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Geometric proof of the equality between entanglement and edge spectra

Brian Swingle1,2 and T. Senthil1
1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 22 November 2011; revised manuscript received 6 June 2012; published 16 July 2012)

The bulk-edge correspondence for topological quantum liquids states that the spectrum of the reduced density
matrix of a large subregion reproduces the thermal state of a physical edge. This correspondence suggests
an intricate connection between ground state entanglement and physical edge dynamics. We give a simple
geometric proof of the bulk-edge correspondence for a wide variety of physical systems. Our unified proof relies
on geometric techniques available in Lorentz invariant and conformally invariant quantum field theories. These
methods were originally developed in part to understand the physics of black holes, and we now apply them to
determine the local structure of entanglement in quantum many-body systems.
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I. INTRODUCTION

Since the discovery of the fractional quantum Hall fluids1

and the subsequent elucidation of their topological structure,2,3

it has become clear that entanglement plays a crucial role
in a wide variety of zero-temperature quantum phases of
matter. To describe such phases of matter, it is necessary to
understand their pattern of long-range entanglement since they
fail to be distinguished by any symmetry breaking pattern.
Studies of entanglement entropy have provided a window
onto various patterns of entanglement. The boundary law for
entanglement entropy states that the entropy of a subsystem of
linear size L in d dimensions in the ground state typically
scales like Ld−1. Reference 4 provides a comprehensive
review of this fundamental result. Entanglement entropy
has since been used in Refs. 5 and 6 to give meaning to
the notion of long-range entanglement in topological fluids.
Entanglement considerations have also led to a revolution in
our understanding of 1d physics,7,8 promising variational states
in higher dimensions,9,10 and a classification of 1d phases.11,12

More recently, Li and Haldane in Ref. 13 drew attention to
interesting physical information encoded in the full spectrum
of the reduced density matrix in fractional quantum Hall fluids.
Of course, the full spectrum is not universal, but what Li and
Haldane argued was that the entanglement spectrum contained
a universal part that was characteristic of the phase of interest.
Define the “entanglement Hamiltonian” HR of region R via
ρR = e−HR . The boundary law implies that HR behaves, at a
very crude level, like the Hamiltonian of a lower dimensional
system. Reference 13 argued that for quantum Hall systems
the universal part of HR was actually given by a dynamical
Hamiltonian for a physical edge. Thus the entanglement cut
becomes a physical cut, and the ground state informs us about
quantum dynamics at a physical edge.

Since the Li-Haldane proposal, known as a bulk-edge
correspondence, Refs. 14–17 have offered a variety of proofs
of the conjecture and variations on the theme. There were
even hints of a bulk-edge correspondence in the early work
of Ref. 5. In this paper, we present a proof of the bulk-edge
correspondence for a wide variety of physical systems that
may be approximated as Lorentz invariant at low energies. Our
proof has the advantage of simplicity, physical transparency,
and generality. We emphasize that the existing arguments for

this relation are restricted to special cases such as quantum
Hall fluids in two dimensions and noninteracting topological
insulators. Our proof covers all these cases and a great deal
more, allowing us to treat interactions and different dimensions
all in the same unified geometric framework. We believe our
results provide considerable evidence for the claim that the
bulk-edge correspondence is a generic feature of quantum
many-body systems with protected edge states. As an added
bonus, our method provides access not only to the spectrum
but also the eigenstates of the entanglement Hamiltonian.

Our main technical tools are a set of powerful geometrical
constructions in Lorentz invariant and conformally invariant
field theories that relate the entanglement spectrum of special
subsystems to thermal spectra in appropriate spacetimes.
For the interested reader, we note that these tools were
originally developed to understand the physics of black holes
and our analysis is reminiscent of the black hole membrane
paradigm (see Ref. 18). A key difference is that we do not
permit the geometry to fluctuate. Of course, the systems we
are interested in are not exactly Lorentz invariant, but we
may recover the physical situation by adding irrelevant (or
marginal) operators that break Lorentz invariance at high
energies. Such local perturbations, provided they respect the
relevant symmetries, cannot modify universal features of the
entanglement spectrum.

