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Ground-state phase diagram of the quantum J1- J2 model on the square lattice
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We study the ground-state phase diagram of the quantum J1-J2 model on a square lattice by means of an
entangled-plaquette variational Ansatz. In the range 0 � J2/J1 � 1, we find classical magnetic order of Néel and
collinear type, for J2/J1 � 0.5 and J2/J1 � 0.6, respectively. For intermediate values of J2/J1 the ground state
is a spin liquid (i.e., paramagnetic with no valence-bond crystalline order). Our estimates of the entanglement
entropy show that such a spin liquid is topological.
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I. INTRODUCTION

The spin-1/2 antiferromagnetic (AF) Heisenberg Hamilto-
nian with additional AF next-nearest-neighbor coupling is one
of the most studied models, known as the J1-J2, in theoretical
physics:

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj . (1)

Here Si is a spin-1/2 operator associated with the ith lattice
site and the first (second) summation runs over nearest- (next-
nearest-) neighbor sites.1

Model (1) is of relevance for experimentally accessible
compounds,2,3 and constitutes a canonical example of a
spin system featuring frustration induced by competing AF
interactions. It is known that, on a square lattice, the ground
state (GS) of (1) displays AF long-range order of Néel type
[ordering wave vector q = (π,π )] at J2 = 0 (i.e., in the
unfrustrated case);4 the Néel order remains for sufficiently
small values of J2 while at large J2 the AF order is collinear
[q = (π,0) or (0,π )].5 To gain insight into the nature of the
GS at intermediate values of J2, several numerical techniques
have been applied. The exact diagonalization (ED) of the
Hamiltonian (1) is possible only for small lattice size (up
to N ∼ 40 spins); therefore, although this approach may
give fundamental suggestions, a reliable extrapolation of the
relevant physical observables to the thermodynamic limit is
basically not achievable. On the other hand, quantum Monte
Carlo (QMC) schemes based on the imaginary time evolution
of a trial wave function (WF) are essentially exact, even
for very large lattices, at J2 = 0, being affected by the sign
problem at finite J2 (i.e., in the presence of frustration).
Variational Monte Carlo (VMC) calculations overcome the
major limitations of ED and QMC methods, being not
restricted to small lattice size and, by definition, free of any
sign instability. However, their accuracy depends on the guess
for the GS WF. Hence, understanding and characterizing the
GS properties of the J1-J2 model in the maximally frustrated
regime (i.e., J2 ∼ 0.5 for a square geometry) is as difficult as
it is interesting.

ED findings are consistent with a paramagnetic valence-
bond crystalline (VBC) phase intervening between the Néel
and collinear one.6 This conclusion also arises (albeit with
possibly different VBC patterns) from recent projected-
entangled pair states,5 series expansion, and spin-wave theory,7

coupled-cluster,8 hierarchical mean-field,9 and renormalized
tensor network10 investigations, whose main objective has
been that of elucidating the type of phase transition occurring at
the boundary between the Néel and paramagnetic VBC states.
Recent VMC calculations pointed out the existence of a spin
liquid (i.e., paramagnetic with no VBC order) GS for model
(1) on a honeycomb lattice,11,12 revitalizing the long-lasting
debate concerning the possibility of observing a similar phase
on the square lattice.13–15

In this paper we investigate the GS phase diagram of (1)
using a VMC approach based on the variational family of
entangled-plaquette states (EPSs).16 The EPS WF is a general
Ansatz which has been applied to a variety of unfrustrated
(bosonic) or frustrated (fermionic) lattice problems, yielding
results of accuracy at least comparable to (or better than) that
obtainable with different numerical schemes or alternative
variational WFs.12,16,17 In particular it has been employed
with success to determine the GS phase diagram of (1)
on the honeycomb lattice,12 giving predictions quantitatively
and qualitatively more accurate than those affordable using
different Ansätze.11 The main quality of the EPS WF is
its systematic improvability, which allows one to compute
increasingly accurate estimates of physical observables by
sequentially increasing the plaquette size (i.e., the number of
spins comprised in a single plaquette) l.

We estimate GS energies and relevant order parameters,
i.e., square sublattice magnetization (SSM) and various VBC
structure factors, in the range 0 � J2 � 1. For each system
size, up to N = L × L = 256 spins with periodic boundary
conditions (PBCs), the EPS WF is independently optimized,
starting with N square plaquettes of four sites. The size of our
plaquettes is then consistently and systematically increased
up to 16 spins by adding 2l1/2 + 1 sites each time that l

is changed. We extrapolate the estimates obtained on finite
lattices of different sizes, for a given plaquette size, to the
thermodinamic limit and, finally, assess the dependence of our
results on l.

