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Theory of single-electron heat engines coupled to electromagnetic environments
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We introduce a new class of mesoscopic heat engines consisting of a tunnel junction coupled to a linear thermal
bath. Work is produced by transporting electrons up against a voltage bias like in ordinary thermoelectrics but
heat is transferred by microwave photons, allowing the heat bath to be widely separated from the electron system.
A simple and generic formalism capable of treating a variety of different types of junctions and environments
is presented. We identify the systems and conditions required for maximal efficiency and maximal power. High
efficiencies are possible with quantum dot arrays but high power can be achieved also with metallic systems.
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I. INTRODUCTION

Conversion of heat to work, and, in particular, recovery of
waste heat produced by electronic components is a problem of
great and ever increasing importance. Solid-state thermoelec-
tric systems1 are ideally suited for this purpose since they are
easily integrated with the rest of the circuitry on the microchip.
Mesoscopic heat transfer devices are a promising class of
thermoelectric systems due to their easy fabrication, control,
and measurement,2 and because sharp features in the energy
spectrum, a requirement for efficient operation,3 are readily
available. Due to their small size, they can also be used to study
foundational issues, such as the importance of fluctuations4

and the fundamental limits of heat engine performance.5

Arguably the simplest mesoscopic heat engine consists
of a single-level quantum dot placed between two metallic
leads held at different temperatures and voltages.6 Positioning
the dot level far enough from the Fermi levels of the leads
enables the electrons to flow against the voltage bias while
carrying heat from hot to cold. Thermoelectric properties of
weakly coupled quantum dots have also been experimentally
studied.7–10 This type of device operates as a heat engine by
generating electrical current and transferring heat between
the same two reservoirs. A recent modification11,12 of this
scheme makes the charge and heat currents flow along different
pathways by introducing a third reservoir: charge is transported
between two reservoirs at the same temperature, while the
third reservoir, at a different temperature, is Coulomb coupled
to the transport electrons and supplies the thermal fluctuations
driving the heat engine.

Here we introduce a new type of mesoscopic heat engine,
sketched in Fig. 1(a). It consists of one or more quantum
dots or metallic dots between two electronic leads at the
same temperature T but with a voltage bias V . The leads
are connected to an external circuit with temperature Tenv

and impedance Z(ω). If the tunnel coupling for one of the
junctions is small enough, a tunneling electron will exchange
energy with the electromagnetic environment, and with a
proper choice of parameters it is then possible to achieve a
net current against the voltage bias. This system is similar
in spirit to the devices of Refs. 11 and 12 but instead of
a direct Coulomb interaction between the electrons in the
transport system and in the heat bath, in our proposal the

coupling is mediated by microwave photons. Photonic heat
conduction in electronic circuits has been investigated in
recent years both theoretically13–18 and experimentally,19,20

while previously studied single-electron devices for thermal
applications include a thermometer,2,21 a cooler,14 and a heat
diode.22 There are also theoretical proposals for three-reservoir
heat engines where the electrons are driven by a coupling to a
phonon bath.23,24

A significant advantage of the photonic coupling compared
to Coulombic or phononic interaction is that the two parts of the
circuit with different temperatures can be located arbitrarily far
apart. One can imagine a scenario where the external circuit is
a relatively large device which performs some useful function
but at the same time produces excess heat. Our engine can
recover a part of this heat and feed it back to the main device
as electrical power.

We show that in an optimal configuration the electrical
current in different types of junction systems is given by
a single concise formula, Eq. (6). Then a junction between
two quantum dots is shown to be ideal in terms of efficiency,
while all junction types, involving either metals or quantum
dots, are able to deliver approximately equal maximal power
production.

The rest of the paper is organized as follows. In Sec. II, we
present the theory for electron tunneling in a linear external
environment. In Sec. III, we consider bath-assisted transport
in junction arrays and conclude that in an appropriate limit the
current is given by Eq. (6) for a variety of different systems.
The heat engine characteristics of different junction types are
studied in detail in Sec. IV, with a particular emphasis on
performance under maximum power conditions. In Sec. V, we
summarize the results and consider experimental prospects.

