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We report on the direct numerical measurements of the conductivity of graphene monolayer. Our numerical
simulations are performed in the effective lattice field theory with noncompact 3 + 1-dimensional Abelian
lattice gauge fields and 2 + 1-dimensional staggered lattice fermions. The conductivity is obtained from the
Green-Kubo relations using the maximum entropy method. We find that in a phase with spontaneously broken
sublattice symmetry the conductivity rapidly decreases. For the largest value of the coupling constant used in our
simulations g = 4.5, the dc conductivity is less than the dc conductivity in the weak-coupling phase (at g < 3.5)
by at least three orders of magnitude.
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I. INTRODUCTION

Graphene, a single layer of carbon atoms which form a two-
dimensional honeycomb lattice, is probably the most widely
discussed material in modern condensed-matter physics. A
peculiar feature of charge carriers in graphene is that their
energy spectrum near the Fermi point is similar to that of the
free 2 + 1-dimensional massless Dirac fermions. This explains
the unusual transport properties of graphene, such as Klein
tunneling or novel types of the quantum Hall effect.1–3

The four spinor components of these Dirac fermions
correspond to charge carriers which are localized on one of the
two elementary rhombic sublattices of the honeycomb lattice
and which are close to one of the two distinct Fermi points in
the Brillouin zone of graphene. In this low-energy description
two components of the nonrelativistic spin are treated as two
independent fermionic flavors. Interactions between fermions
are mediated by electromagnetic fields which propagate freely
in 3 + 1-dimensional space. The strength of electromagnetic
interactions can be controlled by placing graphene layers on
substrates with different dielectric permittivities.

Since charge carriers in graphene propagate with speed
vF ≈ c/300, the effective coupling constant for electromag-
netic interactions turns out to be quite large, α = α0/vF =
300/137 ≈ 2 for suspended graphene.1–3 In this case the non-
perturbative effects could play an important role. Theoretical
considerations suggest that such strong interaction between
charge carriers could result in the insulator-semimetal phase
transition in graphene.4–9

However, due to the large value of the effective coupling
constant there are no reliable analytical methods which allow
us to study this phase transition from the first principles,
and one has to use numerical simulations. The effective
field theory of graphene can be efficiently simulated using
lattice staggered fermions.10–17 A single flavor of staggered
fermions on 2 + 1-dimensional square lattice corresponds to
two independent flavors of continuum Dirac fermions,18–20

which exactly reproduces the number of fermion flavors in the
graphene effective field theory.

In Refs. 10–17 the insulator-semimetal phase transition
was studied numerically by considering the fermionic“chiral”
condensate 〈ψ̄ψ〉. Within the effective field theory of Dirac
quasiparticles, nonzero condensate signals the opening of a
gap in the quasiparticle spectrum, thus it plays the role of the
order parameter for the semimetal-insulator phase transition.
In Refs. 10–14 Coulomb interactions between fermions were
modeled by a noncompact 3 + 1-dimensional Abelian lattice
gauge field. It was found that the condensate is formed at
a critical coupling constant of the noncompact gauge field
β ∼ 0.1. Motivated by the theoretical considerations of Refs. 9
and 21, the authors of Refs. 15–17 have also studied a similar
theory with a contact interaction instead of Coulomb potential.
They have also found that fermionic condensate is formed at
sufficiently strong coupling.

However, the value of the conductivity has not yet been
directly measured in numerical simulations. In this paper
we report on direct numerical measurements of ac and dc
conductivities of graphene within the effective field theory of
Dirac quasiparticles. Our lattice regularization of this effective
field theory is similar to the one used in Refs. 10–14. The
conductivity is obtained from the Green-Kubo dispersion
relations for the ground-state correlators of electromagnetic
currents. These relations are inverted with the help of the
maximum entropy method.22,23

In agreement with the predictions of Refs. 4–17 we find
that when a nonzero fermionic condensate is formed, the
dc conductivity rapidly decreases. For the maximal value
of the coupling constant used in our simulations, which
corresponds to substrate dielectric permittivity ε = 1.75, the
dc conductivity is smaller than the dc conductivity in the
weak-coupling limit by at least three orders of magnitude.

