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Real-time real-space TD-DFT for atoms: Benchmark computations on a nonspherical
logarithmic grid
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We present the results of benchmark, all-electron computations for the optical properties of atoms with up to
30 electrons, carried out within the adiabatic local density approximation (ALDA) of time-dependent density
functional theory. Following the original approach proposed by Janak and Williams, Phys. Rev. B 23, 6301 (1981),
Kohn-Sham orbitals are tabulated on a logarithmic mesh along a discrete set of rays coming out of the atomic
nucleus, selected in such a way to accurately represent the angular dependence of ground and excited states.
Optical properties are obtained by real-time propagation of the electronic states represented on an extended basis
of filled and empty Kohn-Sham orbitals. As expected, the comparison with experimental results is affected by
the known drawbacks of the ALDA method. We apply the computational tool to carry out a real-time simulation
of Auger processes, whose results, once again, highlight basic (but expected) limitations of the TD-DFT-ALDA
approach. We define a novel set of atomic-like basis functions (response functions) meant to optimize the
convergence of time-dependent computations, and we measure their performance by comparison with the results
of the benchmark computations.
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I. INTRODUCTION

The interaction of light with electrons in atoms, molecules,
and solids is arguably the most fundamental experimental
technique to probe the electronic properties of condensed
matter systems.1 Nowadays, optical spectroscopy is exten-
sively used to investigate the properties of increasingly
complex systems, from macromolecules of biological interest
to artificial nanostructures. The link between measured optical
properties and the underlying electronic and geometrical
structure is established by a variety of theoretical and
computational methods, ranging from semiempirical to fully
ab initio approaches. Among these methods, time-dependent
density functional theory2,3 (TD-DFT) often provides the best
compromise of simplicity and accuracy, and for this reason, it
is being extensively used for a wide variety of applications.

Within TD-DFT, many-body effects on the time evolution
are summarised by the so-called exchange-correlation poten-
tial vxc(r,t), whose detailed expression and properties are
still largely unknown.4 Simple and computationally appealing
approaches such as the adiabatic local density approximation
(ALDA), however, provide results for optical properties in
acceptable, and sometimes remarkable agreement with exper-
imental results, especially for systems of finite dimensions.5,6

While TD-DFT is a general theory for the dynamics of
the electron density covering a wide range of phenomena and
spectroscopic domains, linear-response TD-DFT methods able
to compute optical properties such as the absorption spectrum,
directly comparable to experimental data, have been developed
and validated by several groups7,8 and are now extensively used
for applications.9 Most of these methods do not explicitly
involve the time variable and provide directly energies or,
equivalently, frequencies, of optical excitations.

Real-time real-space methods10 going beyond the linear-
response regime have also been developed and implemented
in computer codes,11,12 providing, in principle, a more com-

prehensive and intuitive view of the system evolution. The
corresponding frequency-dependent representation of optical
properties is obtained from the Fourier transform of the
time-correlation function for the oscillating dipole moment.10

At present, the most fundamental open issues for TD-
DFT concern the functional form of vxc(r,t) beyond ALDA.
Less fundamental, but equally important problems concern
computational aspects, and, in particular, the choice of the
representation for the single-particle orbitals and electron
density, the framework to extract optical properties from the
TD-DFT equations, and the choice of the algorithm to integrate
the time evolution equations.

Popular computational implementations of TD-DFT are
based on discrete basis sets, and on numerical grids. Dis-
crete basis sets, in particular, include Gaussian, Slater and
numerical (atomic-like) functions as well as plane waves.
Finite differences and finite elements13 have been used for
grid-based implementations, and the usage of wavelets14

has been considered by a few groups.15 In most cases,
TD-DFT computations are carried out in the pseudopotential
approximation, including explicitly in the computations only
valence electrons. A relevant exception is represented by
pseudospectral methods implemented for atoms and small
molecules.16,17

The expanding role of TD-DFT and the ongoing search
for better approximations to the exact but unknown TD-DFT
functional emphasise, the need for simple yet relevant test
cases,18 and for a numerical framework able to provide
a quantitative assessment of advantages and limitations of
different schemes unaffected by computational uncertainties.
Among systems of finite dimension, atoms represent an
appealing testing ground,19 partly because of their limited size
and complexity, and even more because of the wealth of exact
or nearly exact information on their properties provided by
experiments20 and computations.21 Moreover, accurate grid
representations of atomic orbitals have been developed long
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ago22 and within the density functional (DF) framework,23 they
have been thoroughly tested for ground-state properties.24

Despite these considerations, only a limited number of
systematic TD-DFT studies of atoms have been reported, and
in several cases, crucial computational details such as the basis
set, the real-space grid, or the real-time integration algorithm,
and convergence parameters have not been specified. As
a result, the potential of atoms for TD-DFT testing and
development purposes has been greatly underexploited by the
condensed matter computational community.

The aim of our study is twofold. First of all, we implement
and test a grid method for atoms first introduced many years
ago by Janak and Williams.25 The method is able to deal
with nonspherical atoms and represents the radial dependence
of KS orbitals on a logarithmic mesh and thus is suitable
for all-electron computations. While nonsphericity is the
exception for ground-state densities, it is the norm for atoms in
an external field. The method of Janak and Williams, therefore,
represents an appealing tool to investigate optical excitation
in atoms, since it provides a computational framework free
of shape approximations, approaching full convergence in the
real-space representation of orbitals, and still retaining many of
the familiar features of ground-state atomic computations. Our
second aim, therefore, is to validate the method of Janak and
Williams for TD-DFT computations of atomic excited-state
properties. To focus the attention on the computational part, we
limit our analysis to the local spin density, ALDA exchange and
correlation approximations, even though, to some extent, this
approach has been superseded by more refined approximations
in practical computations.18

The results of our simulations agree with the general
picture extensively discussed in the literature. First of all, TD-
DFT-ALDA is able to predict fairly accurately the excitation
spectrum of light atoms far from shell and subshell closures. In
several cases, however, the ALDA scheme introduces apparent
artifacts in the absorption spectrum, due to the well-known un-
derestimation of electron binding by the underlying local spin
density approximation. Despite this important problem, related
to the choice of the exchange-correlation potential, the compu-
tational method described in our paper displays a remarkable
degree of stability, accuracy, and efficiency. A strategy to
enhance these positive features of our approach is discussed
in Appendix, where we introduce a set of optimally localized
functions, able to provide converged results already with a very
limited size of the basis set. This last method has a clear relation
with the response function approach of Refs. 26 and 27.

To emphasise the capabilities of the method, in the
last part of the paper, we apply our computational tool to
simulate Auger processes in relatively light atoms. Real-time
real-space simulations spectacularly fail to reproduce the
physical process, apparently because TD-DFT-ALDA does
not contain a quantized representation of the electromagnetic
field, and even electron quantization is reproduced only at
the mean-field level. Even though the simulation results are
not very surprising, they still provide a clear illustration of
the ability of our all-electron, nonspherical atom model to
characterize the real-time dynamics in a physically relevant
many-electron system as described by any specific density
functional approximation, thus highlighting its strengths and
weaknesses in a direct and intuitive way.