The geometric tools described in Refs. 19–22 enable
us to rigorously establish a bulk-edge correspondence for
topological liquids. If at a real boundary the system has
gapless edge modes, then we argue that the entanglement
spectrum also contains signatures of these gapless modes.
Thus we establish very generally a powerful link between
entanglement and quantum dynamics, connecting ground state
properties with edge dynamics. Our results treat systems
in a variety of dimensions with and without interactions
in a completely unified framework. We provide another
derivation of topological entanglement entropy in 2 + 1
dimensions, a proof of the bulk-edge correspondence for
entanglement spectra in fractional quantum Hall states, a proof
of the bulk-edge correspondence for topological insulators
in 3 + 1 dimensions, and a proof of the bulk-edge corre-
spondence for fractionalized topological insulators in 3 + 1
dimensions.
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This paper is organized as follows. The first section
contains an introduction and motivation. Section two de-
scribes our geometric tools and the intuition behind them.
We show that these tools can reproduce familiar results by
rederiving the universal topological entanglement entropy
for all two-dimensional topological theories. We then turn
to the bulk-edge correspondence in its full form. Section
three treats the original Li-Haldane situation of fractional
quantum Hall fluids followed by analogous calculations for
topological band insulators and a class of recently proposed
fractional topological insulators. Finally, we conclude with
some comments on future directions.

II. ENTANGLEMENT HAMILTONIANS FROM
GEOMETRIC FLOWS

Our geometric techniques permit us to address two kinds
of subsystems in d dimensions, half spaces R = {x1 �
0,x2 . . . xd ∈ (−∞,∞)} and disks R = Bd = {√∑

i(x
i)2 �

b}. Because we work with gapped topological fluids, the
precise details of the region shape are not expected to be
important. We begin with the half space.

It has been known for some time, motivated by studies
of Unruh radiation, that the spectrum of the reduced density
matrix of a half space in a relativistic quantum field theory is
related to that of the Lorentz boost generator that preserves the
so-called Rindler wedge (see Refs. 19 and 20). Focusing on the
coordinates x1 and t mixed by the boost and using light cone
variables x+ = t + x1 and x− = t − x1, boosts by velocity v

send

x± → e±λx±
(

eλ =
√

1 + v

1 − v

)
. (1)

The boundaries of the Rindler wedge are the light rays
x+ = 0 and x− = 0 and boosted observers asymptotically
approach these lines as λ → ±∞. Precisely because a boost
can never lead to an observer moving faster than light, the
boost transformation only moves points around within the
Rindler wedge. An alternate characterization of the Rindler
wedge following from relativistic causality is as the region
of spacetime where the physics is totally controlled by the
state of the half space x > 0 at t = 0; it is the “causal
development” D of the half space at t = 0. In concrete terms,
no information bearing signal emitted from x < 0 at t = 0 can
enter the Rindler wedge since this would require faster than
light information propagation. Having introduced the Rindler
wedge and boost, we can state the key result of Refs. 19
and 20: The state of the half space is thermal with respect to
the generator of Rindler boosts (defined below) with inverse
temperature 2π . We will shortly give two elementary proofs
of this statement. Note that this is a formal mathematical
result valid for any Lorentz invariant field theory and does
not directly depend on the physics of detectors, etc., involved
in the Unruh effect.

Nevertheless, this result does account for the radiation seen
by accelerated observers, since their effective time evolution
is generated by the Rindler boost. In other words, since the
Minkowski vacuum looks like a thermal state for the Rindler
boost generator, accelerated observers experience such a state
as an ordinary thermal bath with respect to their internal clock.

To explain this more fully, note first that the boost generator is

− iK ∼ x1∂t + t∂x1 , (2)

so eλ(−iK)x± = e±λx±. Now a uniformly accelerated observer
with acceleration a follows the trajectory

x1(τ ) = a−1 cosh (aτ ), t(τ ) = a−1 sinh (aτ ) (3)

in terms of the observer’s proper time τ . Indeed, the proper
time interval for such a trajectory is

dt2 − dx2 = [cosh (aτ )dτ ]2 − [sinh (aτ )dτ ]2 = dτ 2 (4)

as claimed. Returning to light cone coordinates we find the
trajectory

x± = ±a−1e±aτ . (5)

This last formulation makes it clear that boosting by parameter
λ is equivalent to sending τ → τ + λ/a, but this is simply the
statement that Hτ = K/a generates time evolution for the ac-
celerated observer’s internal clock. Now we have already stated
that the half-space density matrix is thermal with respect to K

with the precise relation being ρx1>0 = exp (−2πK). From
this it immediately follows that ρx1>0 = exp [−(2π/a)Hτ ]
is thermal with temperature a/(2π ) with respect to the
proper time translation generator Hτ (the Hamiltonian) of the
accelerated observer.

