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We show that a nearest-neighbor singlet phase results (from an effective Hamiltonian) for the one-dimensional
Hubbard-Holstein model in the regime of strong electron-electron and electron-phonon interactions and under
nonadiabatic conditions (t/ω0 � 1). By mapping the system of nearest-neighbor singlets at a filling Np/N onto
a hard-core-boson (HCB) t-V model at a filling Np/(N − Np), we demonstrate explicitly that superfluidity and
charge density wave (CDW) occur mutually exclusively with the diagonal long range order manifesting itself
only at one-third filling. Furthermore, we also show that the Bose-Einstein condensate (BEC) occupation number
n0 for the singlet phase, similar to the n0 for a HCB tight binding model, scales as

√
N ; however, the coefficient

of
√

N in the n0 for the interacting singlet phase is numerically demonstrated to be smaller.
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I. INTRODUCTION

The study of coexistence and competition between diagonal
long range orders [such as charge density wave (CDW)
and spin density wave (SDW)] and off-diagonal long range
orders (such as superfluid and superconducting states) in
electronic phases is a subject of immense ongoing focus. Of
particular interest is the coexistence of CDW and superconduc-
tivity/superfluidity in layered dichalogenides (e.g., 2H-TaSe2,
2H-TaS2, and NbSe2),1 helium-4,2 bismuthates (e.g., BaBiO3

doped with K or P),3 quasi-one-dimensional trichalcogenide
NbSe3,4 and doped spin ladder cuprate Sr14Cu24O41,5 quarter-
filled organic materials,6,7 noniron based pnictides (e.g.,
SrPt2As2),8 etc.

Systems with more than one type of interaction typically
manifest a variety of phases of which some cooperate and
some compete. A wealth of materials show evidence of strong
electron-phonon (e-ph) interactions besides the ubiquitous
electron-electron (e-e) interactions. For instance, transition
metal oxides such as cuprates9,10 and manganites11–13 and
molecular solids such as fullerides14 indicate strong e-ph
coupling. The interplay of e-e and e-ph interactions in these
correlated systems leads to coexistence of or competition
between various phases such as superconductivity, CDW,
SDW, etc.

An archetypal model for understanding the co-occurring
effects of e-e and e-ph interactions is the following well known
Hubbard-Holstein model (HHM):15

Hhh = −t
∑
jσ

(c†j+1σ cjσ + H.c.) + ω0

∑
j

a
†
j aj

+ gω0

∑
jσ

njσ (aj + a
†
j ) + U

∑
j

nj↑nj↓, (1)

where c
†
jσ is the fermionic creation operator for itinerant

spin-σ electrons with hopping integral t , and number oper-
ator njσ ≡ c

†
jσ cjσ , a

†
j is the corresponding bosonic creation

operator characterized by a dispersionless phonon frequency

ω0, with U and g representing the strengths of onsite e-e and
e-ph interactions respectively.

To understand the interplay between the e-e and e-ph
interactions, the Hubbard-Holstein model has been exten-
sively studied (in one, two, and infinite dimensions and
at various fillings) by employing various approaches such
as exact diagonalization,16–18 density matrix renormalization
group (DMRG),19,20 quantum Monte Carlo (QMC),21–26 semi-
analytical slave boson approximations,27–31 dynamical mean
field theory (DMFT),32–40 large-N expansion,41 variational
methods based on Lang-Firsov transformation,42,43 Gutzwiller
approximation,44,45 and cluster approximation.46

In our earlier work,15 in the regimes of strong Coulomb
interaction and strong e-ph coupling, we derived an effective
Hamiltonian using a controlled analytic approach that takes
into account dynamical quantum phonons. We solved this ef-
fective Hamiltonian numerically for finite chains and presented
a phase diagram for the one-dimensional Hubbard-Holstein
model at quarter filling. It was shown in Ref. 15 that while the
e-e interaction produces nearest-neighbor (NN) spin antiferro-
magnetic (AF) interactions which encourage singlet formation,
the e-ph interaction generates NN repulsion which is expected
to promote CDW order. It was also shown that a correlated
NN singlet phase occurs (at quarter-filling) and that it carries
a signature of a CDW. In this paper, we demonstrate that
the correlated singlet phase occurs at other fractions as well
and analyze its nature. Our main result is the demonstration
that the NN spin AF and NN repulsive interactions compete
(instead of cooperate) to produce mutually exclusive (rather
than coexisting) superfluid and CDW phases in the NN singlet
phase. We show that the NN singlets manifest superfluidity
(and no CDW) at all fillings that are less than one-half but not
equal to one-third and a CDW state (and no superfluidity) at
one-third filling. Using a modified Lanczos method15,47 and a
newly developed world-line quantum Monte Carlo (WQMC)
method, we show that the singlet phase has no Bose-Einstein
condensate (BEC) fraction.

In the past, superconductivity due to onsite pairing has
been a focus of a number of studies.48–50 Here we are
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interested in a different situation, namely, NN singlets. Earlier
a t-J -V model (involving bipolarons that are NN singlets)
was introduced in Ref. 51. This t-J -V model51 [that does not
include the next-nearest-neighbor hopping terms but discusses
them qualitatively] is similar to our effective Hamiltonian of
Eq. (9) and can be regarded as a useful precedent and an
endorsement of Eq. (9).