II. THE MODEL AND THE COMPUTATIONAL METHOD

We consider atoms made of N electrons in the Coulomb
potential of a pointlike atomic nucleus of charge Z fixed at the
origin. Within the density functional approach, the electronic
structure of the system is described by N single-electron Kohn-
Sham orbitals {ψi(r),i = 1, . . . ,N}, whose square modulus
gives the electron density according to the relation

ρ(r) =
N∑

i=1

|ψi(r)|2. (1)

The ground-state energy and density are determined by
minimizing the Kohn-Sham functional,

EKS[ρ] = −1

2

N∑
i=1

〈ψi(r)|∇2|ψi(r)〉

+ 1

2

∫
ρQ(r)ρQ(r′)

|r − r′| drdr′

+
∫

Vext(r)ρ(r)dr + UXC[ρ], (2)

with respect to the KS orbitals. In the equation above,
ρQ(r) = Zδ(r) − ρ(r), Vext(r) represents any static external
perturbation to the atom,28 and UXC gives the so-called
exchange correlation (XC) energy. Atomic Hartree units are
used throughout the paper. Relativistic effects are neglected.
For the sake of simplicity, in what follows, we consider only
the local spin density (LSD) approximation.29

The minimum condition under the constraint of a fixed
number of electrons is expressed by the self-consistent Euler-
Lagrange equations:[

−1

2
∇2 +

∫
ρQ(r′)
|r − r′|dr′ + Vext(r) + μXC(r)

]
ψi(r)

=
[
−1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r), (3)

where μXC(r) = δUXC/δρ(r), and the Kohn-Sham potential
VKS(r) has been defined as the sum of the external, Hartree,
and exchange-correlation terms. To simplify notation, we do
not explicitly indicate the (possible) dependence of VKS on the
spin σ .

The determination of ground-state properties for atoms is
routinely carried out by assuming that the electron density and
the KS potential are spherically symmetric. In such a case, KS
orbitals can be selected to be eigenstates of the KS Hamiltonian
and of rotations around the origin, and thus are written as

ψnlmσ (r) = χnlσ (r)

r
Ylm(θ,φ), (4)

where Ylm is a spherical harmonics of angular momentum
L2 = l(l + 1) and Lz = m. Moreover, σ labels the spin (±1/2)
of the electron occupying the orbital. For every (l,m) value,
different principal quantum numbers n correspond to different
numbers of radial nodes (=n − l − 1). In what follows, the n, l,
and σ quantum number are collectively denoted by ν = {nlσ }.

The radial function χν(r) satisfies the equation

d2χν(r)

dr2
+

{
2[εν − VKS(r)] − l(l + 1)

r2

}
χν(r) = 0, (5)
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which has to be solved with the boundary conditions

lim
r−→0

χν(r) = Arl+1[1 + ηr + O(r2)], (6)

where A is fixed by normalization, η = −Z/(l + 1), and

lim
r−→∞ χν(r) = B exp (−√

cνr) (7)

with cν = −2εν , upon assuming that VKS(r) vanishes at large
distances. The constant B in the last of these limiting equations
is obtained by imposing continuity conditions on χν(r) over
the entire radial range.

The standard computational approach to determine the
atomic ground state represents orbitals on a logarithmic mesh
defined by the relation

r(x) = r0e
βx, (8)

where 0 � x � +∞ and 0 � r0, β 	 1. The change of
variables from the linear to the logarithmic mesh is meant
to concentrate grid points in the vicinity of the origin and
changes the equation satisfied by χν(r) into

d2χν(x)

dx2
− β

dχν(x)

dx
+ β2{2r2(x)[ενVKS(x)]

− l(l + 1)}χν(x) = 0. (9)

The solution is obtained by integrating Eq. (9) outwards and
inwards starting from r = Rmax and from r = r0, respectively,
using the limits specified by Eqs. (6) and (7), and matching
the two solutions at an intermediate radius Rmatch.

The electrostatic potential satisfies Poisson’s equation

∇2VH (r) = −4πρ(r) (10)

and is obtained from the electron density by a computational
method closely related to the one used to solve the KS
equations.

Benchmark results for the spherically symmetric ground
state of atoms from Z = 1 to 92 are reported in Ref. 24.
Total energy and eigenvalues converged to within 1 μHa can
be obtained at a modest computational cost. Nonspherical
ground-state configurations may spontaneously arise in open
shell atoms whose partially filled level consists of l > 0
orbitals, and more, in general, for atoms perturbed by an
external potential of lower symmetry.

An elegant method to deal with these cases was proposed
long ago by Janak and Williams,25 based on the representation
of KS orbitals on an angular mesh of N� rays coming out of the
nucleus. Each ray is identified by a pair of (θi,φi) coordinates
(i = 1, . . . ,N�), whose location on the [0 : π ; 0 : 2π ] domain
is selected in such a way to integrate exactly spherical
harmonics of up to lmax angular momentum. The lmax value, in
turn, is optimized following a 2D Gauss integration approach,
that assigns integration weights {wi} to the rays.30

A basis set for the KS orbitals covering a range of angular
momenta l up to lmax is generated by the following, l-dependent
representation of the KS Hamiltonian:

ĤKS = − 1
2∇2 + VKS = Ĥ 0

l + δĤl. (11)

The two operators Ĥ 0
l and δĤl are defined as follows:

Ĥ 0
l = − 1

2r

d2

dr2
r + VKS(r) + l(l + 1)

2r2
(12)

and

δĤl = 1

2r2
[〈r̂|L̂2|r̂ ′〉 − l(l + 1)δ(r̂ − r̂′)]. (13)

In other terms, Ĥ 0
l accounts for the radial part of the kinetic

energy and for the full KS potential, while δĤl represents
angular contributions to the kinetic energy.

A basis set of functions |ν〉 = ην(r,εν) is generated by
considering the eigenfunctions of the self-consistent operator
Ĥ 0

l whose behavior close to the origin is given by

lim
r→0

ην(r,εν) = rlYlm(r̂). (14)

Here, ν = (n,l,m,σ ), since, for nonspherical solutions, these
functions depend explicitly on m via Eq. (14). The eigenstates
of the full KS Hamiltonian are then expanded in terms of the
functions ην(r):

ψi(r) =
∑

ν

c(i)
ν ην(r,εν). (15)

The expansion coefficients are determined by the linear
eigenproblem equations∑

ν

〈ν|ĤKS − ε|ν ′〉c(i)
ν ′ = 0. (16)

In our computer implementation, the functions ην(r,εν) are
written, in turn, as

ην(r,εν) = χν(r,εν)

r
(17)

and the χν’s are determined, along each radius, using the same
method already described for the spherical case. Both in the
case of spherical and nonspherical atoms, the procedure intro-
duced to compute occupied states can be used to determine
unoccupied orbitals.

In our computations, occupied and unoccupied states are
forced to have a node at the boundary of the radial mesh
that therefore acts like a hard potential barrier. This, in turn,
has the effect of discretizing the spectrum over the entire
energy range that otherwise would comprise both localized
states of negative eigenvalue, and a continuum of scattering
states. In what follows, all computations have been performed
using a box of radius Rmax = 25 a.u. The extension of the
logarithmic grid method to nonspherical atoms opens the way
to its application to time-dependent phenomena.

According to TD-DFT, the time evolution of an N -electron
system subject to a perturbing potential Vext(r,t) is obtained
by integrating the Schroedinger-like equation:2

ih̄
∂ψi(r,t)

∂t
= ĤKSψi(r,t), (18)

where {ψi}, i = 1, . . . ,N are again single electron orbitals
and ĤKS depends explicitly on time via Vext(r,t) as well as
implicitly via the time dependence of the electron density.
A variety of strategies to compute excitation energies and
other time-dependent properties for atoms and, in general,
for many-electron systems are described in Ref. 5b. An
increasingly popular approach is based on the real-time
real-space computational description of the electron density
evolution under a suitable perturbation.10 In most cases, the
perturbing potential is switched on adiabatically or, at least,
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continuously, and the ground-state KS orbitals provide the
initial condition for the integration of Eq. (18).