II. COUPLING TO THE ENVIRONMENT

The exchange of energy between the tunneling electron
and the external environment is treated with the so-called
P (E) theory. A thorough account of this formalism is given in
Refs. 25 and 26, and in this section, we only present the results
relevant for the present study. P (E) theory, and therefore also
our present work, rests on two fundamental requirements: (i)
it is assumed that the coupling between the different electron
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FIG. 1. (Color online) (a) Schematic of a single-electron heat
engine coupled to an external environment with impedance Z(ω).
Electrons tunneling through the left junction exchange energy with
the heat bath, enabling net current against the voltage bias. (b), (c)
Energy-level diagrams of junction systems with one or two dots
between the leads. One of the junctions, marked with a photon symbol,
is coupled to the external bath. The photon-assisted tunneling rates
are �±.

systems is weak enough and that the temperature of the
electrons or the environment is high enough so that transport
can be adequately described by the lowest-order Fermi golden
rule, and (ii) it is assumed that the environment relaxation is
much faster than the tunneling rate. Then within P (E) theory
the tunneling rate �i→j between electron systems i and j

through a junction, that is, a single insulating barrier, is given
by the Fermi golden rule formula with the energy-conserving
δ function replaced by P (E), the probability density to
exchange energy E with the environment. Thus we have25

(with h̄ = k = e = 1)

�i→j = 2π |t |2
∫

dεidεjρi(εi − μi)ρ̄j (εj − μj )P (εij ),

(1)

where εij = εi − εj . For the electron density ρi(ε), we con-
sider two cases, a single-level quantum dot with ρi(ε) = δ(ε)
and a metal with ρi(ε) = νif (ε), where νi is the density of
states and f (ε) is the Fermi function. Similarly, the hole
density is ρ̄i(ε) = δ(ε) for dots and ρ̄i(ε) = νi[1 − f (ε)] for
metals. Note that in the quantum dot case, we assume that dot
i is occupied and dot j is empty, otherwise the rate would
vanish. The tunneling matrix element between the initial and
final states is t , which is taken here to be energy independent.
The Fermi level of a metal or the single level of a quantum
dot is μi with possible Coulomb charging energies absorbed
into it. The heat current emitted by the environment during
the tunneling process is obtained from the rate formula by
weighing the integral with εj − εi = −εij :

Ji→j = −2π |t |2
∫

dεidεj εijρi(εi − μi)ρ̄j (εj − μj )P (εij ).

(2)

The P (E) function for an electromagnetic environment can
be determined by a circuit theory analysis of the system.
If the junction, which itself has some capacitance C, is
coupled to an environment with impedance Z(ω), the total

impedance Zt over the junction is C and Z(ω) in parallel,
that is, Zt (ω) = [iωC + 1/Z(ω)]−1. We will omit the rather
complicated general expression for P (E). For our purposes it
is sufficient to note that it only depends on the environment
temperature Tenv and the real part of Zt (ω). Since P (E) is
a probability density, its integral is normalized to unity, and
additionally the detailed balance for the environment requires
that25 P (−E) = e−E/TenvP (E).

When presenting numerical results, we will consider a
simple and prototypical environment, namely, an ohmic
resistor with impedance Z(ω) = R. We further assume the
high-impedance limit where RC is the largest time scale of
the system. Then the P (E) function is given as25

P (E) = 1√
2πσ 2

e
− (E−EC )2

2σ2 , (3)

where EC = e2/2C is the charging energy of a junction with
capacitance C and σ 2 = 2ECTenv.

III. CURRENTS IN JUNCTION SYSTEMS

Thermoelectric power generation in a three-reservoir
single-electron device requires at least one environment-
coupled tunnel junction, and we will now consider systems
with one, two, or three junctions in series. The concrete
realizations of these systems are zero, one, or two (quantum
or metallic) dots placed between two metallic reservoirs. We
work within the framework of P (E) theory, and thus assume
weak coupling and fast environment relaxation, as explained
in Sec. II.