The paper is organized as follows: In Sec. II we briefly
derive the effective Hamiltonian (that goes beyond the t-J
model approximation of the Hubbard model by including
the additional three site residue52–54) and explain the various
interaction terms and hopping terms. We also point out that the
correlated singlet phase occurs at not only quarter-filling but
also at other fillings. In Sec. III, we show that the correlated
singlet phase can be represented by a hard-core-boson (HCB)
t-V1-V2 model. Next, in Sec. IV we discuss the possibility of
formation of a CDW by mapping the t-V1-V2 model onto
the well understood t-V model. In Sec. V, we obtain the
superfluid density (in the thermodynamic limit) at different
filling fractions by using finite size scaling. In Sec. VI, we
analyze the BEC occupation number at various densities
by employing the modified Lanczos method and a newly
developed WQMC method. We close with concluding remarks
in Sec. VII.

II. EFFECTIVE HHM HAMILTONIAN

We briefly outline below the procedure to get the ef-
fective Hubbard-Holstein Hamiltonian (with more details
being provided in Ref. 15). Although we obtain the effective
Hamiltonian here in one dimension only, our approach is
easily extendable to higher dimensions as well. We first carry
out the Lang-Firsov (LF) transformation55 H LF

hh = eT Hhhe
−T

where T = −g
∑

jσ njσ (aj − a
†
j ) and get the following LF

transformed Hamiltonian:

H LF
hh = −t

∑
jσ

(X†
j+1c

†
j+1σ cjσ Xj + H.c.) + ω0

∑
j

a
†
j aj

− g2ω0

∑
j

nj + (U − 2g2ω0)
∑

j

nj↑nj↓, (2)

where Xj = eg(aj −a
†
j ) and nj = nj↑ + nj↓. Next, we express

as follows our LF transformed Hamiltonian in terms of the
composite fermionic operator d

†
jσ ≡ c

†
jσX

†
j :

H LF
hh = −t

∑
jσ

(d†
j+1σ djσ + H.c.) + ω0

∑
j

a
†
j aj

+ (U − 2g2ω0)
∑

j

nd
j↑nd

j↓ − g2ω0

∑
j

(
nd

j↑ + nd
j↓

)
,

(3)

where nd
jσ = d

†
jσ djσ . On dropping the last term, which is a

constant polaronic energy, we recognize that Eq. (3) essentially
represents the Hubbard model for composite fermions with
Hubbard interaction Ueff = (U − 2g2ω0). In the limit of
large Ueff/t , using standard treatment involving a canonical
transformation, we get the following effective Hamiltonian

written to second order in the small parameter t/Ueff :52–54

Ht-J -t3 = Ps

[
−t

∑
jσ

(d†
j+1σ djσ + H.c.) + ω0

∑
j

a
†
j aj

+ J
∑

j

(
�Sj · �Sj+1 − nd

j n
d
j+1

4

)

+ t3
∑
jσ

[d†
j σ̄ dj+1σ d

†
j−1σ djσ̄ + H.c.]

− t3
∑
jσ

[d†
jσ dj+1σ d

†
j−1σ̄ dj σ̄ + H.c.]

]
Ps, (4)

where nd
j = nd

j↑ + nd
j↓, J = 4t2

U−2g2ω0
, t3 = J/4, �Si is the spin

operator for a spin 1/2 fermion at site i, and Ps is the single-
occupancy-subspace projection operator. Furthermore, the last
two terms with coefficient t3 (=J/4) are the three site terms
which when omitted from the above Hamiltonian Ht-J -t3 yield
the well-known t-J Hamiltonian (for the composite fermionic
operators djσ ).

The effective t-J -t3 Hamiltonian, given in Eq. (4), can be
rewritten in terms of the original fermionic operators cjσ as

Ht-J -t3 = H0 + H1, (5)

where
H0 = −te−g2

∑
jσ

Ps(c
†
j+1σ cjσ + H.c.)Ps + ω0

∑
j

a
†
j aj

+ J
∑

j

Ps

(
�Sj · �Sj+1 − njnj+1

4

)
Ps

+ Je−g2

4

∑
jσ

Ps[c
†
j σ̄ cj+1σ c

†
j−1σ cjσ̄ + H.c.]Ps

− Je−g2

4

∑
jσ

Ps

[
c
†
jσ cj+1σ c

†
j−1σ̄ cj σ̄ + H.c.

]
Ps, (6)

and
H1 = −te−g2

∑
jσ

Ps[c
†
j+1σ cjσ (Y j†

+ Y
j
− − 1) + H.c.]Ps. (7)

In the above equation, we have separated the Ht-J -t3 Hamil-
tonian into (i) an electronic part H0 which is essentially a
modified t-J -t3 Hamiltonian containing a NN hopping with
a reduced amplitude (te−g2

), electronic interaction terms with
the same interaction strength J , three site terms with reduced
amplitude Je−g2

/4, and no electron-phonon interaction, and
(ii) the remaining perturbative part H1 which corresponds to
the composite fermion terms containing the e-ph interaction
with Y

j
± ≡ e±g(aj+1−aj ). Furthermore, since J/4 � t , we have

ignored the following term in H1:

Ps

[
Je−g2

4

∑
jσ

[c†j σ̄ cj+1σ c
†
j−1σ cjσ̄ (Zj†

+ Z
j
− − 1) + H.c.]