Our main findings are the following: (a) the system is Néel
ordered up to J2 ∼ 0.45, while for J2 � 0.6 the magnetic order
is collinear; (b) for intermediate values of J2 all the order
parameters considered here vanish in the thermodynamic limit,
signaling the emergence of a spin liquid; (c) by estimating the
entanglement entropy18–20 we characterize such a spin liquid
as topological.
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II. THE ENTANGLED-PLAQUETTE VARIATIONAL
WAVE FUNCTION

In this section we briefly recall the basic aspects of the
EPS WF, referring the reader to Refs. 16 and 17 for further
details. A generic WF for a spin-1/2 lattice system, e.g., the
one described in model (1), can be expressed as

|�〉 =
∑

n

W (n)|n〉, (2)

where |n〉 = |n1,n2, . . . ,nN 〉, ni is the eigenvalue of σ z
i , and

W (n) is the weight of a configuration of the system. The EPS
Ansatz is based on the following idea: cover the lattice with N

plaquettes of l sites, and identify the weight of a given global
configuration with the product of N variational coefficients
in one-to-one correspondence with the particular plaquette
configuration. Hence,

〈n|�〉 = W (n) =
N∏

P=1

C
nP

P , (3)

where the configuration of the P th plaquette is given by the
values nP = n1,P ,n2,P , . . . ,nl,P at its l sites. The above choice
of W (n) fully specifies the EPS WF. Such an Ansatz, when
overlapping (i.e., entangled) plaquettes are considered (i.e.,
l > 1), naturally incorporates spin-spin correlations, a crucial
ingredient to describe the physics of a quantum GS. As already
mentioned, the fundamental property of this variational choice
is its systematic improvability obtainable by increasing l.
Given its simple form, the EPS WF is efficiently optimizable
on a computer; moreover, once optimized, it allows for an
efficient evaluation of the physical observables as well. Both
the WF optimization and the estimates of physical observables
are achieved via the Monte Carlo method.12,16,17

III. RESULTS

Figure 1 shows the GS energy per site e = E/N as a
function of the system size for various values of J2 and
different plaquette sizes (left part). Regardless the system
size and the value of J2 our estimates sensibly improve
when l increases. For example, we obtain e(N = 100,l =
4,J2 = 0) = −0.659 00(6) and e(N = 100,l = 16,J2 = 0) =
−0.670 00(5) using 2 × 2 and 4 × 4 square plaquettes, re-
spectively. Estimates obtained with the same l have been
extrapolated to the thermodynamic limit assuming the scaling
form e(N,l,J2) = e(∞,l,J2) + α(l,J2)N−3/2. It is clear that
extrapolated energies depend on l. While in principle larger
plaquette sizes have to be employed in order to observe
numerical convergence of the results, available computational
resources limit the largest plaquette size which can be used
in practice. However, by construction of the EPS Ansatz, the
estimate of any observable must approach the exact GS value
in the limit of large l. Therefore, the point here is whether it
is possible to give a reliable estimate of such a limit based on
the results obtained with plaquettes of relatively small size. As
pointed out in a previous work12 on model (1) on a honeycomb
lattice, this is indeed the case and estimates of the energy and
all the relevant physical observables can be obtained, in the
large-l limit, by those computed with plaquettes of different
sizes (up to l = 16 in this study). In the right part of Fig. 1 we
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FIG. 1. (Color online) Left: GS energy per site of the J1-J2 model
on the square lattice with PBCs, as a function of the system size.
Estimates are obtained with N plaquettes of l = 4 (boxes), l = 9
(triangles), and l = 16 (circles) sites. Each dashed line is a fit to
numerical data with the same l value. Right: GS energy per site,
extrapolated to the thermodynamic limit, as a function of the plaquette
size. Each dashed line is a fitting function linear in l−3/2 (see the text).
The QMC estimate in the J2 = 0 case is also shown for comparison
(star) (Ref. 4).

present an example of this procedure: we expand our energy
per site extrapolated to the thermodynamic limit in powers of
l−1/2 and fit our data with the smallest number of parameters.
We observe that a good description of our results is obtained
employing a single power (i.e., l−3/2). For instance, in the
absence of frustration, our energies e(∞,l,J2 = 0) fall almost
perfectly on a straight line when plotted against l−3/2, and we
find an energy extrapolated to the large-l limit in agreement
with the QMC estimate,4 exact in this case.21