The time evolution is carried out by discrete integration of
the equations of motion. The time evolution of each orbital
ψi(r,t), in particular, is expressed in the linear operator form:

ψi(r,t + δt) = Û (t + δt ← t)ψi(r,t), (19)

where

Û (t + δt ← t) = exp

[
−i

∫ t+δt

t

dτ ĤKS(τ )

]
(20)

that in the limit of small δt , becomes

Û (t + δt ← t) � exp [−iδtĤKS(t)]. (21)

In our implementation, we first expand each orbital on a finite
basis of atomic-like orbitals {φi(r)}:

ψi(r,t) =
∑

j

c
(i)
j (t)φj (r), (22)

then, the discrete evolution of the expansion coefficients is
given by

c
(i)
j (t + δt) =

∑
k

Ujkc
(i)
k (t), (23)

where

Uij = 〈φi |Û (t + δt ← t)|φj 〉
� 〈φi | exp [−iδtĤKS(t)]|φj 〉 (24)

are the elements of the matrix U representing the operator
Û on the discrete orbital basis. In the simplest approach, the
set of atomic-like functions {φi(r)} may consist of occupied
and empty KS states for the atom under study. A second and
possibly more appealing choice is discussed in Appendix.

The matrix U is easily computed in the representation in
which the KS Hamiltonian is diagonal. Let us represent the
transformation of the Hamiltonian into its diagonal form by
the matrix operation:

ĤKS = V D †V, (25)

where D is the diagonal form of ĤKS, V is the unitary operator
made from the Hamiltonian eigenvectors in the original basis
and †V is its Hermitian conjugate. Then,

U = V[exp (−iδtD)] †V (26)

and the time evolution operator Û (t + δt ← t) can be obtained
by matrix times matrix multiplications. It turns out that for a
basis of up to a few hundred functions, the diagonalization
of the KS Hamiltonian ĤKS can indeed be carried out at
each step quickly enough to allow the real-time real-space
simulation of atoms over a time span sufficient for a fairly
accurate determination of excited states properties.

We apply this technique to compute the dipole absorption
spectrum of atoms, using the ALDA approximation to TD-
DFT. Starting from the atomic ground state, the computation
of the optical properties is carried out by first applying a short-
duration perturbation represented by a time-dependent electric
field aligned along a fixed direction that we shall call the z axis.
Then, the dynamics of the electron density is monitored for
times far exceeding the duration of the applied perturbation. In

the computations described below, the external field Vext(r,t)
is defined as follows:

Vext(r,t) =

⎧⎪⎨
⎪⎩

0, t < 0,

εV0(r)
(
1 − cos 2πt

�

)
, 0 � t < �,

0, t > �,

(27)

where � and ε are suitable scales for the time and energy of the
perturbation, respectively. To prevent instabilities, the dipolar
potential has been modified at long range, according to

V0(r) = ze−0.0001r2
(28)

and ε in Eq. (27) is limited to values of the order of 10−3 a.u.
The integration of the equation of motion allows us to

compute the dipole moment P at each step, and therefore we
can compute the time correlation function:

A(τ ) = 〈P(t + τ )P(t)〉t , (29)

where 〈. . . 〉t indicates averaging with respect to t . The dipole
absorption spectrum S(ω) is computed from the imaginary part
I[α] of the dynamic polarizability α(ω) according to

S(ω) = 2ω

π
I[α(ω)], (30)

where α(ω) is computed by Fourier transforming A(τ ):

α(ω) =
∫ ∞

0
dteiωtA(t). (31)

The quality of the computation, in principle, can be checked
by verifying the validity of the f -sum rule:

N =
∫ ∞

0
dωS(ω), (32)

where N is the number of electrons. In practice, our computa-
tions cover an energy range too narrow to satisfy such a sum
rule.

In what follows, the logarithmic mesh consists of 2000 grid
points stretching from r0 = 2 × 10−5 a.u. to Rmax = 25 a.u.,
corresponding to β = 0.007 022 8 [see Eq. (8)]. The angular
mesh comprises 32 points and is able to integrate exactly
spherical harmonics of up to lmax = 9, largely sufficient for
our purposes. A visual impression of the resolution provided
by the angular grid can be obtained from Fig. 1 showing a
color map of Y9,5(θ,φ).

The typical time step used in our computation is 0.01 a.u.,
or 2.4 × 10−4 fs that, up to Z = 30, is sufficiently short to
allow the integration of the equations of motion both for core
and valence states. Tests have been carried out with shorter
time steps, confirming the reliability of the δt = 0.01 a.u.
choice. The perturbing potential is defined by its intensity
ε = 10−3 a.u. and duration � = 10 a.u., equal to 0.24 fs.

The integration of the equation of motion for Ar (Z = 18,
using 106 basis functions) over 200 000 steps, and covering
48 fs, takes 16 hours on a single Intel Q8300 CPU (2.5 GHz).
The computation can be speeded up significantly by introduc-
ing a frozen core approximation, or, in other term, by keeping
fixed the orbitals of lowest energy to their ground-state value.
The code is also suitable for parallelization, even though no
effort has been made along this direction. As discussed below,
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FIG. 1. (Color online) Color map of the Y9,5 spherical harmon-
ics. Blue and red regions identify positive and negative patches,
respectively.

we used basis sets of filled and empty states as well as response
functions that are described in Appendix.

III. DIPOLE EXCITATION ENERGY OF ATOMS

Ground-state and optical properties of light atoms with
up to 30 electrons (Zn) have been computed by the methods
described in the previous section, using the local spin density
approximation. To simplify the comparison with previous
computations, we focused on atoms such as He, Li, Be, N, Ne,
Na, Mg, Ar, Ca, P, and Zn whose ground-state electron density
is expected to be spherically symmetric. Computations for H
and He within different exchange-correlation approximations
have been carried out as well to test the method and its
implementation.

For all the atoms listed above, the ground-state electron
density computed with the angularly dependent grid turns out
to spherically symmetric and our results for ground-state total
energy and KS eigenvalues agree well with those of Ref. 24.
Minor differences are due to the fact that in our study, we
used an interpolation for the exchange-correlation energy of
the electron gas (PZ, see Ref. 29) slightly different from the
one (VWN, see Ref. 31) used in Ref. 24. To provide basis
functions for the time-dependent simulations, a fairly high
number of unoccupied orbitals (up to 162 for P) have been
computed for each atom.

As described in Sec. II, the optical properties of atoms are
determined by applying a short-time potential and monitoring
the time evolution of the electrons well after the external
potential returned to zero. In our simplest implementation, the
basis for the time evolution under a time-dependent potential
is provided by filled and empty KS orbitals computed for
the ground-state configuration. In the present testing stage, in
particular, the basis includes predominantly, and in a few cases
exclusively, empty states related to ground-state occupied
orbitals by a dipole transition. In the case of Be, for instance,
the ground-state configuration is 1s22s2, and only empty states
of pz symmetry are considered. This symmetry-restricted basis
is sufficient to describe linear response, but excludes part of
the nonlinear contributions. Including all virtual states up to a
given cutoff energy would increase somewhat the cost of the
computation, but, in most cases of interest, it would remain a
task suitable for a desktop PC.

The set of basis functions used for each atom is listed in
Table I. For each atom, the eigenvalues of the empty orbitals
included in the basis cover an energy span of about 2 Ha, well
beyond the energy of the lowest-energy excitation. The error
on the frequency of the lowest-energy excitation due to the
incomplete basis is estimated at 1 mHa, i.e., comparable to the
uncertainty due to the finite duration (48 fs) of our simulations.
The convergence of the oscillator strength is somewhat slower,
but still within a few percent.