− Je−g2

4

∑
jσ

[c†jσ cj+1σ c
†
j−1σ̄ cj σ̄ (Zj†

+ Z
j
− − 1) + H.c.]

]
Ps,

(8)

where Z
j
± ≡ e±g(aj−1−aj+1).
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After carrying out perturbation theory to second-order (as
outlined in Ref. 15 and Appendix A), with t/(gω0) as the small
parameter,56 we get the following effective Hamiltonian:

H eff
hh

∼= −teffht1 + JhS − V hnn − t2hσσ

− (t2 + J3)hσσ̄ + J3h
′
σ σ̄ , (9)

where

ht1 =
∑
jσ

Ps(c
†
j+1σ cjσ + H.c.)Ps, (10)

hS =
∑

j

Ps

(
�Sj · �Sj+1 − 1

4
njnj+1

)
Ps, (11)

hnn =
∑
jσ

(1 − nj+1σ̄ )(1 − njσ̄ )(njσ − nj+1σ )2, (12)

hσσ =
∑
jσ

(1 − nj+1σ̄ )(1 − njσ̄ )(1 − nj−1σ̄ )

× [c†j+1σ (1 − 2njσ )cj−1σ + H.c.], (13)

hσσ̄ =
∑
jσ

(1 − nj+1σ̄ )(1 − nj−1σ )

× [c†jσ cj+1σ c
†
j−1σ̄ cj σ̄ + H.c.], (14)

and

h′
σ σ̄ =

∑
jσ

(1 − nj+1σ̄ )(1 − njσ )(1 − nj−1σ̄ )

× [c†j σ̄ cj+1σ c
†
j−1σ cjσ̄ + H.c.]. (15)

The various coefficients are defined in terms of the system
electron-phonon coupling g, the Hubbard interaction U , the
hopping amplitude t , and the phonon frequency ω0 as follows:
V 
 t2/2g2ω0, J ≡ 4t2

U−2g2ω0
, teff ≡ te−g2

, t2 
 t2e−g2
/g2ω0,

and J3 = Je−g2
/4. Here the kinetic energy (which is small

compared to the interaction energy) has contributions from
four hopping terms: −teffht1 corresponding to NN hopping
(with a reduced hopping integral teff ≡ te−g2

), −t2hσσ rep-
resenting NNN hopping (with double-hopping coefficient
t2 
 t2e−g2

/g2ω0), −(t2 + J3)hσσ̄ implying NN spin-pair σ σ̄

hopping, and J3h
′
σ σ̄ leading to NN spin-pair σ σ̄ hopping and

flipping to σ̄ σ ; thus h′
σ σ̄ acting on a singlet state produces

another singlet state, but with a negative sign. The NN
spin-spin interaction term JhS (with J ≡ 4t2

U−2g2ω0
) and the NN

repulsion term −V hnn (with V 
 t2/2g2ω0) are the dominant
terms in the effective Hamiltonian and compete to form a phase
separated cluster at larger J (or smaller U/t at a fixed g and
t/ω0). As J/V decreases, the cluster breaks up to undergo a
discontinuous transition to a correlated NN singlet phase as
shown in the phase diagram [see Fig. 1(a)].57 At even lower
values of J/V , we get separated single spins (represented
by isolated spin phase) with the transition at larger g being
first order while at smaller g it is weakly first order and not
continuous [due to the fact that the system transforms from
a superfluid to a CDW, i.e., transition is between two phases
of different symmetry].15 The prime objective of the current
work is to characterize the correlated singlet state.

We will now compare the physics related to
our effective Hamiltonian, which accounts for various
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FIG. 1. (Color online) Plots obtained using modified Lanczos in
a twelve-site system for t/ω0 = 1. Phase diagram in (a) depicts that
the phase transition lines are close for both densities n = 1/4 and
n = 1/6. Structure factor plots in (b) (drawn at g = 2.2 and U/t =
17) for the effective Hubbard-Holstein model (HHM) of Eq. (9) and
the HCB t-V1-V2 model of Eq. (16) showing that the two models are
equivalent.

fundamental processes involved in the kinetic and interac-
tion terms, with the variational Lang-Firsov (LF) treatments
reported.30,31,38,43,45 As the degree of nonadiabaticity de-
creases, our NNN hopping term −t2hσσ contribution increases,
effectively the hopping transport will be larger than that given
by −teffht1 ; these two hopping terms together can be regarded
as producing a less than e−g2

suppression of the hopping inte-
gral reported in earlier variational LF treatments. Furthermore,
concerning the effect of including a large Hubbard U term in
a Holstein model, we get the NN interaction 2V reduced to
2V − J/4; thus, the mobility would be enhanced, which is
consistent again with the earlier works using variational LF
transformation.