Aimed at identifying extended regions of the phase diagram
which are magnetically ordered (disordered), we compute the
SSM defined as

m2(N ) =
〈

1

N2

( ∑
i∈α

Si −
∑
j∈β

Sj

)2〉
, (4)

where the two summations run over lattice sites belonging
to different sublattices. In this work we consider two types
of magnetic long-range order, schematically illustrated in
the insets of Fig. 2 (Néel type) and Fig. 3 (collinear type).
Specifically, if the sublattices α and β are chosen according to
the inset of Fig. 2 (Fig. 3), Eq. (4) defines the Néel (collinear)
SSM, or the magnetic structure factor at ordering wave vector
q = (π,π ) [q = (π,0)].

The Néel SSM as a function of the system size for
different l and various J2 values is presented in Fig. 2. For
each plaquette size the extrapolation to the thermodynamic
limit has been performed assuming the functional form
m2(N, l,J2) = m2(∞,l,J2) + β(l,J2)N−1/2 + δ(l,J2)N−1.
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FIG. 2. (Color online) Left: Néel SSM of the J1-J2 model on the
square lattice with PBCs, as a function of the system size. Estimates
are obtained with N plaquettes of l = 4 (boxes), l = 9 (triangles),
and l = 16 (circles) sites. Each dashed line is a fit to numerical data
with the same l value (see text). Right: Néel SSM, extrapolated to
the thermodynamic limit, as a function of the plaquette size. Lines
are functions built to infer the l dependence of our data (see the text).
The QMC estimate in the J2 = 0 case is also shown for comparison
(star) (Ref. 4). Inset: pictorial representation of classical Néel order
where “up” (“down”) spins reside on sublattice α (β).

The right part of the figure shows the extrapolated values
m2(∞,l,J2) versus l−1/2. At J2 = 0 we find that the Néel
SSM, in the large-l limit, extracted by fitting the data with a
second-order (in l−1/2) polynomial, is in agreement with the
QMC result.4 For larger J2 this order parameter decreases.
At J2 = 0.45 it is still finite; this conclusion is based on
the observation that both linear (dotted line) and quadratic
(dashed line) fits of the m2(∞,l,J2 = 0.45) values are
acceptable and yield a finite extrapolated value in the large-l
limit. Specifically, when two powers are considered, the
visible upward bending of the data is better described, and
the extrapolated value of the order parameter is slightly larger
than that found with a linear fitting function. At J2 = 0.5 a
fit which includes only the zeroth- and first-order terms (in
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FIG. 3. (Color online) As Fig. 2 where the SSM describes now
magnetic order of collinear type (sublattices α and β are chosen
according to the inset).
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FIG. 4. (Color online) Finite-size scaling of the plaquette VBC
order parameter for two values of J2 at which the system is found in
a magnetically disordered GS. Dashed lines are fits to the numerical
data with the same J2. This order parameter clearly vanishes, for all
the l values considered in this work, in the thermodynamic limit. Data
shown refer to the l = 16 case.

l−1/2) gives an unphysical extrapolation, while the inclusion
of an extra term, proportional to l−1, leads to a null (within
the accuracy of our calculation) value of the Néel SSM in
the large-plaquette-size limit. Based on this analysis it is
reasonable to locate the phase boundary corresponding to
vanishing Néel order in the vicinity of J2 = 0.5.

For 0.5 � J2 � 0.6 no evidence of magnetic order (of either
the Néel or collinear type) is found, while for larger J2, up to
J2 = 1 (i.e., the maximum J2 value studied here) the system
is collinearly ordered.

The dependence of the collinear SSM on the system size is
shown, for J2 = 0.65, in Fig. 3 (left part). Our data extrapolated
to the thermodynamic limit versus l−1/2 are presented in
the right part of the figure. In the limit of large plaquette
size the collinear order parameter stays clearly finite. Such a
conclusion is consistent with both a linear and a quadratic fit
of the data.

Our prediction of an extended paramagnetic region in the
phase diagram of the J1-J2 model on the square lattice is
in agreement with previous works carried out with different
numerical approaches.5–10,14,15 Most of them5–10 found that
VBC order, of either plaquette or columnar-dimer type,
characterizes such a magnetically disordered region.