The reason underlying the fairly large basis set required to
achieve convergence can be described as follows. As already
pointed out several times in the literature, LSD (and simple
gradient corrected schemes such as GGA) underestimates
the binding of empty KS orbitals, and thus overestimates,

TABLE I. List of atomic orbitals used for the time-dependent simulations of select atoms. The states in the list are available for each spin,
unless otherwise stated. M is the total number of orbitals in the basis.

Element M Basis

He 80 1 × s 40 × pz

Li 60 2 × s↑ 1 × s↓ 30 × pz

B 80 2 × s 40 × pz

N 95 2 × s 1 × p↑
x , p↑

y 30 × pz 15 × dzz, dzx , dzy

Ne 82 8 × s 1 × px , py 13 × pz 6 × dzz, dzx , dzy

Na 67 6 × s 1 × px , py 9 × pz 5 × dzz, dzx , dzy

Mg 108 8 × s 1 × px , py 21 × pz 8 × dzz, dzx , dzy

P 177 20 × s↑ 11 × s↓ 2 × p↑
x , p↑

y 1 × p↓
x , p↓

y

30 × pz 18 × d↑
zz, d↑

zx , d↑
zy 9 × d↓

zz, d↓
zx , d↓

zy

Ar 106 11 × s 4 × px , py 14 × pz 8 × dzz, dzx , dzy

Ca 92 10 × s 2 × px , py 14 × pz 8 × dzz, dzx , dzy

Zn 150 10 × s 5 × px , py 19 × pz 10 × dzz, dzx , dzy
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FIG. 2. (Color online) Filled (2p) and lowest-energy (3s) empty
state of Ne. In the notation of Sec. II, χν(r) = rψν(r).

sometimes drastically, their spatial extension. As a way of
example, we show in Fig. 2 the radial plot of the 3s0 state
of Ne, which extends well beyond the range of the highest
occupied (2p6) orbital. The overestimation of the orbital size
is particularly apparent if we compare the orbitals in Fig. 2
with their counterparts computed upon promoting one electron
from the 2p6 to the 3s1 state (1s22s22p6 −→ 1s22s22p53s1).
In the 1s22s22p6 configuration, the potential felt by the 3s0

orbital is fully screened by the ten electrons in their ground
state, while in the 1s22s22p53s1 configuration, the excited
electron feels an ionic potential of effective charge Z∗ = 1.
This second case is likely to provide a more realistic picture
of the potential felt by electrons in an excited state. As a result
of the difference in the effective potential, the 3s1 orbital is
much narrower than the 3s0 one.

The overestimation of the spatial extent of empty orbitals by
LSD is not always as drastic as the one illustrated for Ne. In the
case of Na, for instance, the computation of the 3p orbital by
the two methods described above for Ne gives similar results.
In general, we find that the overestimation of the spatial extent
of low lying empty states is particularly important for closed
shell atoms. Nevertheless, in all cases, the superposition of
many virtual KS orbitals is required to reproduce the precise
geometry of the excited states.

These qualitative considerations, already extensively dis-
cussed in the literature, will guide us in the interpretation of the
time-dependent results and will provide the major motivation
for experimenting with a a set of optimally localised basis
functions (see Appendix).

During the time evolution, the value of the Kohn-Sham
functional evaluated at the instantaneous density provides a
first test of the accuracy of the integration scheme. Although
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FIG. 3. (Color online) Time dependence of the Kohn-Sham
functional EKS evaluated at the instantaneous electron density ρ(t)
during the real-time simulation (see text) of a Be atom. The external
perturbation is active for 0 � t � 10 a.u.

EKS[ρ(t)] cannot be interpreted easily in terms of the physical
energy for a time-dependent system, it still provides a constant
of motion for the system whenever the external time-dependent
potential is switched off. The plot of EKS[ρ(t)] for Be shown in
Fig. 3 displays a sharp variation for 0 � t � 10 a.u. while the
field is applied, and is virtually constant afterwards. A detailed
analysis on a much expanded energy scale reveals a slight
violation of energy conservation, whose amplitude turns out
to be proportional to the time step used in the simulation. Such
a linear scaling is rather unfavourable, but the prefactor turns
out to be very small, and long simulations are feasible at an
acceptable computational effort. A crucial clue to identify the
origin of this integration error is provided precisely by its linear
dependence on the time step. This excludes, in particular, a
fault of the basis set (in)-completeness, since this type of error,
once gauged on a constant interval of time, would not decrease
with decreasing δt . It excludes also round-off effects, since
these would increase with decreasing time step. An obvious
source of error with the observed linear scaling with δt is
represented by the approximate integration required to go from
Eq. (20) to Eq. (21). We think that this is indeed the origin of the
slight energy nonconservation, and the point to be improved
to allow simulations much longer than those carried out in our
study.

The result of real-time simulations reveal two qualitatively
different pictures that in what follows, are referred to as the
normal case, concerning Li, Be, Na, Mg, Ca, and Zn, and the
anomalous behavior, observed for He, Ne, N, Ar, and P. We
discuss first the results obtained for the normal case.

The dipole moment Pz(t) computed for the Be atom
following the application of the external perturbation of
Eq. (27) at t = 0 is shown in Fig. 4. The dependence of
the result from the initial time of the simulation is removed
by computing the time-autocorrelation function A(t) of the
dipole (see Fig. 5). The oscillations in A(t) apparent in
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FIG. 4. (Color online) Time dependence of the fluctuating elec-
trostatic dipole moment dz of a Be atom during and after a short-time
perturbation (0 � t � 10 a.u.) to the atomic ground state (see text).

Fig. 5 persist on a time scale much longer than what we can
follow in our simulations. To avoid Fourier transforming a
discontinuous function, we multiply A(t) by a linear function
F (t), which assumes the value F = 1 at t = 0 and vanishes at
t = 2000 a.u., corresponding to the length of our simulations.
The effect of this linear scaling is shown in Fig. 5(b). Needless
to say, this procedure changes somewhat the size and phase
of the Fourier components represented in A(t), but a series of
tests have shown that the linear form of F (t) minimizes the
distortion of the computed spectrum.

The computed absorption spectrum S(ω) of Be, which is
proportional to the imaginary part I[α(ω)] of the Fourier
transform of A(t), is shown in Fig. 6. A least square fit of
the results with a Lorentzian function

S(ω) = K

(ω − ω0)2 + δ2
(33)

provides an estimate of the basic parameters (ω0, K , and δ)
characterizing the lowest-energy dipole excitation of Be. The
results for the energy �RT = h̄ω0 of the fundamental dipole
excitation of Be and of several other atoms are reported in
Table II. The RT label of �RT indicates that this energy is
computed by real-time propagation.