III. t-V1-V2 HARD-CORE-BOSON (HCB) MODEL

In the rest of the paper we study the correlated singlet phase.
No pair of singlets can share a common site. The closest two
singlets can approach each other is to have one spin from each
singlet be on adjacent sites. The singlets transport via two pro-
cesses: (i) the NN spin-pair σ σ̄ hopping given by the hσσ̄ and
h′

σ σ̄ terms in Eq. (9), and (ii) a second order process involving
breaking of a bound singlet state [with binding energy EB =
−J + t2/(g2ω0)] and hopping of the two constituent spins (of
the singlet) to (a) neighboring sites in the same direction se-
quentially [yielding the term −tbhσ σ̄ with tb ≡ t2e−2g2

/|EB |]
or (b) neighboring sites in opposite direction and back [yield-
ing the term −tbhnn]. We now make the important observation
that a NN singlet can be represented as a HCB located at the
center of the singlet. Thus the system of NN singlets in a
periodic lattice is transformed into a system of HCB also in a
periodic lattice with the same lattice constant a but with the
whole lattice displaced by a/2. Then the effective Hamiltonian
of the HCB system is the following t-V1-V2 model:

Hb =
∑

j

[−T (b†j bj+1 + H.c.) + V1njnj+1 + V2njnj+2],

(16)
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where bj is the HCB destruction operator, nj = b
†
j bj ,

T ≡ (t2 + 2J3 + tb), V1 = ∞ (because two singlets cannot
share a site), and V2 
 2V − J/4 [with V2/T > 10 (i.e.,
V2/T � 1) for parameter values in the singlet regime of
our phase diagrams in Fig. 1(a)]. In the following we set
T = 1. We corroborate our mapping of the effective HHM
Hamiltonian H eff

hh (for the singlet phase) onto the HCB
Hamiltonian Hb by demonstrating in Fig. 1(b) that the
static structure factor S(k) ≡ ∑

l e
iklW (l) for the HHM and

HCB cases coincide when the correlation function W (l) ≡
(1/N )

∑
j [〈AjAj+l〉 − 〈Aj 〉〈Aj+l〉] is defined through

Aj ≡ (S+
j S−

j+1 + H.c.) for HHM and Aj ≡ nj for HCB.
It should be made clear that, for performing calculations,

there is a distinct advantage of accessing bigger system sizes
for the HCB system as compared to the HHM Hamiltonian.
For instance calculations involving 8 HCB (equivalent to 8↑
and 8↓ electrons) on a 24 site lattice require(

24

8

)
= 735471

basis states in the occupation number representation and hence
are certainly feasible using modified Lanczos method; on the
other hand, using the same technique, one can barely deal
with 8 electrons (4↑ and 4↓) on a 16 site lattice for the HHM
Hamiltonian as it requires(

16

8

)
×

(
8

4

)
= 900900

basis states. It is also of interest to note that representing a NN
singlet by a HCB located at the center of the singlet, although
has been done here for a one-dimensional system, can also be
done in higher dimensional systems.

IV. CDW CORRELATIONS

The repulsive terms in the HCB Hamiltonian Hb indicate
that a CDW is possible. We study the correlations by extending
to our t-V1-V2 model the well documented WQMC approach
for obtaining correlation functions and structure factor for the
t-V model.58 Plots of the structure factor in Fig. 2 show a peak
at wave vector Q = 2πn suggesting a CDW. However (as
shown in Fig. 2), only at filling n = 1/3, where the structure
factor peak is approximately that for the strong CDW case
corresponding to V2 → ∞, can we assert that CDW occurs.
Specifically at n = 1/3 and for V2 > 10, the W (l) has a simple
structure [i.e., W (l) ≈ 1/3 − 1/3 × 1/3 = 2/9 when l is a
multiple of 3 whereas for other l values W (l) ≈ −1/3 × 1/3 =
−1/9] yielding S(k) ≈ δk,2π/3N/9. Furthermore (in Fig. 2),
the peak of the structure factor S(Q) (which remains essen-
tially constant at all relevant interactions V2 > 10) rapidly
decreases as n decreases from 1/3—a trend that is similar
to that of S(Q) for the t-V model as one moves away from
half-filling.59 Nevertheless, the plots of correlation function
(in Fig. 3) do not seem to decay at large distance (for both
n = 1/4 and n = 1/5) while the structure factor peak (for
n = 1/4) seems to grow monotonically with system size—all
indicative of a CDW. Later on, the above ambivalence will be
resolved and it will be demonstrated unequivocally that our
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FIG. 2. (Color online) WQMC plot of the structure factor S(k)
versus k—for N = L = 60, β = L�τ with �τ = 0.125, and at
various densities—shows CDW at n = 1/3 with S(Q) ≈ N/9, i.e.,
maximum allowed value. The peak values S(Q) rapidly fall as n

moves away from 1/3 and are independent of V2 at large values of V2

(see inset).

t-V1-V2 model has a CDW only at n = 1/3, while at other
fillings n < 1/3 superfluidity (and no CDW) results.

Since V1 = ∞ and because we are dealing with a one-
dimensional system, we simplify the phase transition analysis
by performing an exact mapping of the N -site t-V1-V2 model
onto a t-V model with N − Np sites and with V = V2.
This enables us to access bigger system sizes for performing
numerics; furthermore, since the phase diagram of the t-V
model is well known, we can clearly determine the existence
of a CDW which was not possible using the above structure-
factor/correlation-function analysis. Later, we will also show
that the t-V model lends itself to a simple finite size scaling
approach for obtaining accurately the superfluid density in the
thermodynamic limit.