Let us start with a single junction with no dots between two
noninteracting metallic leads at temperature T . The junction is
coupled to an electromagnetic environment with an arbitrary
P (E) and temperature Tenv. The tunneling rate for the positive
direction, from left (L) to right (R), is �+ and the rate in the
opposite direction is �−. With the voltage bias μR − μL = V ,
Eq. (1) gives the current as

I0 = �+ − �− = γ

∫
dεLdεR f (εL)[f (V − εR)

− f (−V − εR)]P (ε), (4)

where γ = 2π |t |2νLνR and ε = εL − εR . The subscript 0 for
the current denotes the fact that there are no dots in the system.
We use a convention where a positive voltage V means that
electrons have a higher energy in the right lead and a positive
current I means that electrons travel, on the average, from
left to right. Therefore if I and V have the same sign, that
is, the generated power Ẇ = IV is positive, heat is converted
to electrical work and the device operates as a heat engine.
For the present case, the bracketed term in Eq. (4) has a sign
that is opposite to the sign of V and therefore Ẇ � 0. This
simple junction cannot produce thermoelectric power. One
way to understand this failure is to think of the system as a
Brownian motor,27 which is driven by thermal fluctuations due
to the external environment. However, these fluctuations do
not intrinsically have any preferred direction and therefore the
noise must be rectified by the electron transport system in order
to generate net power.12 Rectification requires a nonlinear
current-voltage characteristic but the simple junction (without
the environment coupling) is linear. Therefore a nonlinearity
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must be introduced into the transport system, and here we
do it by adding a (quantum or metallic) dot between the
two leads. We further assume that the Coulomb repulsion
within the dot is so strong that it can only be empty (with
probability p0) or singly occupied (with probability p1). The
Fermi level of the metallic dot or the single-particle level of the
quantum dot is at energy E, with Coulomb energy included;
see Fig. 1(b). Now the system has two junctions, and the
tunneling rates through the left and right junction are �± and
�R±, respectively. Instead of Eq. (4), the current is given by
I = p0�+ − p1�−. The probabilities can be solved from the
master equation ṗ0 = p1(�− + �R+) − p0(�+ + �R−) in the
steady state, ṗ0 = 0. This gives the current for the one-dot
system as

I1 = �+�R+ − �−�R−
�+ + �R+ + �− + �R−

. (5)

If the two junctions are identical, symmetry of the system
implies that there is no thermally induced net current for
V = 0, and a calculation with Eq. (1) shows that there can
be no power production for any V . For instance, in the case
of a quantum dot the numerator of Eq. (5) is proportional
to

∫
dεdε′ P (ε)P (ε′)[f (ε + E)f (ε′ − E + V ) − f (ε + E −

V )f (ε′ − E)]. For V > 0, the first and the second Fermi
functions are smaller that the third and the fourth, respectively,
implying I1 < 0. To arrive at the preceding expression the
P (E) functions for the two junctions must be identical, and
therefore unequal environmental couplings are required for
power production.

Since both junctions are connected to the same external
circuit, the only way they can have different P (E) functions is
that the junction capacitances, CL and CR , are unequal. In that
case, circuit theory analysis25 shows that the total impedance
over junction i is Re Zt,i(ω) = κ2

i Re Z̃t (ω), where κi = C/Ci

and Z̃t (ω) = [iωC + 1/Z(ω)]−1, with 1/C = 1/CL + 1/CR .
In other words, the only difference to the single junction case
is that the external impedance seen by junction i is effectively
reduced by a factor κ2

i . Thus a maximal difference between
the P (E) functions of the two junctions can be obtained
when the capacitances have different orders of magnitude.
If, for example, with a small left-side capacitance CL � CR ,
we have C ≈ CL, κL ≈ 1, and κR ≈ CL/CR . In this limit,
the left junction is coupled to the environment with energy
EC = e2/2CL, while the coupling of the right junction is
suppressed by a factor of (CL/CR)2. Note, however, that the
charging energy of the dot is e2/2(CL + CR) that must still be
large enough to prevent a multiple occupation of the dot. To
simplify Eq. (5), we note that since now the right junction is
effectively decoupled from the environment, detailed balance
requires �R+ = �R−e(E−V )/T . This relation can, of course, be
also derived from Eq. (1) with P (E) = δ(E). Furthermore,
a junction with a small capacitance is usually also weakly
transmitting and therefore it is consistent to assume that
CL � CR implies �± � �R±. Then, we obtain

I = f (V − E)�+ − f (E − V )�−. (6)

This is the main equation of the present paper. Below we
argue that it applies also to more generic junction systems
and therefore we have dropped the subscript from I1. The

heat engine behavior produced by this equation is examined
in detail in the next section.

