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Strong side of weak topological insulators
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Three-dimensional topological insulators are classified into “strong” (STI) and “weak” (WTI) according to the
nature of their surface states. While the surface states of the STI are topologically protected from localization,
this does not hold for the WTI. In this work, we show that the surface states of the WTI are actually protected
from any random perturbation that does not break time-reversal symmetry, and does not close the bulk energy
gap. Consequently, the conductivity of metallic surfaces in the clean system remains finite even in the presence
of strong disorder of this type. In the weak disorder limit, the surfaces are found to be perfect metals, and strong
surface disorder only acts to push the metallic surfaces inwards. We find that the WTI differs from the STI
primarily in its anisotropy, and that the anisotropy is not a sign of its weakness but rather of its richness.
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I. INTRODUCTION

Topological insulators (TIs) have recently become a very
active subject in condensed matter physics. The classification
of states of matter according to topological indices opens
new horizons both theoretically and experimentally, and may
hopefully lead to applications.1,2

For more than two decades, topological classification of
phases was manifested primarily in the realm of the quantum
Hall effect. The experimental observations of TI in two
dimensions3 (2D) and three dimensions4 (3D) expanded this
notion also to systems that are time-reversal (TR) symmetric,
and have sparked a “race for golf” for new topological phases,
and for their unique properties.

In 2D, TR-symmetric band insulators are classified into
“trivial” and “topological” by a Z2 index.5 At the one-
dimensional (1D) interfaces between a topological insulator
and the vacuum (or any other trivial insulator), the energy gap
must close, implying the appearance of counterpropagating
chiral gapless modes. As long as TR symmetry is preserved,
these modes are protected from backscattering and gapping.
In contrast, when a bilayer system is formed of two such TIs,
coupling of the edge modes in the two layers may gap them
without violating the TR symmetry.

In 3D, TI’s are classified by four Z2 indices (ν0,ν).6–9 A
nontrivial ν0 implies that on each 2D surface of the sample,
the bulk gap is closed by surface states, the spectrum of which
consists of an odd number of Dirac cones. As long as TR
symmetry is preserved and the bulk gap remains open, at least
one Dirac cone will survive the addition of any perturbation.
Moreover, the wave functions of this Dirac cone can not
be localized by disorder, and the surface of the 3D TI is
apparently a perfect metal in the absence of electron-electron
interaction.10–13 Because of the robustness of its surface states,
this phase was called “strong TI” (STI).6

On the other hand, if ν0 = 0 but ν �= 0, the system is in a
phase known as a “weak TI” (WTI). This phase is adiabatically
connected to stacked layers of 2D TI’s.6 Suppose we have a
cubic sample. The two surfaces which are aligned with the
top and bottom layers will in general be gapped. But, the
four perpendicular surfaces have gapless states, at least in a
clean system. In the limit of completely decoupled layers,
these surface states are actually the edge states of the stacked

2D TI. Translation-invariant coupling between the layers gaps
out most of these surface states. However, Kramer’s theorem
ensures two Dirac cones to remain, both centered at momenta
that are TR invariant. In the following, we refer to this type of
surface, unless otherwise stated.

The chief reason why the WTI is considered weak is that its
surface modes may be gapped without breaking TR symmetry
or closing the bulk gap. In the stacked-layers picture, a mass
term that gaps the edge modes arises if one couples the layers
in pairs. The only symmetry violated by this term is the
lattice-translation symmetry. Therefore, it appears that this
symmetry is essential for the topological protection of the
WTI surfaces. Since disorder breaks translational symmetry,
one may be led to assume that the WTI surfaces are no longer
protected and behave like conventional 2D metals with strong
spin-orbit couplings. Such metals are known to undergo an
Anderson transition from metals to insulators as a function of
disorder strength.14

In this paper, we show that the contrary is true. We consider
the effect of disorder on the weak TI, and show that it is actually
not weak at all. In Sec. II, we show that the conductivity of the
nontrivial surfaces of the WTI remains higher than e2/h in the
presence of disorder of arbitrary strength, as long as the bulk
gap and TR symmetry are maintained.

Section III includes perturbative analysis. In the limit of
weak disorder, we evaluate the weak localization correction,
and find it to be antilocalizing. In the opposite limit, we
consider strong disorder that is limited to several atomic layers
at the surface of the insulator. We find that such disorder makes
the surface insulating, but creates a perfect metallic sheet just
beneath the disordered surface. We also discuss the conductiv-
ity in the intermediate disorder limit, and raise the possibility
that a phase with a universal finite conductivity appears.

In light of these results, we discuss in Sec. IV the
unique surface anisotropy of the WTI, which implies that the
robustness of the conductivity of a surface strongly depends
on its orientation. Based on this anisotropy, we raise the
possibility of surface engineering.

II. FINITE CONDUCTIVITY

Assume one stacks an even number of 2D TI’s and couples
them in pairs. Each such pair is topologically trivial, and
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generically has an insulating edge. Thus, in the 3D limit of
an infinite even number of layers, the surfaces are generically
insulating. On the other hand, if the number of layers is odd,
there is no way to gap all the edge modes without breaking TR
symmetry, and the surface must be conducting. This sensitivity
to the parity of the layer number was then argued to imply the
fragility of the WTI.15

While the argument for nontriviality in the odd case relies
on topology, the argument for gapping of the surface modes in
the even case relies on a well-tailored perturbation that couples
the layers in pairs. Random disorder does not induce such a
coherent perturbation. Rather, when disorder is present and
the number of layers is even, the surfaces may be trivial, yet
do not have to be. On the other hand, for an odd number of
layers, the surfaces must conduct. This suggests that when the
coupling between layers is disordered, the odd behavior is in
fact the generic one, thus the surfaces will conduct for any
large number of layers.

This heuristic argument will now be put on firm theoretical
ground. Consider a WTI of dimension L3 which is adiabati-
cally connected to an odd number of 2D layers stacked along
the ẑ direction and L � 1. Note that we take the lattice spacing
to be 1. We take the periodic boundary conditions to be periodic
in the ẑ and x̂ directions, and open in the ŷ direction, as
illustrated in Fig. 1(a). Under these boundary conditions, the
surface states reside on the interior and exterior surfaces of
a thickened torus. We allow for any disorder which is TR
symmetric, does not close the bulk gap, and has a correlation
length much smaller than L. Under these conditions, the
surfaces have no special regions or lines to which the electrons
wave functions could be restricted.