We first recognize that we can recast the HCB Hamiltonian
in Eq. (16) as the following projected Hamiltonian HP

b where
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FIG. 3. (Color online) Plots, obtained using WQMC at β = N�τ

with �τ = 0.125, showing correlations in the t-V1-V2 model. The
correlation function W (l), plotted for N = 80 sites in (a), does not
seem to decay. The peak of the structure factor S(Q), plotted in
(b) for various system sizes at n = 1/4, grows monotonically.
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NN sites of a particle are projected out:

HP
b =

∑
j

[−T {(1 − nj−1)b†j bj+1(1 − nj+2) + H.c.}

+V2(1 − nj−1)nj (1 − nj+1)nj+2(1 − nj+3)]

=
∑

j

[−T (b̃†j b̃j+1 + H.c.) + V2ñj ñj+2], (17)

where b̃
†
j ≡ (1 − nj−1)b†j (1 − nj+1) and ñj ≡ b̃

†
j b̃j . Next, we

observe that HP
b commutes with

∑
j nj (1 − nj+1) and thus

the total number of excitons (with each exciton comprised of
a particle with a hole to its right) is conserved. Physically,
this is due to the fact that infinite NN repulsion ensures that
the neighboring sites of a particle are unoccupied. With each
particle, we associate only one neighboring vacant site (say, the
site on the right side of the particle) so that situations such as
particles on NNN sites can also be dealt with. Then by deleting
the sites of the holes in all the excitons and having only a NN
interaction V = V2 and no other interaction in the reduced
system of N1 ≡ N − Np sites, we get the same eigenenergies
(see Ref. 60 for a similar analysis for the t-V model in one-
dimension). We further recognize that there is a one-to-one
mapping between the eigenstates of the HP

b Hamiltonian and
the eigenstates of the t-V Hamiltonian Ht-V ,

Ht−V =
∑

j

[−T (b†j bj+1 + H.c.) + V njnj+1], (18)

with V = V2 and N1 sites while the corresponding eigenen-
ergies are identical. We can thus extract the eigenenergy
spectrum of the t-V1-V2 model by studying the equivalent
t-V model. We first observe that n = Np/N = 1/3 for the
t-V1-V2 model corresponds to the n = Np/(N − Np) = 1/2
for the t-V model and thus superfluid density vanishes (as the
two models have the same eigenenergies) and a CDW results59

since the mass gap is the same for both. Furthermore, at all
fractions n < 1/3 for the t-V1-V2 model we get a superfluid
(and no CDW) since for the t-V model the same is true at
n < 1/2.59 Lastly, since n = 1 for the t-V model translates
to n = 1/2 for the t-V1-V2 model, we note that electron-hole
symmetry for the t-V model guarantees that t-V1-V2 model
exhibits superfluidity and absence of CDW for 1/3 < n < 1/2
as well.

V. SUPERFLUID DENSITY

We will now substantiate the above observations on the
occurrence of superfluidity through calculating the superfluid
density by threading the chain with an infinitesimal magnetic
flux. We will exploit the one-dimensionality of the system and
outline a simple finite size scaling approach to calculate the
superfluid density in the thermodynamic limit. We first note
that the energy for the t-V1-V2 model, when V2 = ∞ and (as
before) V1 = ∞, is given by the tight binding Hamiltonian
energy for N2 ≡ N − 2Np particles where we have excluded
both the NN and NNN holes to the right of the particles in the
t-V1-V2 model. The total energy, when threaded by a flux θ , is
expressed as

E(θ ) = −2T
∑

k

cos[k + θ/N2]. (19)
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FIG. 4. (Color online) Superfluid density for an infinite system
nth

s at various densities n and interactions V2 for the t-V1-V2 model
at V1 = ∞ are depicted in (a). Values of nth

s in (a) are the intercepts,
obtained by extrapolation of the straight lines through the ns data
plotted at various 1/N2

1 values, in figures such as (b) and (c). The
solid lines in (a) are for V2 = ∞ and obtained from Eq. (20).

Then the superfluid fraction is given by61,62

ns = N2
2

NpT

[
1

2

∂2E

∂θ2

]
θ=0

= 1

Np

sin
(πNp

N2

)
sin

(
π
N2

) , (20)

where antiperiodic (periodic) boundary conditions have been
taken for even (odd) values of Np. The superfluid density in the
thermodynamic limit nth

s can be related to the finite (N2-site)
system superfluid density ns as follows:

nth
s = ns

[
1 − 1

6

(
π

N2

)2

+ 1

120

(
π

N2

)4

· · ·
]
. (21)

From the above expression (valid for V2 = ∞), at a fixed
density, we expect (nth

s − ns)/ns ∝ 1/N2
2 or 1/N2

1 (with
corrections of order 1/N4

2 or 1/N4
1 ) for the large but finite V2

case as well. We calculated the superfluid density at various
large values of V2, system sizes N , and filling fractions n; we
find [as exemplified in Figs. 4(b) and 4(c)] that ns indeed
varies linearly with 1/N2

1 , using which we obtain the various
nth

s values.
From Fig. 4(a), we see that the superfluid density (plotted in

the thermodynamic limit) gradually decreases with increasing
V2 and reaches the asymptotic value; the nth

s values for smaller
filling fractions decrease more slowly because repulsion is less
effective at lower densities. Regarding the superfluid density
at n = 1/3 and V2 = ∞, it vanishes at all system sizes as
can be seen from Eq. (20). However, at finite V2 � 10, ns

vanishes exponentially with system size [as shown in Fig. (5)]
which is consistent with the fact that there is a full CDW gap
at n = 1/3.