Now we move away from the physics of accelerated
observers and return to our main line of development. We
need an operator version of the boost generator to apply these
results to quantum field theories. This operator form may be
easily obtained by sending i∂t to an energy density and −i∂x1

to a momentum density in the usual way. The operator form
acting on degrees of freedom in the half space is

K =
∫

x1>0
x1H − tP, (6)

where H = T tt and P = T tx1
are the energy and momentum

density components of the stress tensor T μν . Evaluating this
generator at t = 0 provides an immediate connection between
the entanglement Hamiltonian (and boost generator) 2πK and
the energy density H. There remains the important question
of boundary conditions at x1 = 0.

These results may be proven in two ways (see Ref. 18 for
a nice discussion). We may obtain the state �[φx1<0,φx1>0] as
a Euclidean path integral over the upper half plane. Instead of
slicing the path integral at constant imaginary time, we may
re-slice the path integral at constant Euclidean angle. Just as
the Hamiltonian generates translation in imaginary time, the
boost generator K generates rotation in Euclidean angle, and
we have

�[φx1<0,φx1>0] = 〈φx1<0|e−πK |φx1>0〉 (7)

as in Ref. 20. Tracing out φx<0 immediately gives a density
matrix exp (−2πK). We have

ρx1>0(φx1>0,φ
′
x1>0)

=
∫

Dφx1<0〈φx1>0|e−πK |φx1<0〉〈φx1<0|e−πK |φ′
x1>0〉

= 〈φx1>0|e−2πK |φ′
x1>0〉, (8)
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where we have used∫
Dφx1<0|φx1<0〉〈φx1<0| = 1x1<0. (9)

Alternatively, since the Minkowski vacuum |
〉 is invariant
under boosts K|
〉 = 0 and since a complexified boost
by λ = 2πi leaves the coordinates in the Rindler wedge
unchanged, we have a kind of periodicity in imaginary boost
parameter. This is completely analogous to imaginary time
periodicity of observables in the thermal state e−βH . Identical
logic leads to the conclusion that the half-space state is
exp (−2πK), although we omit the details here (see Ref. 19
for a mathematical discussion).

Remarkably, the entanglement Hamiltonian is the generator
of a geometric flow in spacetime which may be interpreted as
time evolution in Rindler space. The reduced density matrix
of the half space is then a simple thermal state with respect to
time evolution in Rindler space. If we change coordinates to
x1 = a−1eu cosh aη and t = a−1eu sinh aη, then the metric on
the Rindler wedge takes the form ds2 = a−2e2u(−dη2 + du2)
and the curve u = 0 has constant acceleration a. The spectrum
of the entanglement Hamiltonian can then be found directly
in the continuum by quantizing the low-energy theory in this
spacetime. For example, a free scalar field φ of mass m obeys
the wave equation

�φ − m2φ = 1√−g
∂μ(

√−g∂μφ) − m2φ = 0 (10)

(note that this is not an interesting topological theory). In terms
of our coordinates above the wave equation is

− a2e−2u∂2
ηφ + a2e−2u∂2

uφ + (∇2
⊥ − m2)φ = 0 (11)

and introducing Fourier components φ = φωke
ikx⊥−iωη we

have

ω2φωk = −∂2
uφωk + [(k2 + m2)/a2]e2uφωk. (12)

A cutoff is necessary for large negative u; otherwise the local
effective temperature, given by 1/

√
gηη, diverges as u → −∞,

a fact familiar from the study of black hole thermodynamics.
Together with the steep e2u potential this cutoff leads to infinite
square well like “energy levels” ω2 for the scalar field example.
In particular, note that there no gapless “edge states” for the
massive scalar. When considering true topological theories
with physical edge states the Rindler spectrum will include
edge states.