Let us then turn to the case of two dots in series between the
leads, as depicted in Fig. 1(c). The energy levels of the left and
right dots are EL and ER , respectively, and E = ER − EL.
We again assume a strong enough Coulomb repulsion so that
the double dot can be either empty (probability p0), or there
can be one electron in the left dot (probability pL) or in the
right dot (probability pR). The tunneling rates through the left,
center, and right junctions are �L±, �±, and �R±, respectively,
and the current is given by I2 = pL�+ − pR�−. The master
equation for the occupations is

ṗ0 = −p0(�L+ + �R−) + pL�L− + pR�R+,

ṗL = p0�L+ − pL(�L− + �+) + pR�−, (7)

ṗR = p0�R− + pL�+ − pR(�R+ + �−),

and the steady-state solution gives the current as

I2 = (�L+�+�R+ − �L−�−�R−)/�̃2 (8)

with �̃2 = �L+�R+ + �L−�R− + �L−�R+ + �+(�L+ +
�R+ + �R−) + �−(�L+ + �L− + �R−). Similarly to the
one-dot case, we now assume that the central junction
between the dots has a small capacitance and a small
transmittance compared to the other two junctions. Thus
�± � �L±,R±, and since now the left and right junctions are
effectively decoupled from the environment, detailed balance
implies �L−/�L+ = eEL/T and �R+/�R− = e(ER−V )/T . The
expression for the current is then simplified to

I2 = e(E−V )/T �+ − �−
1 + e(E−V )/T + e(ER−V )/T

. (9)

The last term of the denominator is vanishingly small com-
pared to the first two if −(ER − V ) � T and −EL � T . In
this limit, the expression for the current is again reduced to
Eq. (6). Physically this limit means that the dot levels are
much below the Fermi levels of the leads and thus either of
the two dots is always occupied (p0 → 0), leading effectively
to a two-state system similar to the one-dot case. Clearly this
argument could also be extended to a larger number of dots if
necessary.

We have now seen that Eq. (6) is the fundamental expression
for thermoelectric current in the optimal limit when only
one junction is exchanging heat with the external bath and
when all “idle” time spent on processes with no environment
coupling can be neglected. The generality of Eq. (6) can also
be intuitively seen as follows. The system is always in one
of two possible states: there is an electron ready to tunnel
either from left to right or from right to left through the
bath-coupled junction. The probabilities of these two states
are p+ and p−, and the average current through the junction is
therefore I = p+�+ − p−�−. On the left side of the junction
there is a metal with Fermi level EL, or a quantum dot with
a level at EL strongly coupled to a metal. In either case, the
probability that the left side has an electron ready for tunneling
is proportional to f (EL). Similarly, the right side has a level at
ER − V , and it is ready to receive the tunneling electron with
a probability proportional to 1 − f (ER − V ) = f (V − ER).
Thus we have p+ ∝ f (EL)f (V − ER) and, analogously,
p− ∝ f (−EL)f (ER − V ). Normalizing with p+ + p− = 1
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gives p+ = f (V − E) and p− = f (E − V ), and we arrive
at Eq. (6). The existence of these two states is due to
the electron-electron interaction. The noninteracting case of
Eq. (4) is obtained when there is only one single state allowing
electrons to tunnel at any time in either direction.

The heat current J emitted by the environment can be
calculated by following exactly the same steps as for the
electrical current, and the result corresponding to Eq. (6)
is

J = f (V − E)J+ + f (E − V )J−, (10)

where J+ and J− are the energy currents absorbed by the
electron tunneling to the right and to the left, respectively, as
obtained from Eq. (2). The sign difference between Eqs. (6)
and (10) is due to the fact that J± already contain the direction
of the heat flow.

