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Deconfined quantum criticality and logarithmic violations of scaling from emergent gauge symmetry
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We demonstrate that the low-energy effective theory for a deconfined quantum critical point in d = 2 + 1
dimensions contains a leading-order contribution given by the Faddeev-Skyrme model. The Faddeev-Skyrme
term is shown to give rise to the crucial Maxwell term in the CP1 field theory governing the deconfined quantum
critical point. We derive the leading contribution to the spin stiffness near the quantum critical point and show that
it exhibits a logarithmic correction to scaling of the same type as recently observed numerically in low-dimensional
models of quantum spin systems featuring a quantum critical point separating an antiferromagnetically ordered
state from a valence bond solid state. These corrections, appearing away from upper or lower critical dimensions,
reflect an emergent gauge symmetry of low-dimensional antiferromagnetic quantum spin systems.
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Much of our understanding of phase transitions is based
on the concept of spontaneous symmetry breaking,1 which
provides a mechanism for the spontaneous generation of an
ordered state as one or more parameters of a many-body
system are varied. In Abelian systems the ordered state can
be related to the disordered symmetric state by a duality
transformation mapping a strongly coupled regime onto a
weakly coupled one.2–4 In the case of a U(1) symmetry, the
symmetric phase is described in the dual picture by a disorder
parameter,3 as opposed to the order parameter describing the
broken symmetry state in the original picture. The disorder
parameter is nonzero when topological defects of the U(1)
theory (vortices) are condensed. The U(1) symmetry of the
dual theory is then spontaneously broken. The superfluid
phase corresponds to the U(1) symmetric state. The vortex
condensation of the dual theory reflects the nontriviality of
the first homotopy group of U(1), namely, π1(U(1)) = Z, the
group of integers. This leads, for instance, to flux quantization
in superconductors.

When the order field is composed of more elementary con-
stituents, the disordered phase exhibits nontrivial features that
do not follow from standard spontaneous symmetry-breaking
arguments. This is so, for instance, in two-dimensional
quantum spin systems featuring a paramagnetic phase where
the symmetries of the underlying lattice is broken. On a square
lattice where SU(2)-invariant spin interactions compete, a
valence-bond solid (VBS) state emerges in the paramagnetic
phase.5 An example of this is the J−Q model,6 with a
four-spin exchange around the plaquette of a square lattice
in addition to the usual Heisenberg term:

H = J
∑
〈i,j〉

Si · Sj − Q
∑
〈ijkl〉

(
Si · Sj − 1

4

) (
Sk · Sl − 1

4

)
.

(1)

When J � Q the Heisenberg term dominates the physics
and the ground state is antiferromagnetic (AF), while for
Q � J the four-spin term favors a VBS state. Numerical
works6–9 show that the J−Q model has an emergent U(1)
symmetry. This had previously been predicted in models with
the same phase structure by introducing a new paradigm
for phase transitions,10 the so-called deconfined quantum

criticality (DQC) scenario. Introducing two different order
parameters to describe a phase transition, one for the AF
phase and another one for the VBS phase, it was argued that
near the phase transition more fundamental building blocks,
namely, elementary excitations known as spinons, constitute
both order parameters. In this scenario staggered Berry
phases interfere destructively with the hedgehogs (magnetic
monopoles in spin space), leading to spinon deconfinement at
the phase transition.10 This mechanism has been confirmed by
large-scale Monte Carlo (MC) simulations of an easy-plane
antiferromagnet.11

Previous analyses of spinon deconfinement considered
a model for easy-plane antiferromagnets exhibiting a U(1)
symmetry.12 The resulting theory is described by a CP1 model,
which due to the easy-plane anisotropy has a global U(1)
symmetry in addition to the local one.10,12 This property makes
the model self-dual, and it was argued that this self-duality
would imply a second-order quantum phase transition at
zero temperature.10 However, MC simulations11,13 revealed
a first-order phase transition, also found by a subsequent
renormalization group (RG) analysis of the model.14 Thus,
one may ask if the same would also be found in the globally
SU(2) invariant case supposed to be described by an isotropic
CP1 model with a noncompact Maxwell term. MC simulations
on such a model on a lattice have found a first-order phase
transition.15 This contradicts previous MC results16 obtaining
a second-order phase transition. Numerical work on the J−Q

