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Cluster dynamical mean field theory of quantum phases on a honeycomb lattice
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We report the cluster dynamical mean field theory calculations performed for the ground state of the half
filled Hubbard model on a honeycomb lattice with exact diagonalization on the cluster-impurity solver. Through
using elaborate numerical analytic continuation, we identify the existence of a “spin liquid” from the on-site
interaction U = 0 to Uc (between 4.6t and 4.85t) with a smooth crossover correspondingly from the charge
fluctuation dominating phase into the charge correlation dominating phase. The semimetallic state exits only at
U = 0. We further find that the magnetic phase transition at Uc from the spin liquid to the Néel antiferromagnetic
Mott insulating phase is a first-order quantum phase transition. We also show that the charge fluctuation plays a
substantial role on keeping the spin liquid phase against the emergence of a magnetic order.
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Quantum phase transition is a fascinating physics subject,
which describes an abrupt change of the ground state of a
quantum many-body system tuned by a nonthermal physical
parameter, often accompanied with a novel quantum emer-
gence phenomenon.1 As a canonical quantum phase transition,
the Mott transition, from the metallic to the insulating state
tuned by electronic Coulomb interaction, is one of the most cel-
ebrated and difficult problems in condensed-matter physics.2

The resultant insulating state, namely Mott insulator, usually
adopts spontaneous symmetry breaking in two and three spatial
dimensions to form a long-range antiferromagnetic (AFM)
order to release the spin entropy due to localized electrons.
Theoretically, the simplest model to capture such physics is
the standard one-band half filled Hubbard model. In the large
Coulomb interaction limit this model reduces to a standard
Heisenberg model with an AFM order in its ground state.

Nevertheless, an insulating ground state without any spon-
taneous symmetry breaking, namely spin liquid, may arise if
there is frustration.3,4 Actually spin liquid is a genuine Mott
insulating state in a sense that it is adiabatically separated from
a band insulator. Spin liquid has been one of the most intriguing
issues in condensed-matter physics since it was introduced
nearly forty years ago3 and continuously in intense research
since it was further proposed to be a parent phase to likely
lead to high-Tc superconductivity.5 However, a spin liquid
had not been verified for a two-dimensional (2D) standard
Hubbard or Heisenberg model until a recent quantum Monte
Carlo (QMC) simulation was done for the Hubbard model
on a honeycomb lattice.6 Through finite-size extrapolation
the simulation shows that a spin liquid emerges between
semimetallic and AFM Mott insulating phases with the on-site
interaction U between 3.5t and 4.3t . By contrast, the previous
similar QMC simulations only showed a transition from
semimetallic to AFM insulating phase around 4.5t .7 Consider-
ing that finite-size calculations, whether QMC simulations or
exact diagonalizations (EDs), disallow spontaneous symmetry
breaking and have low resolution on spectral functions due to
finite-size effects, it is thus in strong demand to employ another
complementary approach to further study this fundamental
issue, the nature of such a spin liquid phase and the related
quantum phase diagram.8,9

On the other hand, being complementary to the finite-size
calculations, the nonperturbative cluster dynamical mean field

theory (CDMFT) allows spontaneous symmetry breaking and
naturally realizes the thermodynamic limit to avoid finite-
size effects so that it can uniformly describe the whole
coupling regime. Thus, to help to clarify the issue, we adopted
the CDMFT to study the half filled Hubbard model on a
honeycomb lattice as

Ĥ = −t
∑

〈ij〉,σ
(c†iσ cjσ + H.c.) + U

∑

i

ni↑ni↓, (1)

where c
†
iσ (ciσ ) is the electron creation (annihilation) operator

with spin σ (↑ or ↓) at lattice site i, 〈ij 〉 represents the
summation over the nearest neighbors, t > 0 is the nearest-
neighbor hopping integral, and niσ = c

†
iσ ciσ with the on-site

Coulomb repulsion U .
The model (1) had been studied by single-site dynamical

mean field theory which did not include spatial correlations,10

being questionable. To include spatial correlations, two
CDMFT studies have recently been done for this model,9

which show a second-order transition from semimetallic to
insulating phase at U between 3t and 4t . However, neither
study considered symmetry breaking, namely AFM order;
moreover, they were done in finite temperatures, which
degrade the resolution on spectral functions upon ground
states.