VI. BEC OCCUPATION NUMBER

Lastly, we will calculate the Bose-Einstein condensate
(BEC) occupation number n0. We first recall the well-
established result that n0, for a system of HCB in a one-
dimensional tight binding lattice, varies as C(n)

√
N in the
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FIG. 5. (Color online) Superfluid density decaying exponentially
with system size for the CDW state at one-third filling and large NNN
repulsion V2.

thermodynamic limit with the coefficient C(n) monotonically
increasing from 0 as the density n increases from 0 to 1/2;63,64

consequently, the condensate fraction n0/Np ∝ 1/
√

N → 0.
Next, in the presence of repulsion (as argued below), we expect
the BEC occupation number n0 to again scale as

√
N ; however,

the coefficient of
√

N will be smaller due to the restriction on
hopping imposed by repulsion.

The Bose-Einstein condensate (BEC) occupation number
n0 is obtained from

n0 = 1

N

∑
i,j

〈�0|b†i bj |�0〉, (22)

where |�0〉 is the ground state. We calculate n0 using two
methods: modified Lanczos for smaller systems and a newly
developed WQMC method for both small and larger systems
(see Fig. 6). The values of n0 for our t-V1-V2 model in
a N -site original system SO at various densities [such as
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FIG. 6. (Color online) Plots of BEC occupation number n0,
obtained from modified Lanczos (open circles) and WQMC (crosses),
with (a), (c), and (e) pertaining to the t-V1-V2 model (with V1 =
∞, and V2 = 35) while (b), (d), and (f) respectively pertain to
the corresponding tight binding model with enhanced densities
Np/(N − 2Np). For WQMC, β = N�τ with �τ = 0.125, 0.15, and
0.175 for (a), (c), and (e), respectively.

n = 1/4,1/5,1/6] seem to be smaller than the n0 for the
corresponding transformed tight binding system S2Np

, realized
when V1 = V2 = ∞, with N − 2Np sites and enhanced
densities [n/(1 − 2n) = 1/2,1/3,1/4, respectively]. This can
be understood from the fact that, in the transformed S2Np

system of N − 2Np sites [based on Eq. (22)], a particle can
hop to more sites between two particles than in the original
t-V1-V2 system leading to a larger n0. For the S2Np

system, it
is important to realize that n0 ∝ √

N − 2Np ∝ √
N .

We will now consider a tight binding system S4Np
with

N − 4Np sites and Np particles so as to obtain the lower bound
for the BEC occupation number n0 for the N -site t-V1-V2

system SO . For every configuration in the S4Np
system, there

is a corresponding configuration in the SO system that can
be obtained by adding two empty sites to the right and two
empty sites to the left of all particles. Furthermore, the ground
state kinetic energy contribution of the S4Np

and S2Np
systems

are both proportional to N ; hence, in the ground state of the
original SO system, the combined probability weighting of all
the configurations obtained from the S4Np

system (by adding
four empty sites next to every particle) is a finite fraction. Since
the BEC occupation number n0 of the S4Np

system scales as√
N , it follows that the lower bound of the n0 for the original SO

system also varies as
√

N . Thus, the BEC occupation number
n0 of the original N -site t-V1-V2 system SO will vary as

√
N

since it is constrained from above by n0 ∝ √
N for the S2Np

system.
At higher densities (i.e., 1/3 > n � 1/5) in our t-V1-V2

model, we find that the values of n0 seem to increase more
slowly with system size [see Figs. 6(a), 6(c), and 6(e)]—this
being due to smaller coefficients of

√
N resulting from

interaction effects. Moreover, we also note [from Figs. 6(b)
and 6(e)] that the value of n0 [i.e., the coefficient of

√
N in the

expression for n0] decreases due to repulsion.
Our WQMC method (see Appendix B for details) to obtain

BEC fraction is a modification of the standard approach
to studying correlations in the xxz model.58,65 Since the
Hamiltonian is real, it can be shown that the probability
amplitude of any basis state in the ground state expression
can be taken as real and non-negative. Consequently, we
approximate the ground state by

|�〉 =
∑

i

√
〈φi | exp[−βH ]|φi〉

Z
|φi〉, (23)

with Z being the partition function, |φi〉 a basis state of
the system in the occupation number representation, and β

being sufficiently large. Then we calculate n0 by setting
|�0〉 = |�〉 in Eq. (22). Our WQMC approach to n0 has
been benchmarked against the modified Lanczos method
for small system sizes (see Fig. 6). The number of passes
needed to estimate |�〉 turns out to be an order of magnitude
larger than that needed for obtaining correlation functions
by WQMC. We take |�〉 to be the state that produces an
estimate of the kinetic energy 〈�|K|�〉 (with K being the
kinetic energy operator) that is closest to the usual WQMC es-
timate 〈〈φi | exp[−βH ]K|φi〉/〈φi | exp[−βH ]|φi〉〉QMC where
〈〉QMC denotes a quantum Monte Carlo average over various
states |φi〉.
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VII. CONCLUSIONS

In this paper, we have analyzed the correlated NN singlet
phase predicted by the effective Hamiltonian of the Hubbard-
Holstein model by essentially mapping the Hamiltonian onto
the well-understood one-dimensional t-V model with large
repulsion. Because the physics is dictated by the t-V model,
we find that CDW and superfluidity occur mutually exclusively
with CDW resulting only at n = 1/3 while superfluidity
manifests itself at all other fillings. We also show that the BEC
occupation number n0 for our model scales as

√
N similar

to the n0 for a HCB tight binding model; additionally, we
demonstrate numerically (using our WQMC method and a
modified Lanczos algorithm), at n �= 1/3, that the n0 for our
model is smaller than the n0 for a HCB tight binding model.