The results for the Rindler wedge are already quite power-
ful, but to work with compact subsystems we must introduce
a little more technology. If we further restrict ourselves to
conformal field theories, then we have an additional result
about the reduced density matrix of the d ball as described in
Refs. 21 and 22. Those authors showed that the spectrum of
the reduced density matrix of a disk is that of a thermal state of
the conformal field theory but defined on the hyperbolic space
Hd × R. The proof is very similar to Rindler wedge result,
and actually follows from the result for the Rindler wedge
by a conformal transformation. Indeed, if we look carefully
at the Rindler wedge metric in terms of coordinates η and
ρ = a−1eu,

ds2 = −ρ2dη2 + dρ2 + dx2
⊥, (13)

FIG. 1. (Color online) The disk A is colored blue. The rest of
the system at fixed time is colored red and denoted B. The boundary
causal development D is depicted with the wire outline cones; the
solid cone is the forward boundary while the dotted cone is the past
boundary. Everything inside the causal development D is determined
by the state on A at time t = 0 since no other region of spacetime can
communicate with D. Figure adapted from Ref. 22.

then a simple manipulation gives

ds2 = ρ2

(
−dη2 + dρ2 + dx2

⊥
ρ2

)
, (14)

which is conformally equivalent (the overall ρ2 factor) to R ×
Hd where we model Hd as the Poincaré half space. The half-
space result is related to the disk result by a process of zooming
in on the boundary, a procedure which sends the Poincaré ball
to the Poincaré half space. Reference 22 contains details of
the geometrical flow in the causal development Ddisk (shown
in Fig. 1) that is mapped to ordinary time evolution in the
hyperbolic space.

An important check of this relation is that it correctly re-
produces the divergences inherent in continuum entanglement
entropy. In the hyperbolic setting, infinities arise because the
hyperbolic space is noncompact. To regulate the theory, we
must introduce a boundary into the space, and to compute
the partition function properly, we must establish boundary
conditions for the fields. For example, boundary conditions
must be considered to ensure that the partition function is
gauge invariant. The metric of d-dimensional hyperbolic space
(the Poincaré ball) may be taken to be

ds2 = dw2 + sinh2 w d
2
d−1 (15)

with d
2
d−1 the metric of the d − 1 sphere. Recalling that

the conformal field theory on hyperbolic space is at finite
temperature, we can compute the total entropy by integrating
an entropy density s over the cutoff hyperbolic space. The
entropy is thus

Sdisk = s vol(Sd−1)
∫ wc

0
dw sinhd−1 w, (16)

which does indeed diverge as the cutoff wc goes to infinity.
The cutoff wc is related to the radius b of the original ball and
the ultraviolet cutoff ε via wc ∼ ln (b/ε). Plugging this into
our expression for the entropy immediately gives a boundary
law S ∼ (b/ε)d−1 as expected.
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Finally, we note that a related construction allows us to
obtain the entanglement entropy of the disk (or d ball Bd )
directly in terms of a Euclidean partition function on S3 (on
Sd+1). This result is also proven in Ref. 22. The proof proceeds
as in the previous case by a judicious choice of coordinate
transformation and conformal transformation which maps the
causal development of the disk into a spacetime, de Sitter
space, whose Euclidean section is a sphere. Since ln Z gives
the free energy, and since we will be interested in topological
phases where the Hamiltonian is zero, the free energy directly
determines the entropy.

To summarize, we introduced three powerful tools that
provide access to the reduced density matrix of special
subsystems. First, the entanglement Hamiltonian of a half
space in any relativistic field theory is given by a certain boost
generator. Second, the entanglement Hamiltonian of a ball
in any conformal field theory is given by the generator of
time translations in hyperbolic space. Third, the entanglement
entropy of a ball in any conformal field theory is given by the
partition function of the Euclidean theory on Sd+1.

