of the real part of the conductivity over
frequency. The Drude weight is independent of the transport
time, and takes the form

D = πν0e
2v2

f . (A2)

Now, we can straightforwardly compare the Drude weights of
the noninteracting electron problem, and the interacting prob-
lem, decoupled via the slave-spin approach. The Fermi velocity
has been renormalized by a factor of 〈τ x

i τ x
j 〉, and the Fermi

surface density of states has been renormalized by 1/(〈τ x
i τ x

j 〉).
Therefore, if D0 is the Drude weight of the noninteracting
electron probem, then the Drude weight of the interacting
problem, decoupled using the slave-spin approach, is

D = D0 × 〈
τ x
i τ x

j

〉
. (A3)

Fermi liquid effects in the f -fermion sector may further
renormalize D (see the following).

The correlator 〈τ x
i τ x

j 〉 must be calculated from the slave-
spin Hamiltonian Eq. (5). We are interested in the value

of the correlator at the slave-spin ordering transition in
order to answer the question: Is the conductivity significantly
suppressed with respect to the noninteracting value when the
slave spins disorder?

We first consider the case of a one-dimensional Hubbard
model. In this case, the zero-temperature transverse-field Ising
model has an exact solution (the Onsager solution). The cor-
relation function may be extracted from this exact solution.31

We find that the correlation function changes continuously
across the critical point, taking value 〈τ x

i τ x
j 〉 = 1/

√
2 at the

critical point of the Ising model. Thus, the Drude weight of the
one-dimensional Hubbard model changes continuously across
the ordering transition of the slave spins, and is renormalized
relative to the free-fermion case by 1/

√
2 at the critical point.

Clearly, this should be interpreted as a transition between two
distinct metallic phases.

Meanwhile, for the opposite limit of a three-dimensional
Hubbard model on a cubic lattice at zero temperature, Ref. 6
calculated the correlator in a Gaussian fluctuations approxima-
tion and found that the correlator changes smoothly across the
slave-spin ordering transition, taking the value 〈τ x

i τ x
j 〉 ≈ 0.1

at the phase transition. Similar numbers were obtained through
cluster dynamical mean-field-theory calculations.5 Since three
spatial dimensions represent the highest experimentally rel-
evant dimensionality, it follows that the suppression factor
1/〈τ x

i τ x
j 〉 ≈ 10 should be taken as the upper limit for the

suppression of the Drude weight at the slave-spin ordering
transition.

Thus, at the ordering transition of the slave spins, the
electrical conductivity is renormalized by a factor 0.1 <

〈τ x
i τ x

j 〉 < 0.7 relative to free fermions. Since this factor is not
very small, and since the conductivity changes continuously
across the transition, it follows that the ordering transition of
the slave spins can not be interpreted as a metal-insulator
transition. It represents a transition between two distinct
metallic phases, in one of which the charge carriers are
orthogonal to the electrons.

We would like to point out that although our calculation
above has been performed in a mean-field approximation, all
the conclusions remain qualitatively valid beyond mean field in
the orthogonal metal phase. As noted in Sec. B, the orthogonal
metal is described at low energies as a Landau Fermi liquid of
f fermions. So, as in a Fermi liquid, the Drude weight may
be expressed in terms of the renormalized Fermi velocity vf

and the forward-scattering amplitude F of f fermions. The
expression is particularly simple for a rotationally invariant
system

D = πν0e
2v2

f (1 + F1), (A4)

where F1 is the forward-scattering amplitude in the 
 =
1 channel. The mean-field calculation above provides an
estimate of renormalization of vf and neglects F1. The latter is
expected to be a finite number of O(1) in the vicinity of Fermi
liquid to orthogonal metal transition. Thus, the orthogonal
metal has a finite Drude weight.

2. Further notes on the transition

We would like to point out the difference between the
FL–OM transition with Z4 slave spins and certain transitions
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out of Mott-insulating states, such as, for instance, the well-
understood superfluid to Mott-insulator transition in the Bose-
Hubbard model.32 When driven by a generic perturbation,
this Mott transition is described by a theory with dynamical
exponent z = 2. However, when the transition takes place at
a constant density, it belongs to a different universality class,
namely, to the XY class with dynamical exponent z = 1. Such
a privileged role of the constant density transition is possible
because the ground state of the Mott insulating phase carries
a fixed density commensurate with the lattice. In contrast,
for the orthogonal metal to Fermi liquid transition discussed
here, both phases are compressible and commensuration
effects are irrelevant. Thus, we expect the transition at fixed
(possibly commensurate) density to be described by the same
theory in Eq. (42) as the generic transition. Indeed, as we
discussed, the electron number is carried by the f fermions.
Therefore, if we neglect the coupling between the slave-spin
and the f -fermion sectors, the electron density actually stays
constant across the slave-spin ordering transition. Once the
coupling is present, as we tune the parameter t of the slave-
spin theory (42) across the transition, the electron density
will generically change. However, if one wishes to study a
transition at constant density, this change can be compensated
by simultaneously tuning the chemical potential of the f

fermions.

3. RG flow in the Z4 slave-spin theory

In this Appendix, we discuss the RG flow of the theory (42),
which describes the Z4 slave-spin version of the orthogonal
metal to Fermi liquid transition.