The real part of the Fourier transform of A(ω), related
by a Kramer-Krönig transformation to the imaginary part
entering the determination of S(ω), is shown in the inset
of Fig. 6, and displays a clear polelike singularity. The
agreement of the frequencies computed in this way for Li,
Be, Na, Mg, Ca, and Zn is in line with the results of previous
studies.5

The picture provided by our simulation for light closed
shell atoms such as He, Ne, and Ar, but also for N and P is
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FIG. 5. (Color online) (a) Time autocorrelation function A(t) =
〈Pz(t)Pz(0)〉 of the fluctuating dipole moment shown in Fig. 4. Real-
time simulation of a Be atom with 0.01 a.u. time step. (b) Result of
multiplying A(t) times a linear function that vanishes at the upper
limit of the simulation time (see text).

qualitatively different from the one discussed above for normal
transitions. The first indication of a difference between the
two cases is provided by the plot of the oscillating dipole,
shown in Fig. 7 for Ne. Instead of the nearly sinusoidal
oscillation seen in the case of Be, the time-dependence of Pz(t)
for Ne displays clear beatings at moderate size of the basis
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FIG. 6. (Color online) Adsorption spectrum computed from the
time autocorrelation function of Fig. 5. Real-time simulation of a Be
atom with 0.01 a.u. time step.
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TABLE II. Dipole excitation energies (Ha) of neutral atoms. �exp is the experimental value,20 �RT is calculated from real-time propagation
(this study), �LR is the linear-response calculation ��SCF is the total energy difference, and ωij is the Kohn-Sham Eigenvalue difference.
Quantities in parenthesis are the percentage errors, relative to the experimental values. Linear response calculations: (a) Ref. 8; (b) Ref. 43;
(c) Ref. 33; (d) Ref. 44. A star next to ωij indicates that the eigenvalue of dipole-excited state is positive within LSD. For each transition, the
first item in the ��SCF column has been computed assuming a spherically symmetric ground and excited state, using fractional occupation
numbers; the second number, in square brackets, has been computed assuming that the excited electron is promoted to or comes from a pz

state, i.e., the atom is nonspherical following the excitation. For N and P, we list different transitions: (α): 2s22p3 −→ 2s22p23s; (β): 2s22p3

−→ 2s12p4; (γ ): 3s23p3 −→ 3s23p24s; and (δ): 3s23p3 −→ 3s13p4.

�exp �RT �LR ��SCF ωij

He 0.7797 0.6115 (21.6) 0.7538 (5.6) (d) 0.7608 (2.4) 0.6105 (21.7)∗

[0.7562] (3.0)
Li 0.06791 0.07213 (6.2) 0.0745 (9.7) (b) 0.06729 (0.9) 0.06742 (0.7)

[0.06143] (9.5)
Be 0.1939 0.1784 (8.0) 0.1995 (2.9) (a, b) 0.1283 (33.8) 0.1286 (33.7)

0.1772 (8.6) (c) [0.1225] (36.8)
N 0.3799 (α) 0.2977 (21.6) 0.3156 (16.9) (d) 0.4391 (15.6) 0.3410 (10.2)∗

[0.4425] (16.5)
0.4019 (β) 0.3991 (0.7) 0.4010 (0.2)

[0.3913] (2.6)
Ne 0.6126 0.4936 (19.4) 0.496 (19.0) (b) 0.6285 (2.6) 0.5005 (18.3)∗

0.5418 (11.6) (d) [0.6358] (3.8)
Na 0.07259 0.08258 (13.8) 0.08213 (13.1) (d) 0.08120 (11.9) 0.08010 (10.3)

[0.07565] (4.2)
Mg 0.1597 0.1556 (2.6) 0.1755 (9.9) (a, b) 0.1266 (20.7) 0.1250 (21.7)

[0.1224] (23.4)
P 0.2552 (γ ) 0.2133 (16.4) 0.2175 (14.8) (d) 0.2505 (1.8) 0.2186 (14.3)∗

[0.2539] (0.5)
0.2717 (δ) 0.2991 (10.1) 0.2995 (10.3)

[0.2959] (8.9)
Ar 0.4249 0.3653 (14.0) 0.3899 (8.2) (d) 0.4275 (0.6) 0.3758 (11.6)∗

[0.4348] (2.3)
Ca 0.1078 0.1132 (5.0) 0.1315 (22.0) (a, b) 0.08921 (17.2) 0.08846 (17.9)

[0.08630] (19.9)
Zn 0.2130 0.2086 (2.1) 0.2385 (12.0) (a, b) 0.1800 (15.5) 0.1761 (17.3)

[0.1775] (16.7)

(34 orbitals), turning into a chaotic behavior when the
simulation is carried out at full convergence with a large
number (82 orbitals) of basis functions. This difference is
reflected in the behavior of the time autocorrelation function of
the fluctuating dipole, shown in Fig. 8. The dipole adsorption
spectrum of Ne and of the other atoms of the same class
consists of a series of regularly spaced lines, whose envelop
identifies a very broad line shape covering the energy range in
which the true excitation energy is expected and measured in
experiments (see Fig. 9).

The distinction between normal and anomalous cases, as
well as the broadening of sharp lines into a discrete but
relatively dense band has already been observed in the past9

and attributed to the upward shift of the LSD KS potential with
respect to the exact one.32 Normal cases, then, correspond to
atoms whose lowest-energy dipole-excited state is still bound,
despite the LSD error. Anomalous cases, instead, correspond to
atoms whose lowest-energy dipole-excited state is raised into
the continuum, giving origin to a resonant state. The residual
discretization of the spectrum of anomalous atoms is due, in
our computations, to the finite volume of the sphere enclosing
the simulated atoms.

Another, more relevant manifestation of the same effect
is the sensitivity of the simulation result on Rmax. While the
spectra of normal atoms converges fairly quickly with the box
size, convergence is slow in the case of anomalous atoms,
because of the delocalized character of their excited states.
This is illustrated in Fig. 10, showing the absorption spectrum
of helium, which is the prototypical anomalous case. The
significantly different frequencies seen at different Rmax values
correspond to excitations from the 1s state to extended states
of pz symmetry, having their first radial node at Rmax. This
interpretation is confirmed by plots of the charge variation due
to the excitation as a function of time.

In the case of anomalous atoms and for all Rmax consid-
ered in our simulations, the frequency of the lowest-energy
excitation is significantly below the experimental absorption
energy and lower than previous computational estimates by
TD-DFT-ALDA. This last discrepancy is due to the sensitivity
of the result on the basis set used in the computation. In
most cases, previous computations used a discrete basis of
Gaussian or Slater functions, excluding a priori the extended
states that in our computations on a logarithmic mesh provide
the lowest-energy transitions. The significant underestimation
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FIG. 7. (Color online) Time dependence of the fluctuating elec-
trostatic dipole moment dz of a Ne atom during and after a short-time
perturbation (0 � t � 10 a.u.) to the atomic ground state. Basis set
consisting of (a) 34 and (b) 82 orbitals.

of TD-DFT-ALDA excitation energies of anomalous atoms
with respect to the corresponding experimental data is due to
the fact that the lowest-energy transition found by simulation
connects the ground state to continuum states of approximately
zero energy. In experiments, such a transition to an unbound
state requires higher energy, above the threshold for the dipole
transition to the lowest-energy bound state of appropriate
symmetry. This problem is less apparent and less relevant
for molecules, whose lowest excitation energies are never
as large as those of closed shell atoms. This observation
emphasizes the role of atoms as sensitive test cases for
TD-DFT approximations.

Remarkably, in He and in all other anomalous atoms,
one excitation line found by simulation is fairly insensitive
to changes in Rmax, and its frequency is close to both the
experimental value, and to previous estimates using the linear
response approach, on a basis of localized functions. This
observation could be explained easily in terms of the resonance
nature of the genuine excited states, and, in principle, could
provide a way to extract the relevant information from
simulation data. However, we do not emphasize this point
here, because distinguishing the physical transition from the
spurious ones remains a difficult and time consuming task,
requiring multiple simulations with different Rmax values.