In order to elucidate the existence of VBC order we
compute, in the parameter range of interest, both the plaquette
VBC and the columnar-dimer structure factor defined as in
Ref. 6. Results for the plaquette VBC structure factor are
presented, as a function of the system size, for two value
of J2 at which magnetic order is not present, in Fig. 4.
The numerical data for finite system size are extrapolated
to the thermodynamic limit by means of a fitting function
quadratic in the inverse of the system size. We find that,
in the limit of infinite system size, the order parameter of
our interest vanishes, within the accuracy of our calculation,
regardless of the plaquette size used in the EPS WF (the
error on the extrapolated estimates is of the order of 10−4).
The columnar-dimer order parameter vanishes as well in the
thermodynamic limit, being, for finite N , considerably smaller
than the plaquette VBC order parameter.
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In a recent investigation, based on a renormalized tensor
network (RTN) calculation, plaquettelike order has been found
in the thermodynamic limit.10 We note that our GS energies
are lower than those obtained in Ref. 10. For example,
for a system comprising 256 spins at J2 = 0.5 we find,
with the simplest and most economical EPS WF, based on
2 × 2 entangled plaquettes, eEPS(N = 256,l = 4,J2 = 0.5) =
−0.462 99(3); eRTN(N = 256,J2 = 0.5) = −0.450 62 is the
value reported in Ref. 10.

A VBC phase has also been obtained in Ref. 5. Such an
ordered phase is a consequence of the relatively small bond
dimension of the projected-entangled pair states adopted, in
the mentioned work, to describe the the WF of the system, and
is found to vanish when a larger bond dimension is used.15

In Ref. 6, the authors cannot rule out the existence of a
plaquette VBC phase, due to the difficulty of the extrapolation
to the thermodynamic limit of the relevant order parameter.
The study presented in Ref. 6 is based on ED, in the subspace
of short-range valence-bond states, of the Hamiltonian (1).
This technique is applicable, due to the unfavorable scaling
with the system size of the computational cost, only to small
lattices (i.e., comprising up to N ∼ 40 spins). It is therefore
not surprising that, in Ref. 6, where results for finite lattices of
maximum size N = 40 are provided, an accurate and reliable
extrapolation to the thermodynamic limit of the VBC order
parameter is not achievable. Conversely, in this work, we use a
general variational WF (i.e., the EPS one) which allows us to
study the GS properties of lattices whose size is considerable
larger than that presently accessible to ED approaches. This is
a crucial aspect, as it renders the extrapolation to the large-N
limit of physical observables more accurate and reliable.

Having found that for 0.5 � J2 � 0.6 the GS of model (1)
is a spin liquid, namely, a paramagnet with no VBC order, we
investigate the nature of such a spin liquid by computing the
Renyi entanglement entropy S2. This quantity can be defined
in a form suitable to Monte Carlo estimation:18

e−S2(A) =
∑

a1,b1,a2,b2

W 2(a1,b1)W 2(a2,b2)
W (a2,b1)W (a1,b2)

W (a1,b1)W (a2,b2)

= 〈SWPA〉, (5)

where A is a portion of the system and B its complement, ai

(bi), with i = 1,2 labeling two copies of the system, denotes
the spin configuration (e.g., along the z axis) of the lattice
sites belonging to subregion A (B), W is the weight of a
global configuration, and SWPA = W (a2,b1)W (a1,b2)

W (a1,b1)W (a2,b2) is the swap

operator.19

Figure 5 shows the Monte Carlo average of the swap
operator, for a system of size N = 256 at J2 = 0, as a function
of the plaquette size (upper left part). Different symbols refer
to square (a × a) subregion A comprising a different number
of lattice sites. The l → N limit of 〈SWPA〉, obtained by
fitting data with the same a using a second-order polynomial
in l−1/2 (dashed lines), defines, via Eq. (5), our estimates
of the entanglement entropy (shown in the upper right part
of the same figure, as a function of the boundary length x

of region A). Our results for S2 are in excellent agreement
with exact QMC values (crosses).19 Using the same procedure
we compute S2(x) at J2 = 0.5 and J2 = 0.55 (lower part
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FIG. 5. (Color online) Upper left: Dependence of the Monte Carlo
average of the swap operator on the plaquette size for square subregion
A comprising a × a spins. Different symbols refer to different a

values (a = 4 to 8 from top to bottom). Each dashed line is a
quadratic (in l−1/2) fit to numerical data with the same a. Upper
right: Extrapolated (to the l → N limit) values of the entanglement
entropy as a function of the boundary length x of subregion A