The paper is organized as follows: in Sec. II we briefly
review the effective field theory of graphene and discuss its
lattice regularization, as well as suitable simulation algorithms.
In Sec. III we present and discuss our numerical results
for the graphene conductivity and the fermionic condensate
〈 ψ̄ψ 〉. Section IV contains some concluding remarks and the
discussion of the obtained results.

045107-11098-0121/2012/86(4)/045107(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.045107


P. V. BUIVIDOVICH et al. PHYSICAL REVIEW B 86, 045107 (2012)

II. LATTICE REGULARIZATION OF THE EFFECTIVE
FIELD THEORY OF GRAPHENE

A. Basic definitions

We start from the Euclidean path integral representation
of the partition function of the effective field theory of
graphene:1–3

Z =
∫

Dψ̄fDψf DAμ exp

[
−1

2

∫
d4x (∂[μAν])

2

−
∫

d3x ψ̄f �0 (∂0 − ieA0) ψf

−
∑
i=1,2

∫
d3x ψ̄f �i (∂i − ie vF Ai) ψf

]
, (1)

where Aμ, μ = 0 . . . 3 is the vector potential of the 3 + 1
electromagnetic field, �μ are Euclidean γ matrices, and ψf ,
f = 1,2 are two flavors of Dirac fermions which correspond
to the two spin components of the nonrelativistic electrons in
graphene. We have also taken into account that Dirac fermions
propagate in 2 + 1-dimensional subspace at x3 = 0 with speed
vF ≈ 1/300.

After rescaling of the coordinates and the vector potential,

x0 → x0/vF , A0 → √
vF A0, Ai → 1√

vF

Ai, (2)

we conclude that the fluctuations of the spatial components Ai

of the vector potential are suppressed by a factor 1/vF and we
can set Ai = 0 in practical calculations. We thus arrive at the
following partition function:

Z =
∫

Dψ̄DψDA0 exp

[
−1

2

∫
d4x(∂iA0)2

−
∫

d3x ψ̄f

(
�0 (∂0 − igA0) −

∑
i=1,2

�i∂i

)
ψf

]
, (3)

where the effective coupling constant g2 = e2/vF ≈
300/137 ∼ 2. Finite temperature T can be introduced by
imposing periodic boundary conditions in Euclidean time x0

with the period vF

kT
.

By virtue of the commutation relations [Oa,�0�i] = 0 with
Oa = 1,�3, �5, i�3�5 the action of the effective field theory
(3) has the global U(4) symmetry

ψf → exp (iOa ⊗ τb αab) ψf , (4)

where τ0 = 1 and τi are spin Pauli matrices which act on
flavor index f . Finite temperature and chemical potential do
not break this global symmetry on the level of the Lagrangian,
however, it might be broken spontaneously due to sufficiently
strong Coulomb interactions.4–17

B. Lattice action

Following Refs. 10–17 we use staggered fermions19,20

in order to discretize the fermionic part of the action in
(3). One flavor of staggered fermions in 2 + 1 dimensions
corresponds to two flavors of continuum Dirac fermions,18–20

which makes them especially suitable for simulations of the
graphene effective field theory.

The action for staggered fermions coupled to Abelian lattice
gauge field is

S� [�̄x,�x,θx, μ]

=
∑
x,y

�̄x Dx,y[θx, μ] �y

= 1

2

∑
x

δx3, 0

⎛
⎝ ∑

μ=0,1,2

�̄xαx,μeiθx,μ�x+μ̂

−
∑

μ=0,1,2

�̄xαx,μe−iθx,μ�x−μ̂+m�̄x�x

⎞
⎠ , (5)

where the lattice coordinates x take integer values xμ =
0 . . . Lμ − 1 and x3 is restricted to x3 = 0, �̄x is a single-
component Grassman-valued field, αx,μ = (−1)x0+···+xμ−1 , and
θx, μ are the link variables which are the lattice counterpart of
the vector potential Aμ(x). For further convenience, we have
also introduced the matrix elements Dx,y of the staggered
Dirac operator. The fields �̄x , �x satisfy periodic boundary
conditions in spatial directions and antiperiodic boundary
conditions in the Euclidean time direction. To account for
the latter, we make a shift θx,0 → θx,0 + π in (5) at the time
slice with x0 = 0.