Consider an Aharonov-Bohm flux that implements a phase
twist φ in the periodic boundary conditions along the x̂

direction, as illustrated in Fig. 1(a). Let us study how the
spectrum of the edge modes depend on φ. For φ = 0,π ,
the Hamiltonian is TR symmetric, and Kramer’s theorem
guarantees that all the energies are doubly degenerate. Apart
from these degeneracies, the spectrum has no accidental
degeneracies, as implied by the noncrossing theorem.16 This
ensures a well-defined labeling of energies as a function of φ,
Ei(φ), where i = 1,2, . . . and Ei+1 � Ei .

The difference between topologically trivial and nontrivial
surfaces is manifested in the relation between the pairs of
degenerate states at φ = 0 and at π ,6,17,18 which is illustrated
in Figs. 1(b) and 1(c). If the pairs at φ = 0 are the same as
those at φ = π , the surface is topologically trivial. This is the
case for a trivial insulator and for a WTI with an even number
of 2D layers. In contrast, if the pairs switch partners between
φ = 0 and π , the surface is nontrivial. Such pair switching
takes place on the surfaces of an STI and of a WTI with an odd
number of 2D layers. The zigzag shape of the spectrum in the
nontrivial surfaces can not be terminated without approaching
the bulk states. Hence, in this case

∑
i

|Ei(π ) − Ei(0)| � �, (1)

where the summation is over all surface states and � is the bulk
gap. Note that for any finite L, the number of surface states is
proportional to L2, and the mean level spacing is �/L2.
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FIG. 1. (Color online) Topologically trivial and nontrivial pair
switching. (a) The WTI is adiabatically connected to stacked layers
of 2D TI. We consider a WTI of dimension L3 with ν = (0 0 1) and ẑ

as the stacking direction. The boundary conditions (green dotted lines)
are periodic in the ẑ direction and are twisted by an Aharonov-Bohm
flux in the x̂ direction (green thick arrow). The remaining xz surfaces
are metallic. (b), (c) Typical patterns of energies of surface state as a
function of the Aharonov-Bohm flux φ for (b) trivial and (c) nontrivial
surfaces. Kramer’s theorem assures that at the time-reversal-invariant
fluxes φ = 0,π , states come in degenerate pairs. On a trivial surface,
the pairs remain the same between these two values, while on a
nontrivial surface the pair switch partners. The mean level spacing
of the surfaces states is �/L2, where � is the bulk gap. We show
that nontrivial pair switching implies the existence of at least O(L)
extended states.

It is impossible to satisfy inequality (1) if all the surface
states are exponentially localized. The current of a local-
ized state is exponentially small with the system size. The
current carried by an electron in the ith eigenstate is given
by Ii(φ) = (e/h)∂φEi .19 Therefore, ∂φEi ∼ e−L, and conse-
quently, |Ei(π ) − Ei(0)| ∼ e−L. In that case inequality (1) can
not be satisfied.

Furthermore, Ii = e〈v〉i/L, where 〈v〉i is the expectation
value of the velocity. Since, the velocity is bounded by
intrinsic variables and can not increase with the system size,
Ii approaches zero at least as 1/L. Note that there is a value
φ0 such that |Ei(π ) − Ei(0)| � (πh/e)|Ii(φ0)|. Therefore, for
the inequality (1) to be satisfied, there must be at least O(L)
delocalized states. Furthermore, as long as the system is
homogeneous, which is the case for random disorder, these
states are distributed all over the surface.
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Imagine now cutting the system into two subsystems, one
with even and one with odd number of layers. Since the cut
is a surface effect and the system is homogeneous, it will
not localize a state that has been delocalized before. Thus,
in the presence of random disorder, delocalized states will
exist also in the subsystem with the even number of layers.
We can therefore conclude that in a system with an even
number of layers there are delocalized states in the pres-
ence of random disorder, despite the absence of topological
protection.

The homogeneity of the disordered system leads to a further
consequence. Suppose we have cubic slabs of dimension l3.
According to what we have seen before, on the surface of the
small cubes there are at least O(l) delocalized states on the
scale of l. Now we glue the cubes to one another and obtain
a larger cube of dimension L3. Since the gluing process does
not localize states, on the surface of the large cube there are
at least O(L2/l2) delocalized states on the scale of l. This
scaling is consistent both with delocalization of all states, and
with a scenario of localized states with a broad distribution of
localization lengths.

Finally, we notice that for the current Ii to decay as 1/L, the
electronic motion must be ballistic. If, however, the motion is
diffusive, then the current decays as 1/L2. In ballistic motion,
inequality (1) required O(L) delocalized states. In contrast,
a diffusive motion requires O(L2) such states. Since ballistic
motion is unlikely in the presence of disorder, the bound of
O(L) states is probably too restrictive.

Having showed the existence of delocalized states, we can
turn to estimate a lower bound for the conductivity. We use the
Thouless formula, which relates the electrical conductivity to
the sensitivity of energies to phase twists:20–23

σxx ≈ e2

h

〈
�E

�φ

〉
dN

dE
, (2)

where 〈�E/�φ〉 denotes geometric mean of the energy dif-
ference Ei(π ) − Ei(0) averaged over eigenstates and dN/dE

denotes the density of states, both at Fermi energy. This
relation has been shown to be only qualitatively correct.24

For example, in 1D systems, the conductivity scales like
[〈�E/�φ〉(dN/dE)]2,25 and constants of order unity may
appear.22,26 Moreover, discrepancies of O(1) may appear if
the relation is expressed with ∂2E/(∂φ)2 rather than with
�E/�φ.22 Nevertheless, when 〈�E/�φ〉(dN/dE) is of the
order of unity, the conductivity is expected to be of the order
of e2/h.

In the nontrivial pair switching [see Fig. 1(c)], the zigzag
shape of the spectrum relates 〈�E/�φ〉 to the energy
levels spacing Ei+1 − Ei . And since the level spacing is the
inverse density of states, it leads to 〈�E/�φ〉(dN/dE) � 1.
Consequently,

σxx � e2

h
. (3)

We have therefore arrived at our key result: a nontrivial surface
of a WTI will remain conducting even in the presence of
random disorder.

Preliminary numerical work, reported in Appendix A,
indeed shows that as the number of stacked layers increases,

the even-odd difference diminishes, and both tend to lack of
localization.