model appears to show a second-order phase transition;6,7,9,17

see, however, Ref. 8.
Recently,9,17 a feature of the J−Q model that does not

seem to follow from DQC was observed. Namely, logarithmic
violations of scaling in the zero-temperature spin stiffness and
in the finite-temperature uniform susceptibility were found.
In systems with continuous symmetries, this normally occurs
either at the upper or lower critical dimensions. In Refs. 9
and 17, the systems considered are (2 + 1)-dimensional. Thus,
the corresponding field theory prescribed by DQC would
be neither at the upper nor the lower critical dimension.
Moreover, no logarithms are expected to occur in the zero-
temperature spin stiffness or in the finite-temperature uniform
susceptibility, since both these quantities can be derived from
a current correlation function. For this reason, it has been
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suggested9 that the DQC scenario should be revised in order
to accommodate this new aspect. A phenomenological theory
at finite temperature involving a gas of free spinons has been
proposed recently18 to fit the logarithmic behavior of the
simulations. A nonstandard power behavior for the thermal gap
at criticality was introduced to make a logarithm appear in the
uniform susceptibility. Since the free spinon gas has the usual
spectrum at zero temperature, no quantum critical logarithmic
behavior can be derived in this way for the spin stiffness at zero
temperature. Moreover, the origin of the anomalous scaling of
the thermal gap was not addressed. In this paper, we show
that the logarithmic violation of scaling in the J−Q model is
actually encoded in the DQC scenario and that this is a direct
consequence of the emergent U(1) gauge symmetry.

If quantum criticality in the J−Q model follows from
DQC, it should be governed by an effective lattice gauge
theory where a staggered Berry phase suppresses its magnetic
monopoles.10 In the absence of this staggered Berry phase this
lattice gauge theory is given by the CP1 model with a compact
Maxwell term,10

S = − 1

g

∑
j,μ,a

z∗
aj e

−iAjμzaj+μ̂ + H.c.

− 1

e2

∑
j,μ,ν,λ

cos(εμνλ�νAjλ), (2)

where a = 1,2, �μ denotes the μth component of the lattice
gradient and the complex scalar fields satisfy the local
constraint |z1,j |2 + |z2,j |2 = 1. The action (2) has been studied
numerically,19 and a second-order phase transition was found.
Also, the field theory of Eq. (2) has been studied via a
renormalization group analysis.20 The resulting flow diagram
interpolates between the quantum critical points of the O(3)
and O(4) nonlinear σ models; see Fig. 1. We thus expect
the universality class of the phase transition of Eq. (2) to be
O(3), which obviously features a quantum critical point, in
agreement with Ref. 19.

Within the DQC paradigm, the effect of the staggered
Berry phase is essential. This can conveniently be accounted
for by rewriting the Maxwell term in Eq. (2) in Villain
form, SMaxwell = 1

2e2

∑
j (εμνλ�νAjλ − 2πnjμ)2, and coupling

the integer fields njμ to fixed, time-independent fields ζj ,

2e2e /(1+ )

O(3)

g

1

O(4)
0

FIG. 1. Schematic flow diagram of the CP 1 model with a compact
Maxwell term. The Maxwell term allows for an interpolation between
the O(3) and O(4) nonlinear σ model fixed points.

taking the values 0, 1, 2, 3 on the dual lattice, as follows:
i(π/2)

∑
j ζj�μnjμ. This defines the Berry phase of a com-

pact CP1 model believed to describe the essential physics at
deconfined quantum critical points.21 A partial dualization of
the model yields21

SSJ = 1

4

∑
j

[
e2

(
Njμ − 1

4
�μζj

)2

+ g(εμνλ�νNjλ)2

]

+ Sn − 2πi
∑

j

Njμkjμ(n). (3)

Here, Sn is the action of the nonlinear σ model and kjμ is the
topological current. In the continuum limit, we have

kμ ≈ 1

4π
εμνλn · (∂νn × ∂λn). (4)