In order to recover the original spinor and flavor indices
of the continuum Dirac fermions in (3), the lattice should
be subdivided into the cubic blocks consisting of 2 × 2 × 2
elementary lattice cells. Now the coordinates of all lattice sites
can be enumerated as xμ = 2yμ + ημ, where ημ = 0,1. We
define the new fields on the lattice of y coordinates:11,19,20

[�y]αf = 1

4
√

2

∑
η

[
�

η0
0 �

η1
1 �

η2
2

]α

f
Wy, η�2y+η, (6)

where Wy, η is the product of eiθx,μ along the path which
connects lattice sites with coordinates 2y and 2y + η, α =
1,2,3,4 is the Dirac spinor index and f = 1, . . . ,4 is the flavor
index. It can be shown that in terms of these new fields defined
on the lattice with double lattice spacing the staggered fermion
action (5) reproduces the naive discretization of the continuum
fermionic action in (3). However, there are additional terms
which explicitly break the global U(4) symmetry of the
continuum action in (3) down to its U(1) ⊗ U(1) subgroup
and which decouple only in the long-wavelength limit.11,19,20

Since the fermion action (5) is restricted to the 2 + 1-
dimensional subspace with x3 = 0, not all components of
[�y]αf are independent. Due to the absence of �3 in (6) it
satisfies the constraint

�3 �5 �y �5 �3 = �y. (7)

It is easy to check that in a representation of Euclidean
γ matrices with �3 �5 = diag (1,1, − 1, − 1) this constraint
implies the following block-diagonal form of the matrices �y :

� =
(

A 0
0 B

)
, (8)

which is equivalent to two flavors of four-component Dirac
spinors.

Now let us consider lattice discretization of the action of the
electromagnetic field in (3). There exist two basic formulations
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of the U(1) lattice gauge theory: compact and noncompact. In
order to exclude nonphysical confining phase of the compact
U(1) gauge theory24 here we use the noncompact action for
the gauge fields:

Sg[θx, μ] = β

2

∑
x

3∑
i=1

(θx, 0 − θx+î, 0)2, (9)

where summation over x now goes over the whole four-
dimensional lattice. As discussed above, the fluctuations of the
spatial components of the vector potential Ai(x) are suppressed
in the effective field theory of graphene (3). Correspondingly,
we also set to zero the spatial link variables θx, i .

In continuous space, the inverse lattice coupling constant β

is related to the substrate dielectric permittivity ε as

β ≡ 1

g2
= vF

4πe2

ε + 1

2
, (10)

where the factor ε+1
2 takes into account the screening of the

electrostatic interactions by the substrate. However, this rela-
tion can be modified due to finite lattice spacing effects such
as the flavor symmetry breaking for staggered fermions.25,26

Generally, such effects tend to shift the phase transition
towards the weak-coupling region.25,26 We leave the study of
such finite-spacing artifacts for future work.

We note also that although the gauge field action (9) is
noncompact, the fermionic action (5) is still “compact,’ that
is, periodic in the variables θμ(x). In general, it is impossible
to couple the gauge field to lattice fermions in a noncompact
way while preserving the gauge invariance of the theory.

Since the fermionic action (5) is bilinear in the fermion
fields, they can be integrated out in the partition function (3):

Z =
∫

D�̄x D�x Dθx, 0

× exp(−Sg[θx, 0] − S� [�̄x,�x,θx, 0])

=
∫

Dθx, 0 det(D[θx, 0]) exp (−Sg[θx, 0]). (11)

Thus we deal with the effective action

Seff[θx, 0] = Sg[θx, 0] − ln det(D[θx, 0]), (12)

which includes the determinant det(D[θx, μ]) of the staggered
Dirac operator Dx,y[θx, μ] introduced in (5).

C. Simulation algorithm

We use the standard hybrid Monte Carlo method for
generation of the configurations of the field θx, 0 with the
statistical weight exp (−Seff[θx, 0]).11,19,20 In order to calculate
the determinant of the staggered Dirac operator in (11), we
take into account that in the basis of even and odd lattice sites
(which are defined as lattice sites with an even or odd sum of
all coordinates x0 + x1 + x2) it takes the form11,19,20

D[θx, 0] =
(

m Deo

Doe m

)
(13)

with D
†
eo = −Doe. The determinant of D is thus equal to

det(D) = det(m2 + D†
eo Deo), (14)

which is a manifestly positive quantity. Note that the operator
m2 + D

†
eo Deo acts only on the subspace of even lattice sites.