III. PERTURBATIVE ANALYSIS

The topological argument allowed us only to bound the
conductivity. More quantitative predictions can be given in
the limits of weak disorder and strong surface disorder, where
perturbative approaches can be utilized. Disorder is defined
to be weak when EF τ � 1, where EF is the Fermi energy
and τ is the mean-free time. In this limit, we evaluate the
lowest-order quantum correction to the conductivity.27

The low-energy effective Hamiltonian describing the sur-
face of a WTI in the clean limit consists of two decoupled
Dirac cones

H (kx,ky) = v0(kxI
∗ ⊗ sx + kyI ⊗ sy). (4)

For every value of kx and ky , this is a 4 × 4 matrix, spanned
by a direct product of two Pauli spinors: τ that denotes the
Dirac cone, and s that denotes the electron spin. Here, v0 is the
velocity characterizing the Dirac cones, and I ∗ may be either
the unity matrix I or the Pauli matrix τz, depending on the
particular WTI considered. The corresponding TR operator
is TW = I ⊗ isyK , where K denotes complex conjugation.
Accordingly, T 2

W = −1. Notably, since under TR each Dirac
cone is mapped to itself, in general their chiralities are
unrelated, as well as the energy of the Dirac points.

Disorder adds to the Hamiltonian a sum of the form∑
m,n Vmn(r)(τm ⊗ sn), where the indices m,n take the values

0,x,y,z and τ0 = s0 = I . For the WTI, only six terms are TR
symmetric: I ⊗ I,τz ⊗ I,τx ⊗ I and τy ⊗ s. The first three
describe potential disorder, and the last three describe random
spin-orbit scattering (note that the clean Hamiltonian already
includes spin orbit). Among the six, only the term τy ⊗ sz gaps
the spectrum.

In Appendix B, we evaluate the lowest-order quantum
correction to the conductivity from the low-energy Hamilto-
nian (4), in the presence of all mentioned types of disorder.28

We find this correction to be antilocalizing:

d ln σ̃xx

d ln L
= −T 2

W

1

2πσ̃xx

f 2
v

(
1 − fe

2

)
> 0, (5)

where σ̃xx = σxx(h/e2) = EF τfv . Furthermore, 2/3 < fv <

2 is the vertex correction, and −1 � fe � 1 is a correction
of the Cooperon; both are determined by the details of the
disorder. Equation (5) implies that the conductivity flows
towards a perfect metal, and σ̃xx increases logarithmically with
the system size.

The Hamiltonian (4) appears also in two other 2D systems,
and it is instructive to elucidate the similarities and differences
between these systems and the WTI. The first system is that
of spinless electrons in graphene. For that system, I ∗ = τz and
s denotes the sublattice index. Accordingly, its TR operator
is TG = τx ⊗ IK and T

2
G = 1. By plugging TG instead of

TW into Eq. (5), we observe in graphene weak localization,
as expected.29,30 As a matter of fact, since for the WTI
T 2

W = −1, for generic disorder the Hamiltonian belongs to
the symplectic class, which is known to have weak antilocal-
ization correction.14 In contrast, spinless graphene, for which
T

2
G = 1, belongs to the orthogonal class, which shows weak
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localization. The general relation between the symmetry class
and the sign of the weak-localization correction can be shown
using the nonlinear σ model approach,14 but may be also
understood more directly by means of interference of diffusive
trajectories, as shown in Appendix C.

The second system is that of a 2D insulator at the transition
point between a trivial and a topological phase in the absence
of inversion symmetry.31 This system belongs to the same sym-
metry class as the WTI, but its spectrum does not exhibit pair
switching as a function of flux. Nonetheless, since it is tuned to
a phase transition, one expects the correlation length to diverge
and therefore delocalized states must exist at low energies. In
Refs. 32–34, it was established that a band of delocalized states
appears around zero energy, while far from zero energy states
are localized. This should be compared with the WTI, where,
as we have argued, states remain delocalized for any subgap
energy. This discrepancy suggests that while these models have
similar low-energy descriptions, they are nonetheless different
when the entire spectrum is taken into account.

Notably, recently our prediction for delocalization within
the low-energy theory [Eq. (4)] was validated numerically.35

The restriction of this numerical work to low energy does
not address directly the role of pair switching. Indeed, one
can find a unitary transformation that maps the low-energy
Hamiltonian used there, including the disorder terms, to the
low-energy part of the Hamiltonian used in Ref. 31 to describe
the transition mentioned in the previous paragraph, which
exhibits no pair switching.

Having shown that in the limit of weak disorder we have a
perfect metallic surface, we now turn to opposite the limit
of extremely strong disorder. In this limit, the strength of
the disorder is much larger than all the other energy scales,
including the bulk bandwidth and band gap. If such disorder
acts on the entire 3D system, it mixes the bulk bands and makes
the entire sample a trivial insulator. However, an interesting
case is disorder that is limited to several of the outermost
layers. This may actually happen in realistic surfaces, which
are usually made dirty by oxides and other dopants. Moreover,
as we show below, it also reveals the role of the bulk in
protecting the surface states.

Let us divide the Hamiltonian of the three-dimensional
system H3D into the part that operates only within the clean
bulk (H0), the part that operates on the disordered surface
layers (Hdis), and the part of hopping between the two (V ).
The Hamiltonian may now be written as

H3D =
(

H0 V

V † Hdis

)
. (6)

We begin with the case where all the eigenvalues of Hdis are
greater in absolute value than some value W , and W � t ,
where t is the bulk bandwidth. For this case, all the eigenstates
of Hdis are localized on the surface. These eigenstates may be
considered as a high-energy sector, which can be integrated
out. To this end, we consider the Green’s function projected
onto the Hilbert space of the clean bulk,36 using the projection
operator P0:

P0(E − H3D)−1P0

= [E − H0 − V (Hdis − E)−1V † + O(V 4)]−1. (7)

FIG. 2. (Color online) Renormalization group flow of the con-
ductivity. The β function of the dimensionless conductivity σ̃xx for
a nontrivial surface of the WTI, compared with that of a 2D metal
with strong spin-orbit coupling that belongs to the symplectic class
(blue). According to Eq. (5), in the limit of high conductivity the flow
is toward a perfect metal. We showed that the conductivity of a WTI
surface can not drop below e2/h. Consequently, two types of flows
are possible: (I) always flowing towards a perfect metal (yellow), and
(II) flowing with a stable fixed point of finite conductivity (red).