The simplest calculation that illustrates the use of these
tools is a computation of the entanglement entropy of a disk in
topological liquids in 2 + 1 dimensions. As we already noted,
topological field theories are conformal field theories since
they insensitive to the metric. The inevitable regulator will
introduce nonconformal elements to any topological theory,
but these elements will only alter nonuniversal aspects of
our results. To compute Z(S3) we begin with Z(S2 × S1) = 1
which indicates a unique ground state on the sphere [in general
Z(� × S1) computes the dimension of the Hilbert space of the
theory on space �]. We want to use surgery on the manifold
S2 × S1 to convert it into a three sphere S3. A similar surgery
computation was performed for Chern-Simons theories in
Ref. 23, but our perspective is different since we are using
results typically associated with conformal field theories and
since our computation is for all topological theories.

The space S2 × S1 may be cut open along the equator of S2

to yield two copies of the solid torus B2 × S1. Since ∂B2 ×
S1 = S1 × S1, Z(B2 × S1) = |�〉 is a state in the Hilbert
space of the torus generated by imaginary time evolution.
This state is normalized since 1 = Z(S2 × S1) = 〈�|�〉. Now
instead of gluing the tori back together directly, we make an
S modular transformation of one of the boundary tori which
exchanges the two noncontractible surface loops. Gluing then
yields S3 as shown in Fig. 2. The modular transformation is

FIG. 2. (Color online) Visualizing the modular transformation
that maps two copies of the solid torus B2 × S1 to the pair of
interlocking solid tori on the right. Expanding the interlocking tori to
fill all of space and gluing them along their mutual boundary produces
S3.

implemented using the modular S matrix Sa
b , and a calculation

gives Z(S3) = 〈�|S|�〉 = S0
0 (see Ref. 29 for a review). The

0 or identity components appear because the imaginary time
evolution that generated |�〉 has no Wilson lines inserted. In
terms of the total quantum dimensionD of the topological field
theory we have S0

0 = 1/D. Thus S(B2) = ln Z(S3) = − lnD
(the nonuniversal part has effectively been subtracted away)
as shown in Refs. 5,6, and 24.

III. BULK-EDGE CORRESPONDENCE

Here we state our general result that establishes the
bulk-edge correspondence. We focus on the case of the
Rindler wedge where we have shown that the entanglement
Hamiltonian is

K =
∫

x1>ε

x1H. (17)

If we interpret this operator locally then it describes a gap
that goes to infinity as we move away from the boundary.
More generally, we know how to compute the spectrum of
this operator by studying the theory in the Rindler wedge
(with a cutoff). How does this operator lead to the bulk-edge
correspondence?

Our argument is very simple: The boost operator is equiv-
alent, up to operators localized at the edge, to a Hamiltonian
with a sharp edge. Thus, if the Hamiltonian with a sharp edge
has protected edge states then the boost generator must possess
the same states since the bulk gap is not closed. Formally, let
us introduce the operator

Kp =
∫

x1>ε

p(x1)H (18)

with p(x) = ξ for x < ξ and p(x) = x for x > ξ . Now Kp

differs from K only within a shell of thickness ξ near x1 = ε

and hence they possess the same universal edge features. Kp

clearly has an edge state since it has a finite gap everywhere
and a sharp edge at x1 = ε, so K must also possess the same
protected edge states. Of course, it is crucial that we consider
only truly protected edge states, i.e., those states that cannot be
removed without closing the bulk gap or breaking a symmetry.
Perturbative stability, that is a finite basin of attraction under
the renormalization group, while quite interesting physically,
cannot be used to guarantee the bulk-edge correspondence
since we must entertain large perturbations of the edge in our
proof.

Let us also address explicitly the role of Lorentz invariance.
This is a powerful symmetry that underlies our entire geometric
approach; on the other hand it is at best an approximate
symmetry at low energies in condensed matter systems. For
example, at the edge of a ν = 2/3 fractional quantum Hall
state there are two counterpropagating modes (corresponding
to k = 1 and k = −3 in the Chern-Simons language), and
these modes need not have identical velocities. However, the
important point is that this system may be tuned to a point
where the velocities are equal, or equivalently, that the generic
case of interest in condensed matter differs from the Lorentz
invariant system by operators that are marginal or irrelevant.
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Formally speaking, we can consider an adiabatic transfor-
mation U that maps the gapped Lorentz invariant ground state
|
〉, say on a sphere, to the true non-Lorentz invariant ground
state |true〉,

U |
〉 = |true〉. (19)