Again in the case of the closed-shell atoms He, Ne, and
Ar, we observe that the lowest energy line computed by
TD-DFT hardly differs from the corresponding difference of
KS eigenvalues. This is easily understood on the basis of the
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FIG. 8. (Color online) Time autocorrelation function A(t) =
〈Pz(t)Pz(0)〉 of the fluctuating dipole moment of Ne. Basis set
consisting of (a) 34 and (b) 82 orbitals.

linear response route to TD-DFT energies. Let us consider the
transition from a state i of orbital φi(r) to state j of orbital
φj (r). According to Ref. 8, and assuming that the i −→ j

transition is unaffected by any other dipole-allowed excitation,
the TD-DFT correction to the eigenvalues difference ωij is

�ωij =
∫ ∫

φi(r)φ∗
j (r)

[
1

|r − r′| + fxc(r,r′)
]

×φ∗
i (r′)φj (r′)drdr′, (34)
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FIG. 9. (Color online) Dipole absorption spectrum computed for
Ne. Real-time simulation with 0.01 a.u. time step.
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FIG. 10. (Color online) Dipole absorption spectrum of helium,
computed using different values of the simulation box size Rmax.
The vertical arrow at h̄ω = 0.7844 Ha closely matches previous
computational estimates using the linear response formulation as well
as the experimental excitation energy at 0.7797 Ha.

where fxc is the exchange-correlation kernel and a static
(adiabatic) approximation is implied. Then, it is easy to verify
that such a correction has to vanish in the case that the transition
connects a localised bound state i to a delocalized scattering
state j .

The TD-DFT correction to the eigenvalues difference is
more sizable in the case of normal atoms, and, as expected, TD-
DFT excitation energies tend to be closer to the experimental
value than the estimate based simply on ωij . It might be useful
to note, however, that there are exceptions to this rule, such
as Li and Na (see Table II), for which the ωij estimate is in
better agreement with experiments than the TD-DFT result.
Again, in the case of the normal atoms, the results of our
real-space real-time simulations are close to those obtained
using the linear response formulation of TD-DFT. Differences
are likely to be due primarily to computational reasons such as
the different basis used by us and by previous computations.
Another reason could be related to the different account of
spin multiplicities in the linear response computation and in
our real-space real-time approach. This point will be briefly
commented on in the conclusive section. Because of the
symmetry change, the dipole excitation energy for the atoms
listed in Table II can be computed also as a total energy
difference (�SCF) between the ground- and excited-state
configuration. The results are much better than the TD-DFT
ones in the case of the anomalous atoms. The performance
for the normal cases is rather mixed, alternating good results
for Li and Na, to apparent failures of the �SCF approach for
Be, Mg, Ca, and Zn. The total energy difference route suffers
from the additional complications that assuming a spherically
symmetric or a broken symmetry excited states gives different
results for the excitation energy. Once again, the change in
spin multiplicity upon excitation could also slightly affect the
result.

It might be worth emphasizing once again that the dis-
tinction between normal and anomalous behavior is strictly

dependent on the approximation for the exchange and corre-
lation potential, and the anomalous behavior is, in all cases,
an artifact of the LSD-ALDA model, since even closed-shell
atoms in reality have an infinite number of excited bound
states, asymptotically giving rise to a series of Rydberg
states. Slightly different XC approximations such as GGA’s
are not expected to overcome the LSD problem, since their
exchange-correlation potential still suffers from the major
limitations of the LSD potential, and their KS spectra are nearly
indistinguishable from those of LSD. Hybrid functionals
such as B3LYP35 or PBE0,36 incorporating part of the exact
exchange, perform somewhat better in this respect, but still
significantly underestimate the long-range attractive tail of
the KS potential. More refined functionals, whose potential
reflects the correct asymptotic −1/r form, are required to
cure this problem. This is confirmed by the results of Ref. 33
and 34, showing that an approach computing the ALDA
linear response upon evolving the electron density within
the exact KS potential provides excellent excitation energies
for He and Ne. Similar results have been obtained by other
authors8,16,17 using the optimized effective potential37 and/or
the self-interaction corrected approximation29 to compute the
ground-state potential and the exchange-correlation kernel.
To illustrate this point and to emphasize the crucial role
of the exchange-correlation functional in the discrimination
of normal and anomalous atoms, we carried out additional
simulations for He within the exact-exchange approximation
(EXX), using Hartree Fock exchange and no correlation. The
usage of EXX turns the anomalous response of He into a
regular one, as could be seen in Fig. 11, comparing the time au-
tocorrelation function of the Pz dipole of He computed within
LSD and within EXX. The Fourier transform of the EXX
time autocorrelation function now gives a spectrum consisting
(almost) of a single line, whose energy �RT = 0.7970 Ha is in
fair agreement with the experimental value �exp = 0.7797 Ha.
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FIG. 11. (Color online) Comparison of the time autocorrelation
function A(t) = 〈Pz(t)Pz(0)〉 of He computed by the local spin
density approximation (LSD, full line, red) and by the exact exchange
approximation (EXX, dotted line, blue). For the sake of clarity, the
LSD result has been moved vertically by a constant shift of six
units.
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IV. TD-DFT SIMULATION OF AUGER PROCESSES

The good performance of TD-DFT in predicting the optical
absorption spectrum of normal atoms, and the realization
that the problematic results for the anomalous atoms may
be traced back to ALDA, should not conceal the fact that
other fundamental problems might be hidden in the TD-DFT
formulation. An indication that something important is missing
in the present theory is provided by the results of a simple
simulation meant to reproduce an Auger process.38

The Auger de-excitation mechanism may be activated
whenever a high-energy electromagnetic perturbation such as
an x or γ ray removes a core electron from an atom. Then, the
excited state may decay by filling the low-lying hole with an
electron from the higher energy levels. Energy conservation
implies that a photon is emitted during this process, whose
energy (Eeh) is discretized by the energy quantization of the
hole and of the the electron giving rise to the process. Before
leaving the atom, the photon might further ionize the A+ atom
into A2+ by stripping an electron from the valence states.
Under normal conditions, this process competes with other
relaxation channels. The signature of a genuine Auger process
is the monochromatic character of the emitted electron, whose
kinetic energy corresponds exactly to the Eeh energy of the
virtual photon, minus the (usually negligible) binding energy
of the valence electron.

Our all-electron implementation of TD-DFT allows us to
simulate this process by a computational experiment in which,
starting from an atomic ground state, we remove an electron
from a core level. An almost ideal experimental realization
of the computational process might be represented by the
so-called positron annihilation Auger electron spectroscopy
(PAES)39 in which a fairly low-energy (∼10 eV) positron
penetrates into the core region and annihilates one core
electron, without perturbing significantly the atom prior to
the sudden event.

The TD-DFT simulation of the atom following this drastic
excitation shows a fast collective reorganization of the electron
cloud that soon results in the outwards propagation of one
or, usually, more electrons. A suitable absorbing potential,
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FIG. 12. (Color online) Electronic charge on the Mg atom as a
function of time following the sudden annihilation at t = 0 of one
electron in the 1s (full line) and in the 2s (dash line) orbitals.

continuously removing charge from the outer portion (r �
25 a.u.) of the simulation cell, is introduced to approach the
open boundary condition of real experiments.

Figure 12 displays the time evolution of the total charge
in the system upon removing a 1s (a) or a 2s (b) core electron
from Mg. As can be seen in the figure, the charge decreases
smoothly with time, and the simulation results are strongly
suggestive of a thermal evaporation process progressively
taking place in the highly excited atom. A different visual
representation of the same process is given in Fig. 13. Even
though the electron density is still spherically symmetric upon
removing a 1s or 2s electron, it is apparent that symmetry is
rapidly broken during the time evolution of the excited atom.
The thermal relaxation channel illustrated by these figures is
certainly one of the competing de-excitation modes available
to the excited atom, but it is nevertheless apparent that the
simulation results differ by several important features from
the known experimental picture.