This Green’s function defines an effective Hamiltonian for the
clean bulk, which is

Heff(E) = H0 + V (Hdis − E)−1V † + O(V 4). (8)

This effective Hamiltonian describes the degrees of freedom
of a 3D WTI, which is clean in the bulk (the first term)
and is disordered at its surface (the second term). Note that
this surface lies beneath the physical surface, where the
disorder vanishes. The second term of Eq. (8) represents virtual
hopping from the bulk to the strongly localized states at the
physical surface and back. Since all the eigenvalues of H0,
the matrix elements of V , and the energy E are of the order
of t , this bulk-surface coupling is of the order t2/W 
 t .
The effective Hamiltonian then describes a weakly disordered
WTI, the gapless states of which are located underneath the
physical surface. Recalling the above result, we can see that
the relocated surface states form a perfect metal.

The same holds when the spectrum of Hdis becomes
continuous. The states in the strongly disordered layers with
energy greater than W can still be integrated out, resulting
in small O(t2/W ) terms. The remaining low-lying states are
expected to be localized since Hdis alone is not protected from
localization. Such states act as strong scatterers. However,
their density is of O(t/W ), and is therefore small, yielding a
long mean-free path. Hence, we are still in the limit of weak
disorder, thus having a perfect metal.

Intermediate disorder is disorder with EF τ 
 1 but �τ �
1. According to the topological argument, the conductivity
has to be larger than e2/h even in this regime. Following the
single-parameter scaling approach, two possible flows of the
renormalization group may arise, which can be presented in
terms of the β function β(σ̃xx) = d ln σ̃xx/d ln L. In one flow,
the conductivity always flows to infinity while increasing the
system size, as presumably happens in the STI.10–13 In the
second flow, a stable fixed point appears at σ̃xx ≈ 1, and a
critical point appears for some σ̃xx > 1. The two flows are
illustrated in Fig. 2.37
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IV. SURFACE ANISOTROPY

In the previous sections, we analyzed the conduction
properties of surfaces of the WTI and found that they are
conducting even in the presence of disorder. This robustness
brings the WTI closer to the STI in terms of their transport
properties. Nevertheless, the WTI differs from the STI in the
unique anisotropic behavior of its surfaces, which gives rise to
the idea of surface engineering.

While nontrivial surfaces of the WTI are indeed robustly
conducting, not all possible surfaces of the WTI are topologi-
cally nontrivial. For example, we mention that in the stacked-
layers picture, the top and bottom surfaces are topologically
trivial, and are generally gapped. For given weak indices ν and
a plane with Miller indices h, we define the relation h ∼ ν by

(hi − νi) mod 2 = 0 (9)

for i = 1,2,3. Any surface with Miller indices that satisfy this
relation is topologically trivial, whereas a surface with h � ν is
topologically nontrivial.6 The reason of this criterion is that the
indices vector ν does not uniquely define a stacking direction,
and any vector h ∼ ν can be a stacking direction, as illustrated
in Fig. 3(a). Namely, the stacked-layers picture is a theoretical
construction rather than a physical description, and in practice,
the WTI does not have to be layered.

An alternative explanation for criterion (9) can be given
from the picture of a fixed stacking direction and varying
surfaces. Consider a WTI, the primitive lattice vectors of
which are a1,a2,a3, making the lattice sites located at rn =∑3

i=1 ni ai . Consider also a surface with Miller indices h,
and for simplicity place the origin of the coordinate system
at some lattice site of the surface. By definition, all the
lattice sites on the surface satisfy the condition h · n = 0. For
simplicity, we take the example of ν = (0 0 1) and choose it
to be the stacking direction. If h ∼ ν, then h3 is odd, while
h1 and h2 are even. Accordingly, on the surface all the n3

coordinates are even, and adjacent surface sites differ by an
even increment of n3. Therefore, the surface is composed of
steps of an even number of layers, as illustrated in Fig. 3(a),
and the coupling between them will gap the edge states. For
h � ν, the surface is composed of steps of odd layers. Now, the
coupling can not gap all the edge states, and the surface will
conduct.

The high and nontrivial sensitivity of the surfaces to
their orientation even in the presence of disorder is demon-
strated in Fig. 3(b). We considered a 20 × 20 × 20 lattice
of the Fu, Kane, and Mele model with λSO = t and δt =
[−0.6,0,0.2,0]t , which corresponds to ν0 = 0 and ν = (0 0 1)
with a bulk gap of � = 0.8t . In this model, ν represents also the
weak hopping direction. Uniformly distributed strong disorder
of magnitude t was also introduced. The figure depicts the local
density of surface states integrated over an energy window
|E| < 0.1�. The parallelepiped is cut along the primitive
vectors and therefore has two trivial gapped faces and four
topological metallic faces.

The criterion for a surface h ∼ ν implies that the spectrum
on it will be gapped, but it does not provide information on
the magnitude of the gap. In the above example, for h chosen
to be in the weakest hopping direction, the energy gap on the
surface is comparable to the bulk gap. Other trivial surfaces

(a)

(b)

FIG. 3. (Color online) Insulating and metallic surfaces. (a) The
WTI has both trivial and nontrivial surfaces. A surface with Miller
indices h is trivial if (h − ν) mod 2 = 0, denoted by h ∼ ν, since
any such h can denote a stacking direction. The figure depicts
two trivial surfaces h1 = (0 0 1) and h2 = (2 0 1) for a cubic crystal
with assumed ν = (0 0 1). Both h1 and h2 are legitimate stacking
directions. Alternatively, for a stacking along h1, the h2 surface is
composed of steps of two layers. The coupling between the layers
gaps theirs edge states. For h � ν, the steps will be of odd number
of layers and will therefore conduct. (b) An example of the surface
anisotropy in the Fu, Kane, and Mele model of the weak ν = (0 0 1)
phase. Depicted is the local density of surface states integrated over
an energy window |E| < 0.1�, with disorder strength comparable
to the bulk gap. The surfaces of the parallelepiped are spanned by
the primitive vectors. The two faces with Miller indices equal to ν

are gapped, while the other four, with orthogonal Miller indices, are
metallic. By controlling the cleavage process, the conductance of
each face of the WTI can be engineered.

have energy gaps much smaller than this value. The influence
of disorder on the gap and localization length of such surfaces
may be dramatic. We note that for a surface that can not be
described by Miller indices, we expect metallic behavior since
the scaling argument which was used to ensure σxx � e2/h

seems to hold.
By noticing that the topological and trivial surfaces are

isotropically distributed, one can imagine creating a sample
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with each face engineered to be either gapped or metallic. A
gapped surface along a stacking direction would remain insu-
lating, while other surfaces will conduct. Provided rather good
control on the cleaving process, various different electronic
behaviors are expected on different surfaces, ranging all the
way from perfect metals to insulators with varying gaps. In
light of these results, we find that the anisotropic behavior of
the WTI surfaces is not a sign of their weakness, but rather of
their richness.