We use the � algorithm in our simulations,19,20 in which the
determinant (14) is represented in terms of a Gaussian integral
over the pseudofermion field φx :

det(m2 + D†
eo Deo)

=
∫

Dφ̄x Dφx exp

(
−

∑
x,y

φ̄x (m2 + D†
eo Deo)−1

x,y φy

)
,

(15)

where the sum over x,y goes only over even lattice sites.
The field φx is then stochastically sampled with the weight
(15). To this end we generate the random field ξx according to
the Gaussian distribution P [ξx] ∼ exp (−∑

x ξ̄x ξx) and then
calculate φx = ∑

y(m2 + D
†
eo Deo)−1

x,y ξy at the beginning of
each molecular dynamics trajectory.19,20 The nonzero mass
term in (5) and (13) is necessary in order to ensure the
invertibility of the staggered Dirac operator. Numerical results
in the physical limit of zero mass were obtained by performing
simulations at several nonzero values of m and by extrapolating
the expectation values of physical observables to m → 0.

In order to speed up the simulations we also perform local
heat-bath updates of the gauge field outside of the graphene
plane (at x3 �= 0) between hybrid Monte Carlo updates. Both
algorithms satisfy the detailed balance condition for the weight
(11).19,20 Successive application of these algorithms does
not, in general, have this property. Nevertheless, by using
the composition rule for transition probabilities it is easy to
demonstrate that the path integral weight (11) is still the sta-
tionary probability distribution for such a combination of both
algorithms. While local heat-bath updates are computationally
very cheap, they significantly decrease the autocorrelation time
of the algorithm.

D. Physical observables on the lattice

The main goal of this paper is to measure the electric
conductivity of graphene, that is, a linear response of the
electric current density Ji(x) = ψ̄(x) γi ψ(x) to the applied ho-
mogeneous electric field Ej (t) (where t is the real Minkowski
time). It is convenient to introduce the ac conductivity σij (w),
so that J̃i(w) = σij (w) Ẽj (w), where J̃i(w) = ∫

dt e−iwtJi(t)
and Ẽj (w) = ∫

dt e−iwtEj (t). Due to rotational symmetry of
the effective field theory (3), σij (w) should have the form
σij (w) = δij σ (w). Correspondingly, the dc conductivity is
equal to the value of σ (w) at w → 0.

By virtue of the Green-Kubo dispersion relations,22,23,27 the
Euclidean current-current correlators

G(τ ) = 1

2

∑
i=1,2

∫
dx1 dx2 〈Ji(0) Ji(x)〉 (16)

can be expressed in terms of σ (w) as

G(τ ) =
∫ ∞

0

dw

2π
K(w,τ ) σ (w), (17)
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where the thermal kernel K(w,τ ) is

K(w,τ ) = w cosh
[
w

(
τ − 1

2T

)]
sinh

(
w
2T

) (18)

and τ ≡ x0 is the Euclidean time. We use here a nonstandard
definition of the kernel (18) from Ref. 23, which is more
convenient for numerical analysis.

Note that the current density in graphene is the charge
which flows through the unit length in unit time and thus
has the dimensionality of L−2 (where L stands for length) in
units with h̄ = c = 1. Correspondingly, the current density in
lattice units is the charge which flows through a link of the dual
lattice of length a in time a/vF . Thus in order to express the
current-current correlator (16) in physical units, one should
multiply the result obtained on the lattice by a2 v2

F /a4, where
an additional factor of a2 comes from integration over x1, x2 in
(16). With the Euclidean time τ in (16)–(18) being expressed in
units of lattice spacing in temporal direction a/vF , integration
over w in (17) also includes a factor v2

F /a2. We thus conclude
that the ac conductivity σ (w) is dimensionless. Moreover, the
dc conductivity σ (0) is a universal quantity which does not
depend on the lattice spacing or on the ratio of lattice spacings
in temporal and spatial directions. For conversion to the SI
system of units, it should be multiplied by e2/(2πh).