IV. HEAT ENGINE CHARACTERISTICS

As we have argued, in the optimal limit, an array of one or
more dots can be seen as a two-state system obeying Eqs. (6)
and (10), and thus when evaluating the thermoelectric power
generation in these devices it is only necessary to consider
the single junction that is coupled to the electromagnetic
environment. Some generic remarks about Eq. (6) can be made
without any explicit model for the junction. First, note that a
mirror reflection of a solution with (E,V,I ) produces another
solution with (−E, − V, − I ) and therefore it is sufficient
to consider the case E > 0. Next, the I (V ) curve of Eq. (6)
has a simple overall structure. Since the tunneling rates �±
depend only on the level difference E over the junction but
not on the voltage bias V , the current depends on V only
through the Fermi functions. Thus we see that I approaches
asymptotically �+ and −�− for large negative and positive
values of V , respectively. Since I (V ) decreases monotonically,
at some point V = V0 the current vanishes. For our purposes,
the most important fact is that for voltages between 0 and V0,
I and V have the same sign and the device operates as a heat
engine. From Eq. (6), we can solve

V0 = E − T ln
�−
�+

. (11)

All the systems studied here have �− > �+ and, therefore,
E is an upper limit for V0, while no lower limit exists. We
will also see that a hot environment (Tenv > T ) implies V0 > 0
and, therefore, the heat engine operates with positive V and I ,
while for a cold environment, (Tenv < T ) V and I are negative.

An important characteristic of a heat engine is the efficiency
η = IV/JH , where JH is the heat current from the hot bath.
When Tenv > T , we have simply JH = J but when Tenv < T

the hot bath is the transport system and then JH = IV − J ,
that is, the heat taken from the electrons is the sum of the
produced power IV and the heat −J expelled to the cold
environment. Thus we have

η =
{

IV
J

, Tenv > T,

IV
IV −J

, Tenv < T.
(12)

The fundamental upper limit for η is the Carnot efficiency ηC =
1 − TC/TH , where TC = min{T ,Tenv} and TH = max{T ,Tenv}.

In this limit, transport proceeds reversibly and power produc-
tion is vanishingly small. Thus reaching Carnot efficiency is
not a very useful goal in practice.

Another efficiency measure, widely used in the context
of thermoelectric power generation, is the figure of merit
ZT . Even though the separation of heat and charge pathways
makes the devices covered by our theory quite different from
typical thermoelectrics, the usual definition of ZT can still
be straightforwardly applied to the present case. In the linear
response limit, when V and T ≡ Tenv − T are much smaller
than T , we have1

ZT = σS2

κ
T , (13)

where the Seebeck coefficient is S = ∂V0/∂(T ), electrical
conductance is σ = ∂I/∂V at T = 0, and thermal conduc-
tance is κ = ∂J/∂(T ) at I = 0. Generally, κ should include
all forms of heat transfer between the reservoirs, but since we
are not modeling any parasitic flows, they are not included
in ZT . There is a major effort in thermoelectrics research to
produce systems with ZT > 1.1

When an electron is transported between the leads of a
thermoelectric system it always performs the same amount of
work ±V where the sign depends on the direction of tunneling.
However, the amount of heat transferred between the thermal
baths can vary from one tunneling event to another, and the
spectrum of this energy exchange is determined both by the
structure of the junction and the environment. We consider
two limiting cases for the junction structure. The first is a
fully energy-selective junction, where each tunneling event
is accompanied by an exchange of a fixed amount of heat
±E. A physical realization for this is a junction between two
quantum dots with sharply defined energy levels separated by
E. The other extreme is a totally unfiltered junction where
essentially any amount of heat can be exchanged. The two
physical examples that we consider are a junction between a
quantum dot and a metal, and a junction between two metals.

A. Energy-selective junctions

A junction between two quantum dots can only exchange
a fixed energy E with the external bath during the tunneling
events. Using Eq. (1) together with detailed balance for the
environment yields

�+ = �−e−E/Tenv ,
(14)

�− = 2π |t |2P (E).