V. SUMMARY

In this work, we showed that the name “weak topological
insulators” does not do justice to the phase it describes since
the electrical conductivity of the nontrivial surfaces of such
insulators is not suppressed by disorder. The WTI shows
unique sensitivity of the electronic properties of its surfaces to
their orientation, and that may provide an experimental tool for
controlling these properties. We hope that this work will serve
as a trigger for further study of these interesting topological
phases.
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APPENDIX A: NUMERICAL ANALYSIS OF DISORDERED
THIN WTI

In an attempt to address numerically the effect of disorder
on the conductivity of a gapless surface of the WTI, we
considered the Fu, Kane, and Mele model6 with λSO = t

and δt = [−0.6,0,0.2,0]t , which corresponds to a ν0 = 0
and ν = (0 0 1) with a bulk gap of � = 0.8t . We also took
the chemical potential to be at the Dirac points of the
surface spectrum. The most general potential disorder that
is symmetric to time reversal was included by adding a
time-reversal-symmetric random matrix which acts within
unit cells. The entries of each matrix were sampled from a
uniform distribution in some region [−w/2,w/2], and the
resulting matrix was then symmetrized with respect to time
reversal. The disorder was added on three outermost layers
with w = 0.5t, 0.5e−2t, 0.5e−3t corresponding to the first,
second, and third layers, respectively. The samples sizes
Lx × Ly × Lz ranged in from 40 × 10 × 1 up to 120 × 10 × 6
unit cells, where Lz can be thought as the number of the stacked
2D layers.

In order to obtain the conductance gxx , we used Eq. (2)
of the main text. When applied to a quasi-1D sample, this
equation yields the conductance rather than the conductivity.21

The fluctuations in energy levels following the insertion of a π

twist were approximated by extrapolating the derivative of the
energy levels with respect to the phase twist. The geometric
averaging was taken over the different instances of disorder
and over an energy window of [−0.2t,0.2t]. Although this
second averaging is not included in the definition, we find that

FIG. 4. (Color online) The conductance gxx for a WTI with
ν = (0 0 1) of the Fu, Kane, and Mele model as estimated from the
flux sensitivity of surface-state energies multiplied by the density of
states. Each line corresponds to a given number of layers (Lz) and
shows gxx as a function of Lx , where Ly is fixed to 10. Periodic
boundary conditions were imposed on ẑ and x̂. Samples with an odd
number of layers have a topologically protected minimal conductance
of e2/h. Samples with an even number of layers are (strictly speaking)
topologically trivial and show a localization behavior. However, their
conductance converges to that of the odd layers as the number of
channels is increased.

it did not have significant influence on the asymptotic behavior.
We considered 30 instances of disorder for 1–3 layers, and
10 instances of disorder for 4–6 layers. The error bars are
primarily due to fluctuations of the density of states, which
limit the accuracy of the estimated mean value.

The dependence of gxx on the dimensions of the surface
is depicted in Fig. 4. For odd Lz, the conductance tends to
values close to the e2/h and shows no sign of localization.
For comparison, the localization length of a sample with
disorder of a similar strength that does not satisfy time-reversal
symmetry is around 40 unit cells. For even Lz, a finite
localization length is apparent, which however increases with
Lz. It therefore appears that for large Lz, the even curves will
converge to the odd curves, meaning a lack of localization for
Lz � 1.

We note that a similar behavior was obtained in Ref. 38
for symplectic multichannel 1D wires. This model is close to
ours, but with one important difference. In multichannel 1D
wires, all the channels are coupled, while in the 2D surface of
WTI, only nearby channels are coupled.

APPENDIX B: FIRST-ORDER QUANTUM CORRECTIONS
TO THE CONDUCTIVITY

In this appendix, we derive the lowest-order quantum
corrections to the electrical conductivity of WTI and spinless
graphene. While the former is our main interest, we find it
instructive to compare it to the latter. Our starting point is
a low-energy effective Hamiltonian for both systems. The
Hamiltonian is composed of two decoupled Dirac cones

H0 = −iv0(∂xI
∗ ⊗ sx + ∂yI ⊗ sy), (B1)
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where si are Pauli matrices associated with the spin (sublattice)
index of WTI (graphene), and the matrix I ∗ is a Pauli matrix
associated with the valley index [cf. Eq. (4) in the main text].
For WTI, I ∗ denotes either I2x2 or τz, while for graphene,
I ∗ = τz. The corresponding retarded and advanced Green’s
functions are given by

G
R/A

0 (k,E) = E + v0kxI
∗ ⊗ sx + v0kyI ⊗ sy

E 2
± − (v0k)2

, (B2)

where E± = limη→0+ E ± iη. Time-reversal-invariant poten-
tial disorder is introduced via the matrix V (x) :

H = H0 + V (x), (B3)

V (x) =
∑

l

vl(x)Al, (B4)

where Al are 4 × 4 time-reversal-symmetric Hermitian ma-
trices of the form τi ⊗ sj for i,j = 0,x,y,z. The vl(x) are
uncorrelated random functions

〈vl(x)vl′(x′)〉 = wlδll′δ(x − x′). (B5)

As mentioned in the main part of the paper, the time-reversal
operator T is different for spinless graphene and WTI. For
spinless graphene, the time-reversal operator switches between
the two Dirac points, but does not affect the sublattice.
Therefore, Tg = τx ⊗ IK , where K denotes complex con-
jugation. On the other hand, for WTI it flips the spins but
does not affect the valleys since the Dirac points are at
time-reversal-invariant momenta. Therefore, TW = I ⊗ syK .
Consequently, T 2

W = −1 while T
2

g = 1. As argued in the
main work using the particle diffusion picture, the signs
of the quantum interference correction to the conductivity
is expected to be given by −T 2. Another consequence of
the difference in T is that the Al matrices which commute
with Tg are all the combinations of (I,τx,τy) ⊗ (I,sx,sz) and
τz ⊗ sy , while the matrices which commute with TW are
I ⊗ I,τx ⊗ I,τz ⊗ I,τy ⊗ sx,τy ⊗ sy,τy ⊗ sz.