We will focus on spatial dimension d = 2, which is the
upper critical dimension of the theory (42). Here, the coupling
constants u and v are marginal at tree level. In the following,
we investigate what happens to the flow of these couplings
at one-loop level. Note that when the Z4 anisotropy v is
set to zero, the theory (42) describes the well-understood
Bose-Einstein condensation transition.22 In this case, if one
starts with u > 0, then u flows logarithmically to zero, so that
the transition is still described by mean-field theory, up to
logarithmically suppressed corrections. On the other hand, if
one starts with u < 0, then u runs away to −∞. This can be
interpreted as an instability towards formation of “molecules”
of two � “atoms.” The molecules then Bose condense before
the the individual � atoms condense, i.e., the transition from
vacuum to an atomic superfluid proceeds via an intermediate
molecular (paired) superfluid phase, which is characterized by
〈�2〉 	= 0 and 〈�〉 = 0.

We now study how the RG flow described above is modified
by the presence of the Z4 anisotropy v. Note that by applying
a phase rotation of �, one can choose v to be real and positive.
It is convenient to define the following dimensionless coupling
constants:

ũ = m�u

4π
, ṽ = m�v

4π
. (A5)

The factors of 4π are introduced for future convenience. In
addition to the flow of dimensionless couplings (A5), we
expect the field strength of � and the “mass” m� to flow.
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FIG. 1. (Color online) One-loop contributions to the four-point
function �4(p1,p2; p3,p4) = 〈�(p1)�(p2)�∗(p3)�∗(p4)〉 determin-
ing the flow of u in the theory (42). A solid dot denotes a u vertex
and a hollow dot a v vertex.

The latter will lead to a renormalization of the dynamical
critical exponent z, which once v 	= 0 is no longer protected
by Galilean-type invariance. However, at one-loop level, both
the � field strength and m� remain unrenormalized, so we
focus just on the flow of the couplings (A5). For briefness, we
will drop the tildes on u and v below.

The flow equations for u and v can be obtained
from the one-loop corrections to the four-point func-
tions �4(p1,p2; p3,p4) = 〈�(p1)�(p2)�∗(p3)�∗(p4)〉 and
�̄4(p1,p2,p3,p4) = 〈�∗(p1)�∗(p2)�∗(p3)�∗(p4)〉, respec-
tively. The Feynman diagrams for these are displayed in
Figs. 1 and 2. Note that the diagrams for �4 in Figs. 1(a) and
1(b) vanish for kinematic reasons. Computing the remaining
diagrams, we obtain the RG equations

du

d

= −(u2 + v2), (A6)

dv

d

= −6uv. (A7)

Here, 
 parametrizes the rescaling of frequency and mo-
mentum, ω → e−2
ω, q → e−
q. Figure 3 displays the RG
flow generated by Eqs. (A6) and (A7). We note the attractor
lines at u > 0,v = 0 and u < 0,v/u = −√

5, as well as the
separatrices at u > 0,v/u = √

5 and u < 0,v = 0. We divide
the upper (u,v) plane into two regions: region I, defined by
u > 0,v/u <

√
5, and its complement. We observe that if

the initial couplings lie in region I, the RG flow tends to

p
1

p
3

p
2

p
4

+ perm.

FIG. 2. (Color online) One-loop contributions to the four-point
function �̄4(p1,p2,p3,p4) = 〈�∗(p1)�∗(p2)�∗(p3)�∗(p4)〉 deter-
mining the flow of v in the theory (42). There are a total of six
distinct diagrams obtained by permutating the external momenta
p1,p2,p3,p4.
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FIG. 3. (Color online) RG flow of coupling constants u and v

in the theory (42). Solid and dashed red lines mark separatrices and
attractor lines, respectively.

the attractor line u > 0,v = 0, which runs to the Gaussian
fixed point u = 0,v = 0. The end stage of this flow can be
described analytically: here, v � u, so we can drop the v2

term in Eq. (A6). Then,

u(
) = u0

1 + u0

, v(
) = v0

(1 + u0
)6
. (A8)

Thus, both u and v, indeed, flow logarithmically to zero. Note
that for 
 → ∞, u ∼ 
−1 and v ∼ 
−6. Thus, v � u and our
assumption is justified.

Thus, if the initial couplings lie in region I, the transition
will be described by mean-field theory up to logarithmically
suppressed corrections. On the other hand, if the initial
couplings lie outside of region I, the RG flow tends towards
the attractor line u < 0,v/u = −√

5, which runs away to u =
−∞,v = −∞. By analogy with the physical interpretation
of the u → −∞ RG flow in the theory with v = 0, we may
hypothesize that the present runaway flow signals formation
of pairs of � particles. The ordered phase is then characterized
by a pair condensate 〈�2〉 	= 0, while having 〈�〉 = 0. When
discussed in the context of the original electronic theory, this
phase is nothing but a Z2 slave-spin orthogonal metal. Thus,
in this scenario, for initial couplings outside of region I, the
transition from a Z4 slave-spin orthogonal metal to a Fermi
liquid occurs via an intermediate Z2 slave-spin orthogonal
metal phase.
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