Our findings are schematically summarized in Fig. 1. We
find that a disordered phase of “spin liquid” exists from U =
0 to 4.6t , at which it transforms into the Néel AFM Mott
insulating phase via a first-order quantum phase transition.
Unlike what is described by the conventional concept on spin
liquid, there is large charge fluctuation found in the spin liquid
on a honeycomb lattice.

The dynamical mean field theory (DMFT) maps a quantum
lattice model onto a single lattice site, a quantum impurity,
dynamically coupled to a self-consistently determined bath of
free electrons that represents the rest of the lattice.11 Thus the
DMFT fully considers local quantum dynamical fluctuations.
This substantially improves our understanding on the nonper-
turbative properties of correlated electron systems, particularly
the Mott transition. The CDMFT is a natural extension of the
DMFT to include the missed short-ranged spatial correlations
and meanwhile allow spontaneous symmetry breaking through
a proper replacement of a single-site impurity by a cluster of
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FIG. 1. (Color online) Schematic phase diagram of the one-band
Hubbard model on a honeycomb lattice at half filling. Uc is between
4.6t and 4.85t .

lattice sites, which is constructed to reflect the lattice symmetry
and local lattice structure features.12–14 The CDMFT has been
successfully applied to study a variety of ordered phases, and
opens an avenue to directly study quantum phase transitions.

Here it should be addressed that for the (C)DMFT the
thermodynamic limit is naturally taken from the outset through
a self-consistent procedure.11,14 As a nonperturbative approach
to treat many-body correlation effects, the (C)DMFT works
well in the whole coupling regime and becomes exact in
the two contrary limits of both noninteracting and infinite-
interacting cases. For finite-size QMC simulations or EDs,
in contrast, the thermodynamic limit is extrapolated through
finite-size scaling. Correspondingly, the CDMFT allows spon-
taneous symmetry breaking, while the finite-size approaches
have difficulty in finding a long-range order or underestimate
ordered phases. Thus the CDMFT and finite-size approaches
are complementary to each other, which together can give more
conclusive results than alone.

In CDMFT calculations, the target in the self-consistent
procedure is to obtain a lattice imaginary frequency local
Green’s-function matrix Gij (iωn) (subscripts i and j being site
indices of a chosen cluster) by assuming its self-energy matrix
identified as the one of the corresponding cluster-impurity
Green’s-function matrix G

imp

ij (iωn), derived from the Dyson
equation. In order to study a ground state, we apply exact
diagonalization rather than quantum Monte Carlo simula-
tion to solve a cluster-impurity model.15,16 Specifically, we
employed the robust Krylov-Schur algorithm based SLEPC17

to accomplish the large-scale sparse matrix diagonalization
efficiently and stably.18 Here we particularly emphasize that
to carry out an elaborate numerical analytic continuation from
an imaginary frequency Green’s function Gii(iωn) onto a real
frequency retarded Green’s function Gii(ω + i0+) is crucial
to unambiguously identify whether or not an energy gap exists
at a small on-site interaction U ,19–21 by checking the density
of states (DOS) equal to − 1

π
ImGii(ω + i0+). In such a way,

the energy gap resolution can be achieved as high as 10−3t ,
which is hardly reached by other methods.

We first performed the CDMFT calculations for one-
dimensional (1D) Hubbard model at half filling with a cluster-
impurity model respectively containing two and four lattice
impurity sites, which serves as a benchmark for the further
calculations. The calculated results are reported in Fig. 2, in
quantitative comparison with the Bethe ansatz exact solution.22

As we see, the two-site CDMFT result has been already in ex-
cellent agreement with the exact solution. Especially, by using
the numerical analytic continuation, we can unambiguously
identify that a finite energy gap immediately develops once U

is nonzero. Thus the short-ranged spatial correlations play a
dominant role in local spectral functions and properties even

FIG. 2. (Color online) Energy gap �, namely single-particle
spectral gap, as a function of the on-site interaction U in
the one-dimensional half filled Hubbard model, calculated with
the two-site (Nc = 2) and four-site (Nc = 4) clusters, respectively.
The dashed curve denotes the exact one from the Bethe ansatz
solution. The inset zooms in the small-U dependence.

though the spatial correlations have long-ranged power-law
behavior in the 1D Hubbard model.23 It is also well known that
the quantum fluctuations are much stronger in one dimension
than in higher dimensions. Hence it is highly expected that
the higher dimensional CDMFT results are more reliable and
encouraging than the one-dimensional ones.