Due to extra symmetries of H0, there are additional
antiunitary operators which commute with H0. For example,
for H0 in which I ∗ = I , all the τiTW matrices are such
operators. If one chooses disorder that commutes with τiTW ,
rather than with TW , then the sign of the quantum correction
will be −(τiTW )2.

Our goal is to find the changes in the disorder-averaged
conductance as a function of the linear size of the system.
The zero-temperature mean longitudinal conductance in the x

direction is given by30

σxx = e2

2πh̄

〈∫
d2p

(2π )2
Tr[JxG

R( p,EF )JxG
A( p,EF )]

〉
,

where 〈. . .〉 denotes averaging over disorder, and
Jx = v0I

∗ ⊗ sx is the current operator. The diagrammatic
way to find this mean value combines the disorder-averaged
Green’s function, the vertex correction, the Cooperon, and the
dressed Hikami box.

Our derivation follows McCann et al. in Ref. 30 for spinless
graphene, but with three substantial differences. First, we
address here both the WTI and graphene simultaneously in a
way that emphasizes the differences between them, both in the
Hamiltonian and in the resulting correction. Second, the only

assumption we make on the disorder is that it is symmetric with
respect to time reversal. We do not assume a dominance of one
type of scattering over another. Consequently, the numerical
prefactor of the β function depends on the details of the
disorder, and these details may affect it by a factor of up to 1/3.
Last, since the spectrum of WTI far from the Dirac point is
not universal, we adopt a different regularization approach
for diverging integrals. Instead of introducing a triangular
wrapping, we limit the minimal length scale of the scatterers.
For alternative approaches for dealing with this issue, see
Refs. 29 and 39.

We begin with calculating the self-energy within the self-
consistent Born approximation, given by


R
1 (q,E) =

∑
l

wl

∫
d2p

(2π )2
AlG

RAl. (B6)

Since A 2
l = I ⊗ I , and the angular integration over p leaves

only the diagonal term in GR ,

[

R

1

]
ij

(q,E) = δij

[
i� + 2�

π
ln

(
v0�

E

)]
, (B7)

where i,j = 1 . . . 4. In the limit of weak disorder,

� =
(∑

l wl

)
E

4v 2
0

. (B8)

The level width � is related to the mean-free time τ through
τ = 1/2�. In order to obtain Eq. (B8), we have introduced
an ultraviolet cutoff �, which physically corresponds to the
characteristic inverse size of the impurities, and we assumed
that v0� is much smaller than the bulk gap (in WTI) or the
bandwidth (in graphene). In the following, we ignore the real
part of the self-energy since it only corresponds to a shift in the
energy. The disorder-averaged Green’s function is now given
by

GR/A(k,E) ≈ E ± i� + v0kxI
∗ ⊗ sx + v0kyI ⊗ sy

(E ± i�)2 − (v0k)2
.

The self-consistent Born approximation includes diagrams
where disorder lines do not intersect, such as depicted in
Figs. 5(a) and 5(b). It leaves out diagrams where disorder
lines intersect, such as Fig. 5(c). We find the self-consistent
Born approximation to be valid when

�

E

 1 and α ≡ �

E
ln

v0�

E

 1. (B9)

Note that due to the logarithmic factor, even when v0�

becomes much larger than E there is still a wide parameter
range in which the conditions are satisfied. Moreover, within
this range, the omission of the real part of the self-energy is
consistent.

In the limit of weak disorder, the diagram of Fig. 5(b) is
included in our approximation, but its contribution is smaller
by a factor of α relative to that of Fig. 5(a). Its contribution is


R
2a(q,E) =

∑
l,l′

wlwl′

∫
d2p1d

2p2

(2π )4
AlG

R
0 ( p1,E)Al′G

R
0

× ( p1 − p2,E)AlG
R
0 ( p1,E)Al′ . (B10)
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FIG. 5. The leading self-energy diagrams in the Born approxima-
tion: (a) first order, and (b), (c) second order.

Due to the nested structure of the diagram, the integration over
the two loops can be carried separately. The contribution of
the diagram is therefore


R
2a ∼ (�/EF )2 ln2(v0�/EF ) ∼ α2. (B11)

Indeed, this contribution is negligible for α 
 1. The crossed
diagram, which is depicted in Fig. 5(c), can also be shown to
be of O(α2).

The self-consistent equation of the vertex correction is
schematically illustrated in Fig. 6(a). If we denote the corrected
vertex by J̄x , then

J̄x(q,E) = v0I
∗ ⊗ sx +

∑
l

wl

∫
d2p

(2π )2
AlG

R

× ( p,E)J̄x(q,E)GA( p + q,E)Al. (B12)

For q = 0, we guess a solution of the form J̄x(0,E) = f v0I
∗ ⊗

sx , which gives

f I ∗ ⊗ sx = I ∗ ⊗ sx + f
∑

l

wlAl(I
∗ ⊗ sx)Al

∫
d2p

(2π )2

× E2 + �2 + v 2
0 p2

x − v 2
0 p2

y[
(E + i�)2 − v 2

0 p2
][

(E − i�)2 − v 2
0 p2

] .

(B13)

Due to x-y symmetry, the terms with momenta in the numer-
ator vanish. Moreover, Al(I ∗ ⊗ sx) = ξl(I ∗ ⊗ sx)Al , where
ξl = ±1. Therefore,

∑
l wlAl(I ∗ ⊗ sx)Al = (

∑
l ξlwl)(I ∗ ⊗

sx), and the matrix structure of the equation is satisfied. After
integrating, we find that

f =
(

1 − 1

2

∑
l ξlwl∑
l wl

)−1

, (B14)

FIG. 6. Diagrammatic representation of the self-consistent equa-
tion for (a) the dressed vertex and (b) the Cooperon.

where we used the fact that � 
 E. We can therefore conclude
that the vertex correction is

2
3 � f � 2. (B15)

The next task is to solve the self-consistent equation of the
Cooperon, which is depicted in Fig. 6(b):

C(ij )(nm)(k,k′′; E, Q,ω)

=
∫

d2k′

(2π )2
V(ij )(i ′j ′)�(i ′j ′)(i ′′j ′′)(k

′; E, Q,ω)V(i ′′j ′′)(nm)

+
∫

d2k′

(2π )2
V(ij )(i ′j ′)�(i ′j ′)(i ′′j ′′)(k

′; E, Q,ω)

×C(i ′′j ′′)(nm)(k
′,k′′; E, Q,ω), (B16)

V(ij )(nm) =
∑

l

wl[Al]in[Al]jm, (B17)

�(ij )(nm)(k
′; E, Q,ω)

= [GR(k′ + Q,E + ω)]in[GA(−k′,E)]jm. (B18)

This equation can be considered as a matrix equation for
C(E, Q,ω), which acts on the vector space |k〉 ⊗ |ij 〉, where
k denotes the momenta and ij denote the internal degrees of
freedom of the two particles (of dimension 16).