The lattice fields Njμ are integer-valued and ζj are fixed fields
arising from the Berry phase in the original model having
specific values on the dual lattice (details can be found in
Refs. 21 and 22). Using the Poisson formula to promote the
integer fields Njμ to real fields Bjμ, performing the shift
Bjμ → Bjμ + �μζj/4, and integrating over Bjμ, one obtains

S̃SJ = 2π2
∑
i,j

Dμν(xi − xj )[kiμ(n) + miμ][kjν(n) + mjν]

+ Sn − iπ

2

∑
j

mjμ�μζj . (5)

Here Dμν(xi − xj ) satisfies the equation [(−g�2 + e2)δμλ +
2�μ�λ]Dλν(xi − xj ) = 2δμνδij , mjμ are new integer-valued
vector fields arising from the Poisson summation, and we
have used �μkjμ(n) = 0. The first term in Eq. (5) can be
approximated by

LSkyrme = 1

2e2
[εμνλn · (∂νn × ∂λn)]2, (6)

first introduced in Ref. 23. The effective Lagrangian in the
continuum limit is thus

L = 1

2g
(∂μn)2 + LSkyrme + · · · , (7)

where the three-component direction field n satisfies the
local constraint n2 = 1 and the ellipses denote other terms
related to the Berry phase, which are being neglected in the
above approximation. We return to this below. The model in
Eq. (7)24 is known to have a rich geometric and topological
structure.25–27 The emergent U(1) symmetry of the Skyrme
term follows from the compact U(1) gauge group in the
continuum arising as a subgroup of the SU(2) gauge group.28

To see this, consider the functional integral

Z =
∫

DnDCμ exp

(
− 1

4e2

∫
d3xFμν · Fμν

)
, (8)

where Fμν = ∂μWν − ∂νWμ − Wμ × Wν is an SU(2) field
strength with an adjoint non-Abelian gauge field of the form
Wμ = n × ∂μn + nCμ and Cμ is an Abelian gauge field. The
Skyrme contribution Eq. (6) follows from integrating out Cμ

in Eq. (8). This is reminiscent of the arguments of Ref. 29,
where a four-dimensional version of Eq. (7)30 is argued to be
a low-energy description of SU(2) Yang-Mills theory.
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The model Eq. (7) has to be modified to account for
the destructive interference between the Berry phases and
the magnetic monopoles. As discussed in detail in Ref. 10,
this interference mechanism suppresses the monopoles, which
implies an effective model given by the noncompact CP1 model
with a Maxwell term. Such a model may be written in the
form27

L = 1

2g
(∂μn)2 + 1

2g
C2

μ

+ 1

2e2
[εμνλ∂νCλ + εμνλn · (∂νn × ∂λn)]2. (9)

Setting n = z∗
aσ abzb, we obtain the CP1 realization of Eq. (9):

L = 1

g
|(∂μ − iAμ)za|2 + 1

2g
C2

μ

+ 1

2e2
(εμνλ∂νCλ + 2iεμνλ∂νz

∗
a∂λza)2. (10)

Classically, by enforcing the constraint |z1|2 + |z2|2 = 1, we
have

Aμ = (i/2)(z∗
a∂μza − za∂μz∗

a). (11)

We can now perform the singular gauge transformation Aμ →
Aμ − Cμ, za → ei

∫ x

0 dx
′
μCμ(x ′)za , to obtain

L = 1

g
|(∂μ − iAμ)za|2 + 1

2e2
(εμνλ∂νAλ)2. (12)

This is precisely the standard DQC model.10 Note that a
similar decoupling does not hold in the case of the Ginzburg-
Landau theory for two-component superconductors discussed
in Ref. 27, since there the sum of the respective Cooper pair
densities is not CP1 constrained. Thus, we see that if we insist
on the emergent character of Aμ as expressed in Eq. (11), the
Maxwell term in Eq. (12) is just the Skyrme term, which this
is shown to be contained in Eq. (3).