Figure 3(a) schematically shows the cluster-impurity model
constructed for a honeycomb lattice. Such a model reflects
sixfold rotational symmetry and an impurity site with a lattice
coordination number of 3, which are the essential features of
a honeycomb lattice. We also add a direct link between each
pair of the nearest bath levels so that we can simulate the
propagation of an electron from one cluster site through the
outside of the cluster (the bath) to any other cluster site in the
calculations.

When the on-site interaction U = 0, the half filled Hubbard
model on a honeycomb lattice reduces to a set of free Dirac
fermions with a linear DOS around the Fermi energy. As shown
in Fig. 3(b), the numerical analytic continuation can well repeat
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FIG. 3. (Color online) (a) Cluster-impurity model configuration
for a honeycomb lattice. Filled circles denote the impurity sites.
Unfilled circles denote the bath levels. Links represent the hopping
paths. (b) Density of states of the model when U = 0. The blue curve
is the exact one. The red one was obtained by the numerical analytic
continuation.
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FIG. 4. (Color online) Calculated magnetization as a function of
the on-site Coulomb interaction U on a honeycomb lattice.

the exact DOS. Particularly, around the Fermi energy both are
strictly the same even though the DOS is not differentiable at
the Fermi energy.

In this study, we define the magnetization m = 〈(n↑ −
n↓)/2〉 on a site. Being bipartite, a honeycomb lattice can
be divided into two sublattices A and B. If a Néel AFM
state appears, m will alternatively take positive and negative
along with sublattices A and B, namely being staggered
magnetization. As we see from Fig. 4, when U < Uc2 = 4.85t ,
a paramagnetic solution of m = 0 is stable, namely no spin
polarization on each site, but over Uc2 this solution is no longer
stable and |m| abruptly jumps over 0.2. On the other hand,
when U > Uc1 = 4.6t a staggered magnetization solution with
|m| > 0.16 is stable, namely a Néel AFM phase takes over, but
below Uc1 m immediately plummets to zero. Between Uc1 and
Uc2, these two solutions coexist. Such a hysteresis behavior
indicates that this magnetic transition is a first-order quantum
phase transition.

We calculated the DOS for a small on-site interaction U

with extreme caution through elaborate numerical analytic
continuation.20 The calculated DOSs are then plotted in Fig. 5.
Similar to the case of the 1D Hubbard model, what we find is
that there is also a definite energy gap opening at the Fermi
energy once U is nonzero. In comparison with the case of
U = 0 by checking the enclosed area, it is further shown that
the corresponding states nearby the Fermi energy are clearly
moved away from the gap rather than pushed to the two sides
of the gap. To be specific, for U = 0.4t, 0.8t, and 1.2t , the

FIG. 5. (Color online) Calculated density of states for several
small values of the on-site Coulomb interaction U on a honeycomb
lattice, zooming in around the Fermi energy ω = 0.

FIG. 6. (Color online) Calculated density of states for U = 4t

(red lines) and U = 6t (blue and green lines) on a honeycomb lattice,
respectively. The dotted curve is the exact DOS at U = 0 for a
reference and the Fermi energy sets to zero.

energy gap � is found to be 2.5 × 10−3t, 1.0 × 10−2t, and
0.023t , respectively. For a rather large U , a relatively large
energy gap opens with a substantial portion of states moved
away from the Fermi energy into below −3t and above 3t ,
corresponding to the Hubbard band states. For a U further
larger than Uc2, the system transforms into the Néel AFM
phase. The on-site spin degeneracy is then lifted. The spin-up
(spin-down) resolved DOS at A sublattice is the same as the
spin-down (spin-up) one at B sublattice, as shown in Fig. 6.

Figure 7 shows the energy gap � as a function of the on-
site interaction U , extracted from the calculated DOS. For
U < 1.6t , the energy gap increases very slowly with U , and the
function can be represented as �/t = 0.015(U/t)2. After 1.6t ,
the energy gap increasing becomes fast with U increasing.
Between Uc1 and Uc2, the U dependence of the energy gap
shows a hysteresis behavior with a sudden change of ∼0.45t ,
corresponding to the first-order quantum phase transition. Thus
a nonzero U definitely induces an energy gap and makes the
system be in an insulating phase. It is noted that for U � 4t

the nonmagnetic energy gaps are similar to the ones given by
the previous CDMFT calculations,9 which, however, cannot
resolve the small gaps at low U .