Anticipating an infrared divergence which is proportional
to a diffusive propagator, the Cooperon may be presented as

C(ij )(nm)(k,k′′; E, Q,ω) = c
|d〉〈d|

DQ2 − iω
+ (regular terms).

(B19)

Plugging this ansatz into Eq. (B16), we can extract an equation
for the diverging term

c (1 − V �)
|d〉〈d|

DQ2 − iω
= V �V. (B20)

Multiplying from the left with (V �V )−1 and from the right
with |d〉 gives an eigenstate equation for the diffusive mode

(�V )−1(V −1 − �)|d〉 = c−1(DQ2 − iω)|d〉, (B21)

where

(V −1 − �)

=
(∑

l

wlAl ⊗ Al

)−1

−
∫

d2k

(2π )2

× 1[
(E + ω + i�)2 − v 2

0 k2
][

(E − i�)2 − v 2
0 k2

]
× (E + ω + i� + v0kxI

∗ ⊗ sx + v0kyI ⊗ sy)

⊗ (E − i� − v0kxI
∗ ⊗ sx − v0kyI ⊗ sy). (B22)

The terms which are linear in kx and ky vanish in the
integration, and the remaining three integrals, which multiply
the three matrices (I ⊗ I ) ⊗ (I ⊗ I ),(I ∗ ⊗ sx) ⊗ (I ∗ ⊗ sx),
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and (I ⊗ sy) ⊗ (I ⊗ sy), are, respectively,

∫
d2k

(2π )2

(E + ω + i�)(E − i�)[
(E + i�)2 − v 2

0 k2
][

(E − i�)2 − v 2
0 k2

] = −
( ∑

l wl

)−1

2
, (B23)

∫
d2k

(2π )2

−v2
0k

2
x[

(E + i�)2 − v 2
0 k2

][
(E − i�)2 −2

F k2
] =

( ∑
l wl

)−1

4
+ O(�/E,α), (B24)

∫
d2k

(2π )2

−v 2
0 k2

y[
(E + i�)2 − v 2

0 k2
][

(E − i�)2 − v 2
0 k2

] =
( ∑

l wl

)−1

4
+ O(�/E,α). (B25)

Therefore,

(V −1 − �) ≈
( ∑

l

wlAl ⊗ Al

)−1

−
( ∑

l

wl

)−1 1

2

(
1 − 1

2
[(I ∗ ⊗ sx) ⊗ (I ∗ ⊗ sx) + (I ⊗ sy) ⊗ (I ⊗ sy)]

)
. (B26)

We are interested in the zero mode of the above matrix.
Since V mixes all momenta equally, any eigenvector of V −1

which depends on momenta will have a diverging eigenvalue
and can not give rise to a zero mode in the above equation.
For generic disorder which respects time-reversal symmetry,
we find that the zero modes for WTI (with I ∗ = I for
concreteness) and graphene are given by

〈k,ij |dW 〉 = δτi ,τj

(
δsi ,1δsj ,−1 − δsi ,−1δsj ,1

)/
2,

〈k,ij |dg〉 = δsi ,sj

(
δτi ,1δτj ,−1 + δτi ,−1δτj ,1

)/
2,

where τi (si) is the valley (spin/pseudospin) subindex of the
index i. This can be easily verified by the facts that Al|d〉 =
|d〉, (I ∗ ⊗ sx) ⊗ (I ∗ ⊗ sx)|d〉 = −|d〉, and (I ⊗ sy) ⊗ (I ⊗
sy)|d〉 = −|d〉. Note that the vector |d〉 has an eigenvalue of 1
with respect to �V , and therefore (�V )−1|d〉 = |d〉.

The diffusion coefficient D and the constant c from
Eq. (B19) can be extracted by expanding Eq. (B21) in ω and
Q. After some algebra, one finds that in both cases

c = 8v 2
0

�2

E
, (B27)

D = v 2
0

2�
. (B28)

Note that we keep c although it is of lower order in �/E since
it is associated with the divergence of the Cooperon.

The leading term of the conductivity σxx is given by

σ 0
xx = e2

2πh̄

∫
d2p

(2π )2
Tr[J̃xG

R( p,EF )JxG
A( p,EF )]

= e2

h̄

E

πv 2
0

D
fv

2
= e2

h

fv

2

E

�
. (B29)

The first quantum interference correction δσ a
xx , which is

depicted in
Fig. 7(a), is given by

δσ a
xx = e2

2πh̄

∫
d2k d2Q

(2π )4
[J̄x]i ′i[J̄x]jj ′GA

j
′
i
′
2
(k,EF )

×GA

i
′
1i

′ (−k + Q,EF )GR
ii1

(−k + Q,EF )

×GR
i2j

(k,EF )C(i1i
′
2)(i2i

′
1)(k,k; EF , Q,0). (B30)

The divergent contribution to the correction comes from
the limit of Q = 0 in the Green’s functions, where they are
regular. Henceforth,

δσ a
xx ≈ e2v 2

0

2πh̄
f 2

∫
d2Q

(2π )2

c

DQ2

∫
d2k

(2π )2

× [I ∗ ⊗ sx]i ′i[I
∗ ⊗ sx]jj ′GA

j ′i ′2
(k)GA

i
′
1i

′(−k)

×GR
ii1

(−k)GR
i2j

(k)〈i1i
′
2|d〉〈i2,i

′
1|d〉. (B31)

Keeping only the divergent part of the integral over Q, and
noticing that the index summation is actually a trace, we have