The gauge transformation employed to decouple Cμ

and thus derive Eq. (12) was performed at the classical
level, in which case the equation of motion for Aμ yields
Aμ = (i/2)(z∗

a∂μza − za∂μz∗
a). In some calculations involving

higher-order quantum fluctuations, it might be more appropri-
ate to consider the Lagrangian (10), since quantum fluctuations
give the gauge field Aμ an independent dynamics. However,
in most lowest-order approximations, Eq. (12) is sufficiently
accurate. Note that Eq. (11) does not follow from the equation
of motion for Aμ derived from the Lagrangian (12).

Next we calculate the spin stiffness, ρs . The latter is ob-
tained from the gauge-invariant response to a twist associated
to the spin current tensor Jμ = (n × ∂μn)/g.31 Due to the
constraint n2 = 1, we have

g

2
J2

μ = 1

2g
(∂μn)2, (13)

which provides some insight into the meaning of 1/g as
the bare stiffness. Note that when d = 1 + 0, Jμ is just the

angular momentum of a particle having moment of inertia
1/g and constrained to move on the surface of the S2 sphere.
By generalizing the mechanics of a particle on a sphere to a
field theory in d = D + 1 space-time dimensions, the twist
is realized by the response to an external constant triplet
field Sμ, which amounts to making the replacement ∂μn →
∂μn + Sμ × n. In order to facilitate the calculations, we can
assume without loss of generality that Sa

μ = δa=3Sμ. Thus, in
the CP1 representation Sμ will couple to the third component
of Jμ, which is written in terms of spinon fields as J 3

μ =
1
g

[j (1)
μ − j (2)

μ ], where j (a)
μ = i(z∗

a∂μza − za∂μz∗
a) − 2Aμ|za|2,

with no sum over a. Variation of the Lagrangian Eq. (12)
yields 1

g
[j (1)

μ + j (2)
μ ] = 1

e2 ∂νFνμ, which allows us to write

J 3
μ = 2

g
j (1)
μ − 1

e2 ∂νFνμ. The spin stiffness is calculated by

computing the response of J 3
μ when it is coupled to an external

source, Sμ. Differentiating the free energy functional with
respect to the source, letting the source vanish at the end,
yields the spin stiffness in the form

ρs = 4

g
〈|z1|2|z2|2〉 − 1

d

∫
ddxKμμ(x), (14)

where Kμν(x) = 〈J 3
μ(x)J 3

ν (0)〉 is the current correlator. The
above formula is a generalization to the O(3) case of the well-
known formula for the superfluid density of a globally U(1)-
invariant system. Interestingly, the O(3) stiffness involves
the correlator of a gauge-invariant U(1) current within a
framework associated to a global SU(2) symmetry.

When only global symmetries are involved, conserved
currents do not renormalize.32,33 This fact elegantly provides
a foundation for the scaling relation ρs ∼ ξ 2−D for the
superfluid stiffness in systems with a global U(1) symmetry.34

Indeed, current conservation implies that the current corre-
lation function does not exhibit an anomalous dimension,
implying that the scaling behavior of the superfluid stiffness
is simply determined by dimensional analysis. However, the
non-renormalization theorem fails in gauge theories,35 such as
the Lagrangian in Eq. (12). In the absence of the Maxwell term,
we have the standard CP1 model, which is equivalent to the
O(3) nonlinear σ model. In this case the non-renormalization
theorem is still valid, since the gauge field then is just an
auxiliary field. Specifically, if we introduce the dimensionless
coupling ĝ = gd−2, where  is the ultraviolet cutoff, along
with the parameter r = 1 − ĝ/ĝc, with ĝc being the critical
coupling, we obtain that for the standard CP1 model in d =
D + 1 space-time dimensions near criticality, ρs ∼ rν(d−2),
corresponding to standard Josephson scaling.34 This result can
be derived using an expansion in ε = d − 2 or, in the case of the
CPN−1 model, by means of a 1/N expansion.36 Furthermore,
at finite temperature and at ĝ = ĝc, scale invariance implies
ρs ∼ T d−2, which is essentially the quantum critical spin
susceptibility at finite temperature.