In numerical simulations G(τ ) is measured for several
(∼101) discrete values of τ . A commonly used method to
invert the relation (17) and to extract the continuum function
σ (w) from the lattice discretization of G(τ ) is the maximum
entropy method.22,23

For staggered fermions the electric current Ji(y) can be
expressed in terms of the fields �x as20

Ji(y) = 1

8

∑
η

δη3, 0 δηi , 0 (�̄2y+ηαη, i�2y+η+î

+ �̄2y+η+îαη, i�2y+η), (19)

where we have taken into account that the spatial link variables
θx,i are effectively equal to zero. Since the current (19) is
defined on the lattice with double lattice spacing, we calculate
the Euclidean current-current correlator (16) only on time
slices with even τ .

In order to make sure that we reproduce the results of
Refs. 10–14, we have also calculated the fermionic chiral
condensate. In terms of staggered fermions it can be written as

〈 ψ̄ ψ 〉 = 1

8 L0 L1 L2

∑
x

〈 �̄x�x 〉. (20)

After the fermions in the partition function are integrated out,
the current-current correlator (16) and the chiral condensate
(20) can be expressed in terms of expectation values of certain
combinations of the staggered fermion propagator D−1

x,y[θx,μ]
with respect to the weight (11). We give the explicit expressions
for these combinations in the Appendix.

III. NUMERICAL RESULTS

Using the algorithm described in Sec. II C, we have
generated 400 statistically independent gauge field config-
urations on the 204 lattice for each point in the space of

FIG. 1. (Color online) Fermionic condensate 〈ψ̄ ψ〉 as a function
of inverse lattice coupling constants β at different values of mass
m and extrapolation to the limit m → 0. Solid line is the fit of the
extrapolated data with the function 〈ψ̄ ψ〉 ∼ (βc − β)γ with βc =
0.0908 ± 0.0018 and γ = 1.0 ± 0.16.

lattice parameters β and m. For each value of β in the
range β = 0.05 . . . 0.025 [which corresponds to substrate
dielectric permittivities ε = 1.75 . . . 12.75 according to (10)]
the measurements were performed at three different values of
mass m = 0.01, 0.02, 0.03. For the smallest mass m = 0.005,
for which the simulations are most expensive, β took values
in the range β = 0.05 . . . 0.15 (ε = 1.75 . . . 7.25). In order
to estimate the finite-volume effects, we have also generated
100 gauge field configurations on the 284 lattice with β =
0.05 . . . 0.21 and m = 0.01.

To check our simulation algorithms and to make sure
that we reproduce the results of Refs. 10 and 11, we first
consider the fermionic chiral condensate 〈 ψ̄ ψ 〉. It is plotted
in Fig. 1 for different values of the mass m. The condensate
rapidly decreases as the inverse lattice coupling constant β

[or, equivalently, the substrate dielectric permittivity ε (10)]
is increased. For each value of β, we have fitted the mass
dependence of the condensate with a quadratic polynomial
and used this fit to extrapolate the data to the limit m → 0.
The result of such extrapolation is also shown in Fig. 1.
It suggests that there is a critical value of β in the range
0.08 < βc < 0.09 (which corresponds to 3.4 < εc < 4.0) such
that the condensate is zero for β > βc. A fit of the extrapolated
data of the form 〈 ψ̄ ψ 〉 = b(βc − β)γ for β < βc yields βc =
0.091 ± 0.002(εc = 4.0 ± 0.1) and γ = 1.0 ± 0.16. These
values are in agreement with the results of Refs. 10 and 11,
where the critical inverse coupling constant βc and the critical
index γ were estimated as 0.071 � βc � 0.091 and γ � 1.

Our measurements of the conductivity of graphene start
from the calculation of the current-current correlators (16),
which are shown in Fig. 2 for m = 0.01 and for different values
of inverse coupling constant β. We note that the correlators
decay significantly faster for smaller values of β.

The ac conductivity σ (w) is extracted from the correlators
using the maximum entropy method with four basis eigen-
functions of the kernel (18) and a constant model function
σ0(w) = 0.1.22,23 The profiles of σ (w) are plotted in Fig. 3 and
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FIG. 2. (Color online) Current-current correlators (16) for m =
0.01. Solid lines are the fits obtained using the maximum entropy
method.

the corresponding fits of the correlators are shown in Fig. 2
with solid lines.