Physically speaking, U adds all kinds of irrelevant operators to
the Lorentz invariant model which break Lorentz invariance at
high energies and short distances. However, the crucial point
is that U is a local transformation because the ground state
is gapped. U also provides a local map from the Lorentz
invariant entanglement Hamiltonian HR of region R to the true
entanglement Hamiltonian HU

R . That is HU
R = HR + �HR

with �HR a local operator that does not close the bulk
“entanglement gap” of HR . Under these conditions it follows
as before that the universal protected features of the edge
spectrum of HR are not perturbed by the addition of �HR .
For example, in the case of fractional quantum Hall liquids,
the chiral central charge as measured by the physical thermal
Hall effect is such a universal number. Indeed, it is roughly
the number of left moving modes minus the number of right
moving modes. Furthermore, the universality of this number
does not depend on all modes having the same velocity
and thus is robust to Lorentz symmetry breaking. It can
computed from our results since we know the full entanglement
Hamiltonian—eigenstates and eigenvalues.

IV. EXAMPLES IN d = 2

We now apply the technology introduced in the previous
section to the problem of the entanglement spectrum in
fractional quantum Hall fluids. Consider the simplest class of
topological fluids at filling fraction ν = 1/m as described by
Laughlin in Ref. 25. These states are described at low energy
by an effective Chern-Simons theory for an emergent gauge
field that can be used to compute ground state degeneracy and
quasiparticle statistics (see Ref. 26).

To access the disk spectrum we study the Chern-Simons
theory on hyperbolic space. We must cut off the hyperbolic
space at some fixed size and impose boundary conditions
to regularize the path integral. Chern-Simons theory on a
manifold with boundary is not gauge invariant unless we add
extra edge degrees of freedom,24 and because the original
electron model was gauge invariant, the reduced density matrix
must also be. The edge degrees of freedom are those of a chiral
c = 1 gapless boson in 1 + 1 dimensions, and because the bulk
is still fully gapped, these edge modes dominate the thermal
physics. Hence the “low energy” part of the entanglement
spectrum is simply given by the thermal spectrum of the
corresponding 1 + 1 dimensional conformal field theory. Of
course, we can similarly conclude that the entanglement
spectrum of a half space in the Chern-Simons theory is given
by the thermal spectrum of the same conformal field theory on
an infinite line.

To be concrete, consider the case of the infinite line in more
detail. Recall that we must quantize the theory on the Rindler
wedge to obtain the entanglement spectrum. The action for
U (1)k Chern-Simons theory on the Rindler wedge (using

coordinates {η,ρ,x2}) is

SCS = k

4π

∫
ada

= k

4π

∫
ρ>0

dηdρdx2(aρ∂ηa2 − a2∂ηaρ), (20)

where in the last equality we have chosen the aη = 0 gauge. Of
course, because the Chern-Simons theory is topological this
action on the Rindler wedge is identical to that of the Chern-
Simons theory on a half plane. We emphasize that the analysis
from here on is essentially identical to the standard argument
for edge states on a disk, so we only briefly review it. Because
of the boundary at ρ = 0 we must choose boundary conditions
to ensure gauge invariance. Having chosen the gauge aη = 0,
the bulk equation of motion (no magnetic field) implies that
aρ = ∂ρf and a2 = ∂2f ; i.e., a is a gradient. Now in the bulk
f represents a pure gauge degree of freedom; i.e., f → f + �

under a gauge transformation in which aμ → aμ + ∂μ� with
∂η� = 0. However, we must restrict �(ρ = 0) = 0 to have a
gauge invariant action and hence the field f (η,ρ = 0,x2) is a
physical degree of freedom. The action for f may be obtained
from the bulk by performing the ρ integral to obtain

Sf = − k

4π

∫
dηdx2∂ηf ∂x2f, (21)

which is the edge theory of a gapless chiral boson with zero
velocity. Adding a nonuniversal term of the form v(∂x2f )2

gives the mode a nonzero velocity v. Thus we have shown
that gauge invariance requires the Rindler spectrum to contain
states appropriate to a gapless chiral one-dimensional mode.