We close by observing that, while CDW and superconduc-
tivity seem to be incompatible in the one-dimensional HHM,
experimental results (such as those reported in Refs. 1–3) sug-
gest that they can coexist in higher dimensions. Furthermore,
the vanishing of BEC fraction for the HHM is again an artifact
of the one-dimensionality and should make way to nonzero
fractions for higher dimensions just as in the case of the xxz

model.62
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APPENDIX A

In this Appendix, we will outline our approach to carrying
out perturbation theory and obtaining the ground state energy.
We assume a Hamiltonian of the form H = H0 + H1 where
the unperturbed H0 has separable eigenstates |n,m〉 = |n〉el ⊗
|m〉ph with |0,0〉 being the ground state with zero phonons;
the eigenenergies, corresponding to |n,m〉, are E(0)

n,m = Eel
n +

E
ph
m . Furthermore, the perturbation H1 is the electron-phonon

interaction term of the form given in Eq. (7).
After a canonical transformation,15 we obtain

H̃ = eSHe−S = H0 + H1 + [H0 + H1,S]

+ 1
2 [[H0 + H1,S],S]. (A1)

In the ground state energy, we know that the first-
order perturbation term is zero by construction (in fact,
〈n1,0|H1|n2,0〉 = 0). To eliminate the first-order term in H1,
we set H1 + [H0,S] = 0. Consequently, we obtain the matrix
elements

〈n1,m1|S|n2,m2〉 = −〈n1,m1|H1|n2,m2〉(
En1,m1 − En2,m2

) . (A2)

We now assume that both NN hopping integral te−g2
and

the Heisenberg spin interaction strength J are much smaller
compared to the phononic energy ω0 which is true at large
couplings g. Hence, we make the approximation (E(0)

n1,m1
−

E(0)
n2,m2

) 
 (Eph
m1 − E

ph
m2 ); then, using Eqs. (A1) and (A2), we

obtain

ph〈m1|H̃ |m2〉ph 
 ph〈m1|H0|m2〉ph

+ 1

2

∑
m̄

ph〈m1|H1|m̄〉phph〈m̄|H1|m2〉ph

×
[

1

E
ph
m2 − E

ph
m̄

+ 1

E
ph
m1 − E

ph
m̄

]
. (A3)

Next, it is important to note that the second order correction
E(2)

n,m, corresponding to the unperturbed eigenenergy E(0)
n,m, can

be expressed as follows:

E(2)
n,m =

∑
m̄

〈n,m|H1|m̄〉phph〈m̄|H1|n,m〉
E

ph
m − E

ph
m̄


 〈n,m|H̃ |n,m〉 − 〈n,m|H0|n,m〉. (A4)

Furthermore, since 〈n1,0|H1|n2,0〉 = 0, 〈n,0|H̃ |n,0〉 is the
total energy that resulted from performing second order
perturbation theory on the unperturbed energy E

(0)
n,0. Our

procedure for finding ground state amounts to obtaining the
lowest eigenvalue for the matrix with elements 〈n1,0|H̃ |n2,0〉;
this is equivalent to finding the ground state of the effective
Hamiltonian He (as was done in Ref. 15):

He = ph〈0|H0|0〉ph + H (2), (A5)

where

H (2) =
∑
m̄

ph〈0|H1|m̄〉ph × ph〈m̄|H1|0〉ph

E
ph
0 − E

ph
m̄

. (A6)

This procedure amounts to considering the restricted subspace
spanned by eigenstates |n,0〉1 obtained from carrying out first
order perturbation theory on |n,0〉:

|n,0〉1 = |n,0〉 +
∑
m̄

|m̄〉phph〈m̄|H1|n,0〉
E

ph
0 − E

ph
m̄

. (A7)

It is important to recognize that the state |n,0〉1 is not separable,
i.e., cannot be expressed as a product of an electronic wave
function and a phononic wave function. We have restricted
ourselves to the subspace of the states |n,0〉1 because the states
|n,m �= 0〉1 correspond to higher energy states due to the fact
that the electronic excitation energy is much smaller than the
phononic energy, i.e., te−g2 � ω0. Additionally, we would like
to point out that the total ground state energy (in second order
perturbation theory) is obtained by diagonalizing the matrix
whose elements are 〈n1,0|H |n2,0〉1.

APPENDIX B: WQMC FOR BEC FRACTION

We will discuss, in brief, the usual world-line quantum
Monte Carlo (WQMC) approach58,65 adapted for calculating
correlations in our t-V1-V2 model Hamiltonian given below:

Hb =
∑

j

H j =
∑

j

[−T (b†j bj+1 + H.c.)