δσ a
xx = ln(L)

e2v 2
0

4π2h̄

c

D
f 2

∫
d2k

(2π )2

× Tr[GA(−k)(I ∗ ⊗ sx)GR(−k)|d〉
×GA(k)T (I ∗ ⊗ sx)T GR(k)T |d〉], (B32)

where the matrix |d〉 is defined by [|d〉]ij = 〈ij |d〉. Using the
fact that

GA(−k)(I ∗ ⊗ sx)GR(−k) ∝ 2v 2
0 kxky(I ⊗ sy)

+ (
E2 + �2 + v 2

0 k2
x − v 2

0 k2
y

)
(I ∗ ⊗ sx)

− 2Ev0kx(I ⊗ I ) − 2v0ky�(I ∗ ⊗ sz), (B33)

FIG. 7. The leading-order quantum corrections to the conductiv-
ity. These diagrams can be viewed as a combination of a dressed
Hikami box with the Cooperon.
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the only nonvanishing and non-negligible traces are those
which are proportional to Tr[(I ∗ ⊗ sx)|d〉(I ∗ ⊗ sx)|d〉],
Tr[|d〉(I ⊗ sy)|d〉(I ⊗ sy)], and Tr[|d〉|d〉]. The resulting cor-
rection is now

δσ a
xx ≈ −Tr[|d〉2] ln(L)

e2v 2
0

4π2h̄

c

D
f 2

×
∫

d2k

(2π )2

E4 + v4
0k

4 + 4E2v 2
0 k2

x[
(E + i�)2 − v 2

0 k2
]2[

(E − i�)2 − v 2
0 k2

]2

≈ −Tr[|d〉2] ln(L)
e2v 2

0

2π2h̄

c

D
f 2

×
∫

d2k

(2π )2

4E4[
(E + i�)2 − v 2

0 k2
]2[

(E − i�)2 − v 2
0 k2

]2

= −Tr[|d〉2] ln(L)
e2v 2

0

4π2h̄

c

D
f 2 E

16�3

= −T 2 ln(L)f 2 1

4π2

e2

h̄
, (B34)

where we replaced [|d〉]2 with T 2 since they are equal.
As first noted by Ref. 30, the extra quantum corrections

to the conductivity, which are depicted in Figs. 7(b) and 7(c),
are nonvanishing due to the independence on momenta of the
current vertex. These two contributions are equal, and are given
by

δσ b
xx = δσ c

xx = −f ′

4
δσ a

xx, (B35)

f ′ = 1

4
∑

l wl

×
{∑

l wlTr
[
Al(I ⊗ sz)A T

l (I ⊗ sz)
]

WTI∑
l wlTr

[
Al(τy ⊗ sx)A T

l (τy ⊗ sx)
]

graphene.

(B36)

Since −1 � f ′ � 1, the sign of the quantum correction is still
determined entirely by T 2.

We have shown above that T
2

g = 1 while T 2
W = −1.

Therefore, we can conclude from Eqs. (B34)–(B36) that
spinless graphene tends to be localized, while a WTI flows
towards perfect conduction.

APPENDIX C: WEAK LOCALIZATION AND THE
TIME-REVERSAL OPERATOR

In this appendix, we provide a straightforward explanation
for the fact that the sign of the weak localization correction
is the same as the sign of the time-reversal operator squared
(T 2). To this end, we express the Green’s function as a sum
over amplitudes associated with trajectories. Similarly, we
express the return probability as a sum over products of
such amplitudes. The coherent contributions that give rise

to weak localization/antilocalization come from products of
time-reversal conjugate trajectories. By analyzing the action
of T on trajectories, the above relation is established.

Consider the Dyson series for the Green’s function G,

G = G0
∞∑

n=0

(V G0)n, (C1)

where G0 is the clean Green’s function, and V is the disorder
potential. The matrix element of G that connects the lattice
site i and spin state σ with the lattice site j and spin state σ ′
may be written as a sum over trajectories that connect these
two sites and spin states, and which go through a series of
intermediate points α = (iσ,inσn,in−1σn−1, . . . ,i1σ1,jσ ′):

Giσ,jσ ′ =
∑

α

Aα
iσ,jσ ′ , (C2)

Aα
iσ,jσ ′ = G0

iσ,inσn
· Vinσn,in−1σn−1 · . . . · G0

i1σ1,jσ ′ . (C3)

Given that the system is symmetric to some antiunitary
operator, most notably the time-reversal operator T , we de-
fine |σ̄ 〉 = ξσ T |σ 〉, where ξσ = ±1. Consequently, G0

iσ,jσ ′ =
ξσ ξσ ′G0

j σ̄ ′,iσ̄ and Viσ,jσ ′ = ξσ ξσ ′Vjσ̄ ′,iσ̄ . A straightforward
manipulation then yields

Aα
iσ,iσ ′ = ξσ ξσ ′Aᾱ

iσ̄ ′,iσ̄ , (C4)

where ᾱ = (iσ̄ ′,i1σ̄1, . . . ,iσ̄ ). Note that all the sign factors
except ξσ and ξσ ′ appear twice, and therefore are canceled out.

Using (C2), we find that the probability of a particle to
return back to its initial site, with perhaps a different spin
state, is given by

|Giσ,iσ ′ |2 =
∑
α,α′

Aα
iσ,iσ ′

(
Aα′

iσ,iσ ′
)∗

. (C5)

Two types of pairs of trajectories contribute coherently to the
disorder-averaged double sum in Eq. (C5) since their phases
do not fluctuate. The obvious contribution is the classical
contribution consisting of pairs with α = α′. However, due
to T symmetry, an additional contribution exists in which α

comes paired with ᾱ. Comparing Eq. (C4) with (C5), one
finds that pairs of time-conjugated paths may appear only if
σ ′ = σ̄ . Therefore, whenever it appears, the sign factor of
such term is ξσ ξσ̄ = 〈σ |T 2|σ 〉 = sign(T 2). Also notice that
the size of this term is equal to the size of the classical term,
and therefore may either double or suppress it. Hence, for
T 2 = −1(1), the probability for a diffusing particle to return
to its original position is higher (lower) than the classical
probability, and this is an indication for weak antilocalization
(weak localization). If the Hamiltonian commutes with more
than one antiunitary operator, for example in the case of a
spin-independent Hamiltonian, the total correction is com-
posed of the contributions from all the different trajectories
with σ ′ = σ̄ .
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