The resulting small-U behavior in the present study
is different from the one in the recent QMC aforemen-
tioned simulation,6 and other previous studies based on

FIG. 7. (Color online) Calculated energy gap � as a function of
the on-site Coulomb interaction U on a honeycomb lattice. The inset
zooms in the small-U dependence.
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renormalization-group analysis24 or 1/N (N fermion flavors)
approximation.25 Then one may raise a generic question of
whether or not in the CDMFT framework a small energy gap
will be induced by the missed long-ranged spatial correlations
beyond the cluster at a small U . Accordingly, we have carried
out the analogous CDMFT calculations for the 2D triangular
Hubbard model, in which the continuous spectrum with a finite
value at the Fermi energy at any small U is well obtained.26

Nevertheless it should be addressed that the difference on
the small-U behavior between the present study and other
studies is still an open issue needed to be further explored,
considering that the current approaches or methods to deal
with a two- or three-dimensional Hubbard model all have their
own advantages and drawbacks, usually being complementary
to each other.

To explore whether there is a structure to break the
honeycomb lattice symmetry and then induce the nonmag-
netic energy gaps �, we need to check different types
of correlation functions in site space. We have calculated
the equal time spin-spin correlation functions 〈sz

i s
z
j 〉 and

occupancy-occupancy correlation functions 〈ninj 〉, with i,j

inside the cluster-impurity model. We find that all these
correlation functions keep the sixfold rotational symmetry
before the magnetic transition. This excludes spin valence
bond structures, spin anisotropic structures, and charge density
waves. Regarding other possible structures, like superconduct-
ing state, quantum Hall state, and valence bond crystal, we
need to calculate longer range correlation functions, which is
beyond the capability of the current CDMFT calculations due
to the small-size cluster-impurity model. On the other hand,
these structures all have been excluded for 3.5t < U < 4.3t

by the recent large-size QMC simulations with lattice sites as
large as 2 × 18 × 18,6 being complementary to the CDMFT
calculations. Herewith we can classify the nonmagnetic
insulating phase found here from U = 0 to Uc (between 4.6t

and 4.85t) as a spin-liquid phase in the sense that it is tuned
by the on-site interaction U .

To understand the underlying physics, we examine the
double occupancy, defined as D = 〈n↑n↓〉 on a site. The
ground-state energy per site Eg = 〈Ĥ 〉/N of Hamiltonian (1)
is a function of the on-site interaction U . Its derivative is
nothing but the double occupancy, namely ∂Eg/∂U = 〈n↑n↓〉.
Thus the double occupancy D directly describes a quantum
phase transition tuned by U . In Fig. 8, the U dependence
of D likewise shows a hysteresis behavior between Uc1 and
Uc2. This means that the energy level crossing in the ground
state through the magnetic transition as U increasing, being a
characteristic of a first-order quantum phase transition.1

The on-site interaction U tunes or controls the Hamiltonian
(1) through the double occupancy D. Moreover, the localiza-
tion degree of an electron, as well as the local correlation effect,
can be quantitatively described by the double occupancy.
At half filling, D is between 0.25 and 0, corresponding
respectively to full delocalization and complete localization.
In addition, the magnetic moment mz is obtained by 〈m2

z〉 =
〈(2Sz)2〉 = 1 − 2D.

It is commonly thought that the Mott transition is driven by
the strong local correlation effect due to the on-site interaction
U , which is marked by a vanishing or very small double

FIG. 8. (Color online) Calculated double occupancy D as a
function of the on-site Coulomb interaction U on a honeycomb lattice.
The inset zooms in the hysteresis loop.

occupancy with a large local moment on a site.11,27 In contrast,
for the Hubbard model on a honeycomb lattice, a small U can
immediately induce a small energy gap opening to tune the
system into an insulating phase with a large double occupancy,
namely large charge fluctuation, as shown in Fig. 8. It is also
noted that the double occupancies before the AFM transition
are consistent with the ones given by the previous CDMFT
calculations.9 The calculations further show that the small-U
induced energy gap is a consequence of the interplay between
the zero DOS at the Fermi energy (Dirac cone band) and
local charge correlation, not a conventional correlation-driven
Mott insulating gap. On the other hand, the correlation effect
will become dominating nearby the magnetic transition Uc.
As shown in Fig. 7, the energy gap becomes a linear function
of U after the transition, which is the canonical behavior of
a correlation-driven Mott insulator. The calculated transition
Uc is consistent with those given by the QMC simulations.6,7

Thus the spin liquid states nearby U = 0 are charge fluctuation
dominating while those nearby Uc are charge correlation
dominating, corresponding to the ones derived from the QMC
simulation in Ref. 6. Nevertheless our calculations show
that a smooth crossover connects these two contrary parts.
Meanwhile it is also indicated that the charge fluctuation plays
a substantial role on keeping the spin liquid phase against the
emergence of an AFM order.