We wish to emphasize that the velocity of these modes
is nonuniversal and depends on the regulator. It is formally
zero in the topological limit just as the gap is formally
infinite. Keeping a finite gap, for example a mass term for
Dirac fermions generating the Chern-Simons term, spoils the
conformal invariance. We also have to cut off the hyperbolic
space at a size set (via the conformal transformation) by the
physical cutoff. Recall that the half-space result does not
require the topological limit, but a short distance cutoff is
still required. With Lorentz invariance the edge speed in the
half space must be v = c, but this speed is susceptible to
nonuniversal corrections once we deform the symmetry. Most
importantly, while the velocities and overall energy scales of
the edge modes are not protected, they cannot actually be
removed by any local perturbation (such as Lorentz breaking
irrelevant perturbations).

We can also obtain the entanglement spectrum of integer
Hall states in a simple manner by studying Dirac fermions
ψ in Rindler space. To compute the spectrum of a massive
Dirac fermion in 2 + 1 dimensional Rindler space we must first
introduce the vierbein ea

μ which maps from local orthonormal
coordinates labeled by a to the conventional coordinates
labeled by μ. For the Rindler wedge (setting x2 = y) we have

ds2 = −ρ2dη2 + dρ2 + dy2, (22)

which using gμν = ea
μeb

νg
M
ab (gM is the Minkowski metric)

gives eη̂
η = ρ, eρ̂

ρ = 1, and e
ŷ
y = 1. The spin connection ωa

b is
defined via

dea + ωa
b ∧ eb = 0 (23)
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from which we find

dρdη + ω
η̂

ρ̂dρ (24)

or ω
η̂

ρ̂ = dη. Using the spin connection along with the flat
space gamma matrices γ a and the Lorentz generators γ ab =
i
4 [γ a,γ b] we can write the Dirac equation. The final equation
is

γ aeμ
a

(
∂μ − i

2
ωab

μ γab

)
ψ − mψ = 0. (25)

To make further progress we introduce the explicit gamma
matrices γ η̂ = iZ, γ ρ̂ = X, γ ŷ = Y , where X,Y,Z are the
Pauli matrices. Most of the spectrum is gapped due to the
mass term, but we can look for a zero-mode solution satisfying
∂ηψ = ∂yψ = 0. The Dirac equation reduces to

iZρ−1[−i(iY/2)]ψ + X∂ρψ − mψ = 0, (26)

which using ZY = −iX gives

(ρ−1 + ∂ρ)Xψ = mψ. (27)

Choosing ψ = gψ0 with Xψ0 = −ψ0 (assuming m > 0) we
finally obtain

∂ρg = (−m − ρ−1)g, (28)

which has the solution

g(ρ) = exp (−mρ − ln ρ). (29)

Since the Rindler space is anyway cutoff at small ρ this is
indeed a valid zero-mode solution of the Dirac equation. A
sensible boundary condition is that the current through the
cutoff be zero, i.e., J ρ = ψ̄γ ρψ = 0 at the cutoff ρ = ρc,
and our zero-mode solution satisfies this since ψ̄ ∝ ψ+iZ and
ψ+iZXψ = 0 when Xψ = −ψ . In fact, to have an integer
Hall response we must have at least two Dirac fermions, and
from these two zero modes we can build an edge mode that is
actually regular at ρ = 0. Upon introducing a momentum in
the y direction this zero mode becomes a chiral fermion with
directionality determined by the sign of m [the sign enters
when we choose Xψ0 = −sgn(m)ψ0 for normalizability at
large ρ]. Thus we have demonstrated that the entanglement
spectrum of the massive Dirac fermion (which is well known
to have a Hall response) does indeed exhibit an edge state.

V. EXAMPLES IN d = 3

These techniques can also be applied to topological insula-
tors in three dimensions. Consider the time reversal invariant
Z2 topological insulator in 3 + 1 dimensions with effective
theory given by θεabcdF

abF cd with θ = 0,π . This is a simple
field theory, but the θ term is topological, so we may apply our
procedure. We want to determine the entanglement spectrum
of a ball in this system, so we map it to the effective thermal
problem in hyperbolic space. Because we are asking about the
reduced density matrix deep inside the bulk of a time reversal
invariant system, the only sensible boundary conditions are
those that preserve time reversal.