It is important to note at this point that in Fig. 3 the angular
frequency w is given in lattice units. For qualitative comparison
with experimental data one can assume that the lattice spacing
a for the spatial directions of the cubic lattice used in our sim-
ulations is comparable with the lattice spacing a = 0.246 nm
of the hexagonal lattice in graphene. After the rescaling (2) the
discretization step for the Euclidean time τ should be of order
�τ ∼ a/vF . The temperature T in (17) and (18) is then equal
to kT = h̄/(L0 �τ ) ∼ 0.1 eV, which is much smaller than
the characteristic binding energy in graphene ∼1 eV. Thus
our simulation results should correspond to sufficiently low
physical temperatures as compared to characteristic excitation
energies.

For the inverse coupling constant β below approximately
0.08 (ε < 3.4), σ (w) has one very broad peak around w ≈ 1.2,
and the dc conductivity σ (0) has some small nonzero value. As
β increases towards βc, the second peak emerges at w = 0 and
both peaks become narrower and higher (see Fig. 3, left plot).

The emergence of the second peak results in the rapid growth
of the dc conductivity. At β > βc, the two peaks continue to
grow, and their widths become comparable to the temperature
T = L−1

0 in lattice units (see Fig. 3, right plot).
In order to understand such peak structure in the weak-

coupling limit, remember that for free Dirac fermions the ac
conductivity σ (w) has a δ function singularity at w = 0,30,31

which is a manifestation of the absence of scattering of
charge carriers. When the interactions are turned on, this
peak is smeared, which results in a large but finite value
of the dc conductivity σ (0). The second peak practically
does not move as the mass m is changed. We conjecture
that this second peak corresponds to a saddle point in the
dispersion relation of staggered fermions which is situated in
the middle of a straight line which connects the two distinct
Fermi points.28 The position of this peak should thus depend
on the lattice regularization of the effective field theory (3)
and should correspond to the optical frequency range for real
graphene.

The dc conductivity σ (0) is shown in Fig. 4 as a function
of inverse coupling constant β at different values of the
mass m. We normalize the conductivity to a single spin
component and a single Dirac point, thus in Fig. 4 we plot
σ (0)/4 rather than σ (0). σ (0) quickly decreases as both
m and β become smaller. One can also note two distinct
discontinuities in the dependence of σ (0) on β. For example, at
m = 0.01 the first discontinuity is situated between β = 0.07
(ε = 3) and β = 0.09 (ε = 4), and the second one is between
β = 0.12 (ε = 5.6) and β = 0.13 (ε = 6.2). The position of
the first discontinuity depends only weakly on the mass m and
roughly corresponds to the critical inverse coupling constant βc

obtained from the analysis of the chiral condensate (see Fig. 1).
The second discontinuity shifts to smaller β and becomes
somewhat weaker as m decreases. Linear extrapolation of the
position of this discontinuity to the limit of zero mass (see
Fig. 5) suggests that at m = 0 both discontinuities coincide.
We also note that the profile of the ac conductivity σ (w)
practically does not change across this second discontinuity.
Thus there seems to be a single phase transition in the chiral
limit m → 0, in agreement with the results of Refs. 10–12.
The corresponding critical value of the inverse coupling

FIG. 3. (Color online) ac conductivity σ (w) in (17) for m = 0.01 at β close to βc (on the left) and at β > βc (on the right).
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FIG. 4. (Color online) dc conductivity per spin per valley σ (0)/4
in units of e2/h as a function of inverse lattice coupling constants at
different values of mass m. The result of extrapolation of the data to
the limit m → 0 is plotted with black dots and solid lines.

constant can be estimated to lie in the range 0.07 � βc � 0.09
(3 � εc � 4).

For each value of β between the two discontinuities, we
also perform the quadratic fit of the mass dependence of the
conductivity and use it to extrapolate the data to m → 0. This
extrapolation is shown in Fig. 4 with black dots and solid
lines.

In Fig. 6 we compare the dc conductivity at m = 0.01 on
204 and 284 lattices. The dependence of σ (0) on the inverse
coupling constant β is qualitatively the same for both lattices,
in particular, the positions of the discontinuities practically
coincide. However, the actual values of the dc conductivity
differ beyond the error bars, especially in the strong-coupling
phase. This suggests that finite-volume and finite-temperature
effects could be quite large for our lattice parameters. Indeed,
quite large finite-temperature effects have been reported in

FIG. 5. Linear extrapolation of the position of the second discon-
tinuity of the dc conductivity to the limit m → 0.