Similarly, the heat flows from Eq. (2) are J+ = E�+ and J− =
−E�−, which imply the simple relation J = EI . Therefore,
at all temperatures, the ratio of produced power and transferred
heat is a constant V/E, a situation known as strong coupling
between particle and heat flows. Carnot efficiency can only be
achieved by such strongly-coupled systems,5,28,29 and in the
present case, this can be confirmed by noting that the stopping
voltage from Eq. (11) is

V0 = E(1 − T/Tenv) (15)

and substituting V = V0 in Eq. (12) yields η = ηC . Thus
Carnot efficiency implies vanishing current and power. The
value for the figure of merit ZT can be inferred directly by
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noting that since κ in Eq. (13) is evaluated at I = 0, the
strong-coupling condition implies J = κ = 0 and therefore
ZT = ∞, independent of any parameters. This is another
indication that energy-selective junctions can be used to
construct maximally efficient thermoelectrics.

In order to investigate, the physics beyond linear response
and to find out the conditions that maximize the power instead
of efficiency, we perform a numerical calculation and for that
purpose an explicit expression for the environment spectrum is
needed. Since an energy-selective junction interacts with the
environment only at a single energy E, the full form of the
P (E) function does not generally have much significance.
There is one caveat, however: Fermi golden rule, which
P (E) theory is based on, is not able to treat transitions
between discrete states, and therefore our approach fails if the
environment and both sides of the junction are discrete. Our
example environment of Eq. (3) is continuous and therefore
the present approach is valid also for a junction between two
quantum dots, except in the limit σ → 0 when P (E) becomes
a discrete δ peak.

For each pair of temperatures T and Tenv, the generated
power Ẇ = IV from Eqs. (6) and (14) is numerically
maximized with respect to the bias V , the level difference E,
and the coupling energy EC , and the results are presented in
Fig. 2(a). In order to estimate the maximum power achievable
with this device, we note that the unit of power in Fig. 2(a) is
2π |t |2, and to find an upper limit for this quantity, we model the
junction between two quantum dots as a two-state system with
level difference E and tunnel coupling t . The left and right
dots must be approximate energy eigenstates, requiring that
|t | � E. Since E ≈ T0 for maximum power operation, we end
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FIG. 2. (Color online) Maximum power production for (a) a
junction between two quantum dots, and (b) a junction between a
quantum dot and a metal. (Top) The maximum power for given
temperatures. Note the different units of power for (a) and (b).
(Middle) efficiency at maximum power. (Bottom) values of V (full
line), E (dashed), and EC (dash-dotted) that give the maximum
power. The temperature difference is T = Tenv − T and the average
temperature is T0 = 1

2 (T + Tenv).

up with |t | � T0. Thus the output power is strictly limited by
the operating temperature. The spurious divergence of power
for very large temperature differences is due to the breakdown
of P (E) theory, as explained in the preceding paragraph.

We remark that this energy-selective system is very similar
to the one studied in Ref. 11. The physical implementations
are rather different, with the system of Ref. 11 requiring a
total of four quantum dots while for our device two dots are
sufficient, but the structures of the energy transfer processes are
fundamentally identical, leading to very similar performance
figures.

B. Unfiltered junctions

Junctions that do not restrict the amount of energy ex-
changed between the tunneling electron and the environment
will be called unfiltered. We concentrate on a system where
the other side of the junction is a quantum dot and the other
side is a metal, but at the end of the section, we also briefly
consider a junction between two metals. For a metal-quantum
dot junction, Eq. (1) gives

�± = �

∫
dεP (ε)f (ε ± E), (16)

where � = 2π |t |2ν. This form shows immediately that �− >

�+ and thus V0 < E. Linearizing Eqs. (6) and (10) then yields
the figure of merit from Eq. (13) as