FIG. 13. (Color online) Deviation �ρe(x,y,z = 0,t) of the time-
dependent electron density ρe(x,y,z = 0,t) from the ground-state
density of a Mg atom, following the sudden removal of a 1s electron.
�ρe(x,y,z = 0,t) = ρe(x,y,z = 0,t) − ρe(x,y,z = 0,t = 0). From
top to bottom and from left to right, the panels correspond to t = 5, 10,
15, 20, 25, and 30 a.u. Magenta, red, and yellow regions correspond
to excess charge of increasing size. The white hole at the center
represents a large charge deficit.
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First of all, no discontinuity is observed when crossing
an integer value of the residual (or emitted) charge. In other
words, and not surprisingly, there is no sign of the particle
nature of electrons, and the final result after all the dust is
settled, is likely (in fact certain) to correspond to an ion of
fractional charge. The result might be interpreted in terms of
the superposition of different ionization states, but this might
be a rather arbitrary interpretation, not firmly grounded on a
rigorous TD-DFT formulation.

Moreover, and perhaps more importantly, there is no sign
of a genuine Auger process. Electrons already leave the atom
with just enough energy to overcome the barrier separating the
inner atomic region from the outer simulation range. This is
markedly different from the Auger picture in which electrons
are emitted at a well defined energy, leaving behind an ion
whose electrons are in their lowest-energy state.

Needless to say, the purely electromagnetic relaxation
channel in which a high-energy photon carries away all of
the excitation energy, transferring it to only one of the valence
electrons, is completely missing from the simulation picture,
and it could not conceivably be described by a scheme that
does not quantize the oscillations of the electromagnetic
field.

These observations, which, of course, do not affect the
value of TD-DFT as an effective computational tool able
to predict a significant portion of optical experiments, still
point to fundamental limitations of the TD-DFT formulation,
apparently related to an incomplete incorporation of basic
quantum-mechanical principles into the present theory.

V. SUMMARY AND CONCLUSIONS

Ground-state properties and dipole excitation energies for
atoms with up to 30 electrons have been computed by a DFT
approach, using a 3D mesh consisting of N� rays emanating
from the nucleus. The rays’ directions have been selected
according to the rules of Ref. 30, allowing the integration
of angular variable to be carried out via a Gauss formula. On
each ray, orbitals are represented on a logarithmic radial mesh.
In our computations, N� = 32, and the integration rule allows
us to integrate exactly spherical harmonics components up to
l = 9. Atoms are enclosed in a sphere of finite radius Rmax, and
thus the spectrum is discretized both at negative and positive
energies. The logarithmic mesh consists of 2000 grid points,
allowing accurate computations at the all-electron level.

The results of ground-state atomic computations carried out
in the LSD approximation agree well with those of previous
studies.24 Moreover, these tests confirm the computational sta-
bility and efficiency of the scheme. As a result, a large number
of occupied and empty KS orbitals can be computed on the
combined angular-radial grid, at a very modest computational
cost.

The purpose of our scheme, however, is to carry out
real-time real-space simulation of the atoms’ evolution under
a perturbing external field, breaking the spherical symmetry
of the ground state. To test the ability of our approach to carry
out such a task, we implemented a TD-DFT-ALDA simulation
scheme, evolving states on a discrete basis of M orthonormal
orbitals, each represented on the same logarithmic-radial and
angular mesh described above. Starting from the atomic

ground state, the system is perturbed by the application of
an external, time-dependent field of the appropriate angular
symmetry. The response of the system is analyzed after the
external field is switched off, and quantified by computing time
autocorrelation functions of the induced multipolar charge
oscillations, whose Fourier transform provides the absorption
spectrum in the energy representation.

At each time step, the instantaneous KS Hamiltonian matrix
(of M × M dimensions) is diagonalized, then the matrix
representing the time evolution operator is computed and
transformed back to the original basis. The size M required to
reach convergence depends on the energy interval that needs
to be covered, and, to some extent, on the details of the
spectrum of the atom under consideration. For all the atoms
that we considered, a basis of less than 200 basis functions has
been sufficient to converge the estimate of the fundamental
dipole excitation energy to within ∼10−3 Ha. This value of
M corresponds to a fully manageable computational task,
requiring about one day of CPU time on a desktop or laptop
computer to follow the time evolution of atoms with 20–30
electrons over approximatively 50 fs.

The reliability of the time evolution is confirmed by the
excellent conservation of energy during the long simulation
time following the switch-off of the time-dependent external
potential. We verified that the amplitude of the energy
nonconservation depends linearly with the size of the time
step. At the δt = 0.01 a.u. of our simulations, the violation of
the energy conservation over 48 fs is of the order of the μHa.

The focus of the present work has been on the com-
putational part of the problem. Nevertheless, we think that
our results for the excitation energies, obtained by a method
whose convergence can be easily checked and systematically
improved, could provide a useful benchmark to gauge other
computational approaches.

In agreement with previous discussions of TD-DFT-ALDA
computations for atoms,9 we observe two qualitatively differ-
ent patterns in the response of atoms perturbed by a dipolar
field. In the first case, that we termed normal and is exemplified
by Li, Be, Na, Mg, Ca, and Zn, the dipole oscillations
display a highly predominant frequency, corresponding to the
transition from the ground state to a bound first excited state.
Convergence in the number of basis functions and in the size
Rmax of the simulation box occurs fairly quickly.

In the second case, that we termed anomalous and is
exemplified by He, Ne, N, Ar, and P, we observe several
different frequencies, connecting the ground state to unbound
excited states, corresponding to a discretized version of the
continuum spectrum of an isolated atom in vacuum. The
result converges relatively poorly with the basis set size and is
sensitive to the size of the simulation box.

In general, we observe that the TD-DFT-ALDA prediction
of the excitation energy of atoms is somewhat better, but
not systematically so, than the estimate based on the KS
eigenvalue. Of course, the TD-DFT estimate is on a sound
conceptual ground, while the interpretation of eigenvalues
as orbital energies is not justified.40 In all cases, however,
it is apparent that the ability of simple approximations such
as LSD-ALDA to predict dipole excitation energies of atoms
is relatively poor, partly contradicting the popular opinion that
this approach is generally good for finite systems. This state of
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affairs is particularly surprising and disappointing, given the
basic nature of dipole optical transitions in atoms and given
the abundance of highly accurate experimental data.20 More
rigorous many-body methods such as GW supplemented by
the Bethe-Salpeter approach seem to be more successful,41

but, even in this case, further computations are needed to fully
assess the quality and reliability of these methods for atoms.

It might be useful to point out that the quality of the
TD-DFT-ALDA results is particularly poor for the anomalous
atoms, since, in this case, the lowest frequency given by
simulation (and also by the linear approximation) corresponds
to the transition to the lowest unbound state, whose energy
(approximately zero) falls below that of the genuine excited
state, which appears as a resonance in the continuum of
unbound states.

These observations, reflecting and confirming the picture
already available in the literature, emphasize the need of
approximations for the static and time-dependent exchange-
correlation functionals to go beyond the simple LSD and
ALDA levels. This conclusion is supplemented and strength-
ened by the results of a further series of simulations, mimicking
an Auger process initiated by removing a core electron. The
results show a multitude of thermal relaxation processes in
which electron progressively evaporate from the atom, leaving
it in a rather unphysical state of partial charge. While some
justification of this result could be found in terms of a statistical
or ensemble description of the relaxation and ionization
process, it is nevertheless clear that the genuine Auger process
is missing from the simulation picture. The primary reason
for this failure is the apparent lack of quantization of the
electromagnetic field.

We point out that, following the practice established by
previous real-space real-time TD-DFT simulations, in our
study, we neglected the problem of spin multiplicities and spin
contamination, which, instead, has to be considered for a more
quantitative comparison with experiments and with TD-DFT
computations based on the linear response formulation, which
often correctly include these aspects. Attempts to describe
spin multiplicity and remove spin contamination in real-time
real-space computations have been reported,42 but, in this
respect, the simulation route appears to be less straightforward
than the linear response one.