For the model in Eq. (12), the presence of the Maxwell
term leads to logarithmic corrections in the spin stiffness for
d = 2 + 1 when approaching the critical point from the broken
symmetry (Higgs) phase, where the gauge field is gapped.
More precisely, the exact expression up to order 1/N and

045121-3



FLAVIO S. NOGUEIRA AND ASLE SUDBØ PHYSICAL REVIEW B 86, 045121 (2012)

d = 2 + 1, keeping both Ng and Ne2 fixed, is given by37

ρs

r
∼ 1 − 16

3π2N
ln

(
16r

Nĝ + 16r

)
+ 64

3π2N
(
1 + 256r

N2f̂ ĝ

)
⎡
⎣ln

(
64r

N2f̂ ĝ

)
+ 3√

1 − 2048r

N2f̂ ĝ

ln

⎛
⎝1 +

√
1 − 2048r

N2f̂ ĝ

1 −
√

1 − 2048r

N2f̂ ĝ

⎞
⎠

⎤
⎦ + · · · , (15)

where we have introduced the dimensionless coupling f̂ =
e2/. For f̂ � 1, we obtain

ρs

r
≈ 1 − 16

3π2N
ln

(
16r

Nĝ + 16r

)
− 128

3π2N
ln

(
128r

N2f̂ ĝ

)
,

(16)

which implies the critical exponent ν = 1 − 48/(π2N ) of the
standard CPN−1 model at large N .36 The same behavior is
obtained at fixed f̂ and r → 0, consistent with the result that
at the CPN−1 fixed point the Maxwell term is (dangerously)
irrelevant. For f̂ → 0, on the other hand, only the first two
terms in Eq. (15) remain, leading to the critical exponent
ν = 1 − 16/(3π2N ) of an O(2N ) nonlinear σ model. There-
fore, Eq. (15) interpolates between the fixed points of the
CPN−1 and O(2N ) models. The logarithmic correction to the
Josephson scaling obtained here is in agreement with recent
numerical findings.9 This provides further evidence that the
DQC scenario describes the quantum critical regime of the
AF-VBS transition in low-dimensional quantum spin models.
These log-corrections, appearing away from lower and upper
critical dimensions, reflect an emergent gauge symmetry of
such systems. They also elucidate the dangerously irrelevant
character of the emergent Maxwell term in the CPN−1 model
and its primary role in the log-correction.

The interpolation between the large N fixed points of the
CPN−1 and O(2N ) obtained above is of the same type we
have found before in our discussion in connection with Fig. 1.
For N = 2 the standard CPN−1 model is equivalent to the
O(3) nonlinear σ model. The DQC regime lies on the critical
separatrix of Fig. 1. Thus, the logarithmic violation of scaling
obtained here is fundamentally different from the one usually
encountered at the upper or lower critical dimension of local
field theories.

It would be interesting to observe the violation of Josephson
scaling in experiments by measuring the spin susceptibility,
which would essentially be a measurement of the spin stiffness.
Good candidates are low-dimensional quantum antiferromag-
nets featuring geometric frustration, such as the organic Mott
insulating compound EtMe3P[Pd(dmit)2]2 (Ref. 38) or the
kagome lattice system ZnxCu4−x(OH)6Cl2.39 Field theories
with emergent U(1) gauge symmetries have been proposed to
describe the quantum criticality in these materials.40,41

In this paper, we have considered a class of quantum spin
systems featuring a breakup of spin-1/2 objects into more
fundamental constituents called spinons, accompanied by an
emergent massless gauge field and hence an emergent U(1)
gauge symmetry. We show that this emergence gives rise
to logarithmic violations of Josephson scaling of the spin
stiffness of these systems. It originates with a breakdown
of the non-renormalization property of the conserved current
that underpins Josephson scaling. Similar violations of scaling
should appear in the susceptibility of the system. A violation
of Josephson scaling has been observed in numerical works
on the spin stiffness of quantum antiferromagnets with ring
exchange and constitutes an experimental signature of spin-
fractionalization and emergence of massless photons in low-
dimensional quantum antiferromagnets. We have proposed
candidate materials in which to look for this.
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