(diamonds). Also shown, for comparison, are the QMC estimates
(crosses) (Ref. 19). Lower panel: Entanglement entropy for two values
of J2 at which the GS is a spin liquid. Each dashed line is a linear fit (to
numerical data with the same J2) performed to extract the topological
entropy γ (see the text). Here A is an L/2 × L subregion of an L × L

lattice with PBCs. Hence, A has no corners.

of Fig. 5), where the GS of the system is a spin liquid.
In this case the subregion A is an L/2 × L portion of an
L × L system; therefore, given that we are using PBCs, it has
no corners. A fit of our data assuming the scaling function
S2(x) = dx − γ allows us to identify the topological entropy
γ which is finite (see the figure) in both the cases studied here.
We note that, at J2 = 0.5, our estimated topological entropy
γ = 1.0(2) is consistent (taking into account the statistical
uncertainty) with that of a Z2 spin liquid,22 and in quantitative
agreement with that computed in recent studies based on
a density-matrix renormalization-group calculation on long
cylinders,14 and on a tensor product approach using a cluster
update imaginary-time-evolution method.15

IV. CONCLUSIONS

We have studied the ground-state phase diagram of the
spin-1/2 J1-J2 model on the square lattice by means of an
entangled-plaquette variational Ansatz. Values of ground-state
energy and relevant order parameters have been computed
for 0 � J2 � 1. In addition to magnetically ordered ground
states occurring at J2 � 0.5 (Néel type) and J2 � 0.6 (collinear
type), we find that the ground state, in the intermediate region
of the phase diagram, is a topological spin liquid. Further
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investigations, which are beyond the purpose of this study,
are needed to understand the nature of the phase transition
occurring between the Néel and the spin-liquid phase as well
as between the latter and the collinear phase. For example,
the phase transition from Néel to spin liquid appears to
be continuous. However, its full characterization is highly
nontrivial and a subject of great current interest.23 We want
to emphasize that the numerical approach employed here
allowed us to provide accurate quantitative predictions which,
plausibly in the near future, might be tested experimentally
by using ultracold atoms in an optical lattice, essentially as
quantum simulators of the J1-J2 Hamiltonian.24 Finally, it
has to be mentioned that the entangled-plaquettte variational
wave function (as well as the methodology employed in our
study) can be applied, without substantial modification, to

basically any lattice model. It gives straightforward access to
crucial observables such as magnetic and nonmagnetic order
parameters or the Renyi entanglement entropy, constituting,
in our view, one of the most reliable variational choices to
investigate the ground-state physics of frustrated (fermionic)
Hamiltonians, intractable, due to the sign problem, with exact
quantum Monte Carlo techniques.
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and J. Richter, Phys. Rev. B 78, 214415 (2008).

9L. Isaev, G. Ortiz, and J. Dukelsky, Phys. Rev. B 79, 024409
(2009).

10Ji-Feng Yu and Ying-Jer Kao, Phys. Rev. B 85, 094407 (2012).
11B. K. Clark, D. A. Abanin, and S. L. Sondhi, Phys. Rev. Lett. 107,

087204 (2011).
12F. Mezzacapo and M. Boninsegni, Phys. Rev. B 85, 060402 (2012).
13L. Capriotti, F. Becca, A. Parola, and S. Sorella, Phys. Rev. Lett.

87, 097201 (2001), and references therein.

14H.-C. Jiang, H. Yao, and L. Balents, arXiv:1112.2241 [Phys. Rev.
B (to be published)].

15L. Wang, Z-C. Gu, F. Verstraete, and X.-G. Wen, arXiv:1112.3331.
16F. Mezzacapo and N. Schuch, M. Boninsegni and J. I. Cirac, New

J. Phys. 11, 083026 (2009).
17F. Mezzacapo and J. I. Cirac, New J. Phys. 12, 103039 (2010);

F. Mezzacapo, Phys. Rev. B 83, 115111 (2011); H. J. Changlani,
J. M. Kinder, C. J. Umrigar, and Garnet Kin-Lic Chan, ibid. 80,
245116 (2009); S. Al-Assam, S. R. Clark, C. J. Foot, and D. Jaksch,
ibid. 84, 205108 (2011).

18J. I. Cirac and G. Sierra, Phys. Rev. B 81, 104431 (2010).
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