We now appeal to the robustness of the θ = π insulator to
argue that if we do not break time reversal at the surface in the
cutoff 3d hyperbolic space, then there will be gapless surface

states. All our caveats about nonuniversal velocities still apply.
These surface states will not be seriously perturbed by the fact
that the system lives not in flat space but in hyperbolic space
as long as the curvature is smooth and the bulk gap persists.
Microscopic interactions can be freely included so long as the
system remains in the same phase as characterized by the θ

term. Thus the entanglement spectrum of a large ball in a Z2

nontrivial insulator is necessarily gapless just like the spectrum
of a physical edge.

Note that we can also easily solve the 3 + 1 dimensional
Dirac equation in hyperbolic space or in the Rindler wedge
and depending on the sign of the mass (and a choice about the
regulator) we find surface states in the entanglement spectrum
provided the boundary condition respects time reversal. The
question of regulator can be partly avoided by considering two
Dirac fermions of opposite mass so that one fermion is always
in the topologically nontrivial phase (recall that the sign of
the mass can be changed by a γ 5 transformation which adds a
θ = π term to the action due to the chiral anomaly). Indeed,
a similar situation occurs in the 2 + 1 dimensional case since
we must always have an even number of Dirac cones to get an
integer Hall response.

A word of caution is appropriate here, since in the presence
of interactions we cannot rule out the possibility of a surface
phase transition. Nevertheless, a version of the bulk-edge
correspondence still applies: The entanglement spectrum will
always have low-lying states either due to the gapless edge
or due to spontaneous breaking of time reversal. Of course,
whatever the surface physics, the θ term tells us that it must be
gapless and must reproduce the 1/2 Hall response when time
reversal is broken at the surface. Lorentz invariance permits us
to seriously constrain the theory, but we can only really argue
for surface Dirac cones in a weakly coupled description. If
we have further information about the field theory, as in the
standard noninteracting Dirac fermion model of topological
insulators in 3 + 1 dimensions, then we can be quite precise
about the half-space entanglement Hamiltonian.

A similar argument applies for the 3 + 1 dimensional
fractional topological insulators described in Refs. 27 and 28.
These insulators have a θ term in their low-energy effective
action with fractional θ/π as well as a topological BF term. In
more familiar language, the low-energy theory is deconfined
Zn gauge theory in 3 + 1 dimensions coupled to external
electromagnetic fields via gapped fractionalized fermions that
fill a topological band. Since these phases have protected edge
states so long as time reversal is preserved, we will have gapless
surface modes in the cutoff hyperbolic space or Rindler space.
These edge modes will dominate the low-energy thermal
spectrum and hence the universal part of the entanglement
spectrum. The same caveats concerning the precise form of
the edge modes applies here as well, but given a relativistic
realization of the low-energy effective theory, such as the one
described in Refs. 27–29, we can again be quite precise about
the nature of the entanglement Hamiltonian.

VI. CONCLUSIONS

We have established the bulk-edge correspondence for a
wide variety of topological quantum fluids. This correspon-
dence relates the spectrum of the reduced density matrix of
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a spatial subsystem in the bulk to the thermal spectrum of
a physical edge. The entanglement cut becomes a physical
cut. In addition to reproducing some old results in a unified
framework, we have offered the first proof of the bulk-edge
correspondence for fractional topological insulators in 3d.
Although we have addressed a wide variety of systems,
we believe that our technique has not been exhausted. As
an exact nonperturbative relationship between the entan-
glement spectrum of simple subsystems and the thermal
spectrum in simple spacetimes, this technique has much
to offer the study of entanglement in quantum many-body
systems.

It is possible that the mapping to hyperbolic space or
Rindler space might be useful to numerically compute the
entanglement spectrum of certain critical points. We would
need to study a lattice model which realizes the continuous
quantum phase transition of interest on a lattice that mimics

the appropriate geometry. We may be limited by our ability to
numerically simulate such a model, but it should be possible for
some models and would give direct access to the entanglement
spectrum. Using these tools, many interesting entanglement
properties of O(N ) critical points can be computed using a
large N expansion as in Refs. 30 and 31. We end by noting
that there are many other partitions of interest besides the
spatial ones considered here, so there is still a great deal to
understand about the structure of entanglement in quantum
many-body systems.
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