FIG. 6. (Color online) dc conductivity per spin per valley σ (0)/4
in units of e2/h as a function of inverse lattice coupling constant β

for 204 and 284 lattices with m = 0.01.

a recent Monte Carlo study of the tight-binding model on
the hexagonal lattice,28 where the values of lattice parameters
were quite close to those used in this work. We leave the
detailed study of finite-temperature and finite-volume effects
as a direction for further investigations.

IV. CONCLUSIONS

In this paper we have numerically studied the ac and
dc conductivities of graphene by using lattice Monte Carlo
simulations with 2 + 1-dimensional staggered fermions which
interact with 3 + 1-dimensional noncompact Abelian lattice
gauge field. We have found that in a phase with spontaneously
broken chiral symmetry (which corresponds to sublattice
symmetry of the original hexagonal lattice) the dc conduc-
tivity rapidly decreases as the substrate dielectric permittivity
becomes smaller. The estimates of the corresponding critical
values 0.07 � βc � 0.09 (3 � εc � 4) obtained both from the
measurements of the chiral condensate and the conductivity
agree with each other and with the results of Refs. 10–12
and 14. This supports the existence of a single insulator-
semimetal phase transition in graphene. Interestingly, our
estimate of εc is close to the dielectric permittivity of silicon
dioxide εSiO2 = 3.9, which is often used as a substrate for
graphene. According to the data presented in Fig. 4, for the
largest value of the coupling constant used in our simulations
(β = 1/g2 = 0.05) the dc conductivity turns out to be smaller
than the dc conductivity in the semimetal phase (at β > βc) by
a factor of order of 103.

Finally, we note that our value of the dc conductivity in the
semimetal phase is significantly larger than the conductivity of
noninteracting quasiparticles in the ideal monolayer graphene
[σ (0) ∼ 4e2/h] obtained in Refs. 29, 30, and 2 using the
Landauer approach. However, as was stressed in Ref. 30, in
the Landauer approach a finite value of the conductivity of
free Dirac fermions is determined solely by scattering on the
boundaries of the sample. In the absence of boundaries (for
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instance, on the lattice with torus topology) the ac conductivity
σ (w) has a δ-function singularity at w = 0, and thus the dc
conductivity σ (0) is formally infinite. In an interacting theory,
this singularity is smeared out, and the dc conductivity takes
some finite (but large) value.
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APPENDIX: CALCULATION OF FERMIONIC
OBSERVABLES

Here we give explicit expressions for the vacuum expecta-
tion values of fermionic observables used in our simulations.
The fermionic chiral condensate corresponds to the diagonal
elements of the staggered fermion propagator:

〈 ψ̄ ψ 〉 = 1

8 L0 L1 L2

∑
x

〈
D−1

x,x

〉
, (A1)

where 〈 . . . 〉 on the right-hand side denotes averaging over
lattice gauge field θx,μ with the weight (11). We calculate this
trace using the stochastic estimator.19,20

The current-current correlator is a sum of connected and
disconnected parts:

G(y0) = C(y0) − D(y0). (A2)

The connected contributions can be expressed in terms of
staggered fermion propagator as20

C(y0) = 1

64

∑
y1,y2

∑
η,η′

αη,iαη′,i

× [〈 S(2y + η,î + η′)S(η′,2y + î + η) 〉
+ 〈 S(2y + η,η′)S(î + η′,2y + î + η) 〉
+ 〈 S(2y + î + η,î + η′)S(η′,2y + η) 〉
+ 〈 S(2y + î + η,η′)S(î + η′,2y + η) 〉], (A3)

where S(x,y) ≡ D−1
x,y .

For the calculation of the connected part of the correlator
(A2) we take into account that the solution of the linear
equation χy = Dy,zψz with χy = δx,y yields the staggered
fermion propagator D−1

x,y for all y. The disconnected part takes
the following form:

D(y0) = 1

64

∑
y1,y2

∑
η,η′

αη,i αη′,i

×〈[S(η′,î + η′) + S(î + η′,η′)][S(2y + î,2y + η)

+ S(2y + η,2y + î + η)]〉. (A4)

In practice the disconnected part of the correlator (A2)
is calculated using stochastic estimators,19,20 similarly to the
chiral condensate. In our simulations we have found that the
disconnected part of the correlator is much smaller and much
noisier than the connected one. Therefore we have neglected
it in our measurements of the conductivity.
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