+V1njnj+1 + V2njnj+2]. (B1)

Since this is quite similar to the t-V model, we can employ
the checkerboard decomposition Hb = H1 + H2 where H1 =∑

jodd Hj and H2 = ∑
jeven Hj . It is important to note that

both H1 and H2 consist of independent two-site pieces.
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Because of the decomposition, it becomes easier to evaluate
the expectation value of an operator A given by

〈A〉 = Tr[Ae−βHb ]

Tr[e−βHb ]
, (B2)

with A involving only number operators (such as ninj ) or NN
hopping operators (such as b

†
j bj+1 + H.c.). Now we calculate

the partition function:

Z = Tr[e−βHb ]

=
∑

i1,...,i2L

〈i1|U1|i2L〉〈i2L|U2|i2L−1〉...〈i3|U1|i2〉〈i2|U2|i1〉.

Here Ui = e−�τHi ,β = L�τ , and each of |i1〉,...,|i2L〉 form a
complete basis set in the occupation number representation.
Here the world lines are the locus of the particles in the
imaginary time (τ ) direction.

For the density-density correlation function 〈nini+l〉 (which
is the expectation value of a diagonal operator), the above
procedure of inserting 2L time slices yields the simple form

〈nini+l〉 = 1
2 〈[〈iL|nini+l|iL〉 + 〈iL+1|nini+l|iL+1〉]〉QMC,

where 〈 〉QMC represents the average over many QMC passes.
Notice that we have concentrated only on L and L + 1 time
slice indexes although expectation value can be taken over all
the 2L time slice indexes for better statistics. As for 〈b†j bj+1 +
H.c.〉 (which corresponds to a nondiagonal operator), WQMC
procedure yields

〈b†j bj+1 + H.c.〉 =
〈 〈iM |(b†j bj+1 + H.c.)Uk|iM+1〉

〈iM |Uk|iM+1〉
〉

QMC

,

where, for odd (even) values of j , we take k = 1 (2) and even
(odd) M . However, as regards obtaining the expectation value
of (b†j bj+m + H.c.) for m > 1, the simple procedure (involving
checkerboard decomposition) given above is not applicable;
moreover, other suggested procedures in the literature are
complicated.58

Here, we propose an alternate simple method for evaluating
〈b†j bj+m + H.c.〉 for m > 1 and thus obtaining the BEC
occupation number

n0 = 1

N

∑
i,j

〈�0|b†i bj |�0〉, (B3)

with |�0〉 being the ground state. To the WQMC method
mentioned above, we add our trick to construct |�0〉 as a

linear combination of the basis states |φi〉 in the occupation
number representation, i.e., |�0〉 = ∑

i ai |φi〉 with
∑

i a
2
i = 1.

Once we get a good estimate of the ground state |�0〉, we can
calculate the expectation values of any operator.

After equilibrium (which is attained after several QMC
passes), we run the simulation for a sufficient number of QMC
passes and store the basis states corresponding to time slices
L and L + 1 in each pass. It is obvious that some of the basis
states will occur more frequently. The frequency of occurrence
of a basis state |φi〉 is proportional to the probability (a2

i )
of its occurrence in the expansion of the ground state |�0〉.
Now, the coefficients ai can be taken as real because the
Hamiltonian is real and consequently |�0〉 can also be taken
as real. Furthermore, all ai can be taken to be positive for the
following reason. Firstly, the expectation values of NN and
NNN interaction terms remain unaffected by the sign of ai .
Next, the expectation value of the hopping term is given by

−T 〈�0|b†l bl+1|�0〉 = −T
∑
i,j

〈φi |ai(b
†
l bl+1)aj |φj 〉]

= −T
∑
i,k

〈φi |aick|φk〉] = −T
∑

i

aici .

(B4)

This value is minimized when ai and ci have the same sign.
Then, if we take ai to be positive for all i, ci > 0 for all i. Thus
in |�0〉 = ∑

i ai |φi〉, we can take all ai to be positive and real.
Let |�i〉 and Ei be the eigenstates and the eigenenergies of

the Hamiltonian with E0 being the ground state energy. For
sufficiently large β, we approximate the ground state by

|�〉 =
∑

i

√
〈φi | exp[−βH ]|φi〉

Z
|φi〉, (B5)

because then

|�〉=
∑

i

√
〈φi |

∑
j |�j 〉〈�j |exp[−βH ]

∑
k |�k〉〈�k||φi〉

Z
|φi〉

≈
∑

i

√
〈φi |�0〉 exp[−βE0]〈�0|φi〉

Z
|φi〉

≈
∑

i

〈φi |�0〉|φi〉 = |�0〉, (B6)

since the partition function Z = ∑
i〈�i | exp[−βH ]|�i〉 ≈

exp[−βE0].
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41R. Zeyher and M. L. Kulić, Phys. Rev. B 53, 2850 (1996).
42Y. Takada and A. Chatterjee, Phys. Rev. B 67, 081102 (2003).
43H. Fehske, D. Ihle, J. Loos, U. Trapper, and H. Buttner, Z. Phys. B:

Condens. Matter 94, 91 (1994).
44A. Di Ciolo, J. Lorenzana, M. Grilli, and G. Seibold, Phys. Rev. B

79, 085101 (2009).
45P. Barone, R. Raimondi, M. Capone, C. Castellani, and M. Fabrizio,

Phys. Rev. B 77, 235115 (2008).
46Alexandre Payeur and David Sénéchal, Phys. Rev. B 83, 033104
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