As a last remark, we observe that the efficiency of TD-DFT
computations can be improved by resorting to a physically
motivated basis for the excited states (see Appendix below),
that consists of ground-state orbitals and of their derivatives
with respect to a perturbation. Several tests have shown that
the precise form of the perturbation is not crucial to produce
a suitable basis set. However, in our computations, response
basis functions have been generated by considering the deriva-
tives of orbitals with respect to static dipole perturbations.
The results for simple atoms, involving only the excitation
of s electrons, display a remarkably quick convergence of
the results as a function of the basis set size. The reason
of the improvement is the enhanced localization of response
functions with respect to empty KS orbitals, which, feeling
only a fully screened KS potential, turn out to be far too
extended. Moreover, by limiting the size of the functional
space available for excitations, a basis of a few response
functions can partly compensate the spread of unbound excited

states, improving the identification of the genuine fundamental
frequency. Linear response methods7,8,43,44 achieve a similar
effect by using a basis set of localized functions, and by setting
the number of interacting poles (often a single one) included
in the solution of the eigenvalue equations for the excitation
energies and oscillator strength.

Response functions had already been introduced in previous
studies.26,27 However, in this paper, the performance of
response functions is discussed in detail for time-dependent
simulations.
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APPENDIX: RESPONSE BASIS FUNCTIONS

The efficiency of the real-space representation for the KS
orbitals contrasts somewhat with the slow convergence of the
computed results with increasing size of the basis set. This
problem is particularly apparent for the closed-shell atoms
manifesting ionizing resonances in their spectra, while for
normal cases, the rate of convergence is acceptable, even
though the margin for improvement is apparent. In the case
of He or Ne, for instance, the amplitude of the induced dipole
increases only slowly with increasing basis set size, and a large
number of virtual orbitals is required before convergence is
really achieved.

The first reason for the slow convergence of the computed
response is the exaggerated delocalization of the unoccupied
states, while the analysis of fully converged simulations shows
that sizable changes in the KS orbitals and in the density take
place only in a rather limited region of space, in all cases
smaller than the volume covered by empty KS orbitals. As a
consequence, the superposition of a relatively large number
of virtual states is required to reproduce the localization of
the dipole response. These considerations motivated us to
search for a basis of optimally localized functions, approaching
quickly the fully converged limit and thus reducing drastically
the computational time.

In our investigation, we have been guided by the approach
and results of Refs. 26 and 27, where the so-called response
basis set was developed and tested for ground-state com-
putations. The original approach supplements the occupied
orbitals with a set of functions representing the derivative of
the occupied orbitals with respect to spherical perturbations.
Thus, for instance, the successive differentiation of a nodeless
orbital of s symmetry gives a sequence of response s functions
with one, two, . . . ,n radial nodes, and a similar result holds
for all other l > 0 orbitals.

Standard perturbation theory tells us that all functions
obtained in this way are orthogonal to the occupied states, since

045114-13



C. S. CUCINOTTA, D. HUGHES, AND P. BALLONE PHYSICAL REVIEW B 86, 045114 (2012)

0 5 10 15 20 25
-0.8

-0.4

0.0

0.4

r    [a.u.]

r
ψ

(r
)

 (a)  Response functions

Mg

-0.8

-0.4

0.0

0.4

0.8

r 
ψ

(r
)

 (b)  KS orbitals

FIG. 14. (Color online) (a) Response functions for the 3s2 orbital
of Mg. Full line: 3s ground-state KS orbital; dash line: first derivative
of the 3s orbital; dotted line: second derivative of the 3s orbital;
and dash-dotted line: third derivative of the 3s orbital. (b) Filled and
empty KS orbitals of Mg. Full line: 3s ground-state KS orbital; dash
line: 3p KS orbital; dotted line: 4p KS orbital; and dash-dotted line:
5p KS orbital.

they belong to the functions’ space spanned by virtual orbitals.
Moreover, they can be made orthogonal among themselves,
and normalized, by a Gram-Schmidt procedure.

We extend the response basis set approach to the time-
dependent case by considering the derivative of occupied
orbitals with respect to static dipolar perturbations, repre-
sented by an electric field oriented along the z direction, of
intensity Ez. We emphasise that this is at variance from the
original scheme, which was limited to spherically symmetric
perturbations. In both cases, it is assumed that upon applying
the perturbation, the change of each orbital can be expresses

by the Taylor series:

ψi(r|Ez) = ψi(r|0) + Ez

∂ψi(r|0)

∂Ez

+ 1

2
E2

z

∂2ψi(r|0)

∂E2
z

+ O
(
E3

z

)
.

(A1)

Then, the derivatives {∂ψi(r|0)/∂Ez}, {∂2ψi(r|0)/∂E2
z }, . . . ,

together with the occupied orbitals, are the ingredients required
to build the response basis set.

In practice, the first and successive derivatives of each
occupied KS orbital are computed numerically upon applying
a dipolar external field Ez of increasing strength along the
z direction. A simple analysis shows that, to first order, from
an s orbital we obtain functions of pz symmetry, from a p

orbitals, we obtain a combination of s and d functions, etc.
This analysis is readily extended to higher-order derivatives.

In practice, low-order finite difference expressions for the
derivatives are applied, and the results are filtered to remove
spurious angular components, and, possibly, high-frequency
oscillations in the radial direction. Manipulation of different
angular momenta components of orbital derivatives is simpli-
fied by representing and storing them on the full Nr × N� grid.
In a second stage, each response basis function is constructed
in such a way to contain only one Ylm contribution. Derivatives
containing more than one angular component, such as those of
l > 0 orbitals, are split into distinct basis functions (of s and d

angular character, in the example of the p orbital derivative).
For the sake of simplicity, we consider here excitations

of s electrons only, thus avoiding the minor complication
represented by response functions arising from different l

components of the same orbital derivative with respect to Ez.
The results of the basis function generation for the 3s2 state
of Mg are illustrated in Fig. 14, where the three lowest-order
response functions are compared with the virtual states of Mg
having the same pz symmetry and the same number of radial
nodes. The enhanced localization of response functions with
respect to virtual orbitals is apparent.

The results of computations for the dipole absorption
spectrum of selected atoms are collected in Table III. The
excitation energies of Na and Mg have been computed keeping
fixed the 1s, 2s, and 2p orbitals, and evolving only the 3s states.
The results highlight the fast convergence of the computed
energies with the (small) size of the basis set.

Needless to say, the choice of the basis does not solve the
problems due to the ALDA exchange correlation potential,
even though the physically motivated shape and size of the
response functions allows us to obtain a quick estimate for the
center of mass of the excitation spectrum from computations
using just a single response function.

TABLE III. Response function calculation. Magnesium and sodium atoms have been modelled within the fixed core approximation. At
order 1, 2, and 3, the basis includes the first, second, and third derivative, respectively, of the highest energy s state with respect to an external
Ez field. The percentage error in parenthesis is computed with respect to the benchmark excitation energy computed with the basis of Table I.

Benchmark Order 1 Order 2 Order 3

Li 0.07213 0.09499 (31.7) 0.07894 (8.6) 0.07431 (3.0)
Be 0.1784 0.2085 (16.9) 0.1921 (7.7) 0.1796 (0.7)
Na 0.08258 0.09458 (14.5) 0.08718 (5.6) 0.08304 (0.6)
Mg 0.1556 0.1709 (9.8) 0.1643 (5.6) 0.1563 (0.4)
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