In summary, we have performed the cluster dynamical
mean field theory calculations, allowing for the spontaneous
symmetry breaking, to study the ground state of the half
filled Hubbard model on a honeycomb lattice. We find that
a spin liquid exists from U = 0 to about 4.6t , in which the
system takes a smooth crossover correspondingly from the
charge fluctuation dominating phase into the charge correlation
dominating phase, then it further transforms into the Néel
antiferromagnetic Mott insulating phase via a first-order
quantum phase transition.

We would like to thank N.-H. Tong for very helpful discus-
sions. Z.Y.L. sincerely thanks the hospitality of International
Center of Quantum Materials of Peking University, where this
paper was finalized. This work was supported by National
Natural Science Foundation of China and by National Program
for Basic Research of MOST (2011CBA00112), China.

045105-4



CLUSTER DYNAMICAL MEAN FIELD THEORY OF . . . PHYSICAL REVIEW B 86, 045105 (2012)

*zlu@ruc.edu.cn
1Understanding Quantum Phase Transitions, edited by L. D. Carr
(CRC, Boca Raton, 2011); S. Sachdev, Quantum Phase Transitions
(Cambridge University Press, Cambridge, England, 2000).

2N. F. Mott and R. Peierls, Proc. R. Soc. London Ser. A 49, 72
(1937); F. Gebhard, The Mott Metal-Insulator Transition: Models
and Methods (Springer, New York, 1997).

3P. W. Anderson, Mater. Res. Bull. 8, 153 (1973); P. Fazekas and
P. W. Anderson, Philos. Mag. 30, 423 (1974).

4L. Balents, Nature (London) 464, 199 (2010).
5P. W. Anderson, Science 235, 1196 (1987).
6Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad, and A. Muramatsu,
Nature (London) 464, 847 (2010).

7S. Sorella and E. Tosatti, Europhys. Lett. 19, 699 (1992); T. Paiva,
R. T. Scalettar, W. Zheng, R. R. P. Singh, and J. Oitmaa, Phys. Rev.
B 72, 085123 (2005).

8F. Wang, Phys. Rev. B 82, 024419 (2010); Y. M. Lu and Y. Ran,
ibid. 84, 024420 (2011); B. K. Clark, D. A. Abanin, and S. L.
Sondhi, Phys. Rev. Lett. 107, 087204 (2011); C. Xu, Phys. Rev. B
83, 024408 (2011).

9W. Wu, Y.-H. Chen, H.-Sh. Tao, N.-H. Tong, and W.-M. Liu, Phys.
Rev. B 82, 245102 (2010); A. Liebsch, ibid. 83, 035113 (2011).

10S. A. Jafari, Eur. Phys. J. B 68, 537 (2009); M. T. Tran and
K. Kuroki, Phys. Rev. B 79, 125125 (2009).

11A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod.
Phys. 68, 13 (1996); G. Kotliar and D. Vollhardt, Phys. Today 57(3),
53 (2004).

12S. Moukouri and M. Jarrell, Phys. Rev. Lett. 87, 167010 (2001).

13G. Kotliar, S. Y. Savrasov, G. Palsson, and G. Biroli, Phys. Rev.
Lett. 87, 186401 (2001).

14T. Maier, M. Jarrell, T. Pruschke, and M. Hettler, Rev. Mod. Phys.
77, 1027 (2005).

15M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).
16C. A. Perroni, H. Ishida, and A. Liebsch, Phys. Rev. B 75, 045125

(2007).
17V. Hernandez, J. E. Roman, and V. Vidal, ACM Trans. Math. Softw.

31, 351 (2005); J. E. Roman, E. Romero, and A. Tomas, SLEPC home
page: http://www.grycap.upv.es/slepc, 2010.

18We rewrote the code from scratch in a fully parallel computing
structure to exploit the parallel framework of SLEPC and meanwhile
be able to incorporate a variety of cluster-impurity model configu-
rations.

19V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and
G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).
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