ZT =
(

cJ̃

Ẽ2
− 1

)−1

, (17)

where c = F [0], Ẽ = F [1], J̃ = F [2], and F [n] =∫ ∞
0 dεP (ε)εn[f (E − ε)e− ε

T + (−1)nf (E + ε)]. These defi-
nitions show that if P (E) consists of a pair of δ peaks at
energies ±E0, then in the limit E = E0 � T , we have ZT →
∞ and, therefore, this kind of environment is able to mimic the
effect of an energy-selective junction. However, in this limit, Ẽ
and thus the power IV , scales as exp(−E/T ). A more detailed
analysis shows that beyond ZT ∼ 1 a linear increase in ZT

corresponds to an exponential suppression of generated power.
This should be contrasted to the energy-selective junction
where the infinite ZT is due to the idealized assumption
of perfectly sharp energy levels. In reality, the levels are
broadened and the figure of merit is finite. However, when the
level width is decreased, power is reduced roughly inversely,
and not exponentially, with ZT .30 Thus an energy-selective
junction is the only realistic way of achieving very high
efficiencies, at least in the linear regime. The fundamental
difference between the energy filtering provided by the
junction and by the environment is the fact the former is
directional while the latter is not: when an electron tunnels to
the right in an energy-selective junction it must always absorb
a photon and when tunneling in the other direction it must
emit a photon, but for an unfiltered junction both emission and
absorption are possible for either direction.

After concluding that large efficiencies are not available for
linear response, we turn to the nonlinear regime and conditions
for maximum power. Figure 2(b) shows numerical results for
an ohmic environment, as represented by Eq. (3), with the
power calculated from Eqs. (6) and (16). The figure of merit
at maximum power is ZT ≈ 0.5. For Tenv > T , the power
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is large but the efficiency clearly below the energy-selective
case. This is because the power is generated by elementary
tunneling processes each performing the same work V but
absorbing a different amount of heat from the hot bath. These
elementary processes thus have different efficiencies, and the
overall average efficiency will be lower than in the energy-
selective case where each process carries the same amount of
heat.

In the opposite case of a cold environment, Tenv < T ,
performance of the heat engine is dramatically degraded. Since
now V < 0, electrons tunneling from right to left perform use-
ful work, and therefore large power production requires that �−
dominates �+. Indeed, this is the case for the energy-selective
junction: as can be seen from Eq. (14), Tenv → 0 implies �− �
�+. However, the unfiltered case of Eq. (16) does not share
this property. The physical explanation is that in the former
case electrons can tunnel from left to right only by absorbing
energy from the cold environment, while in the latter case,
they can tunnel by using the thermal energy of the hot electron
system, without any energy exchange with the external bath.
The transport processes which are decoupled from the envi-
ronment produce a considerable leakage current down along
the voltage bias, thus making heat engine performance very
poor.

For a metal-quantum dot junction, the magnitude of the
maximum power depends on the product of � and T0. Validity
of our approach requires that sequential tunneling dominates
all higher-order processes, and this is the case if � � T0, and
thus the unit of power is constrained by �T0 � T 2

0 .
Another model system for the unfiltered case is a tunnel

junction between two metals. In this case, Eq. (1) yields

�± = γ

∫
dεP (ε)(ε ± E)n(ε ± E), (18)

where γ = 2π |t |2νLνR and n(ε) is the Bose function at
temperature T . We have also used the identity

∫
dε′f (ε′)[1 −

f (ε′ − ε)] = εn(ε). Comparing Eq. (18) to Eq. (16), we
see that the quantitative results for the metal-quantum dot
junction can be transferred to the present case by replacing
� → γ and f (ε) → εn(ε). All qualitative arguments remain
unchanged, and numerical maximization yields results very
similar to those in Fig. 2(b), with the unit of power now being
γ T 2

0 . The existence of Coulomb blockade requires26 γ � 1
and therefore just like in the previous cases the operating
temperature strictly limits the attainable power.

V. DISCUSSION

Above we have shown that highly efficient energy con-
version is, in practice only, available for an energy-selective
junction. This type of device also performs equally well for hot
and cold environments. On the other hand, unfiltered junctions
should be operated with a hot environment and cold electron
transport system. To intuitively understand this behavior, one
can consider the system in Fig. 1(b) with the left junction
coupled to the environment. When the electron system is cold,
that is, T is small compared to the other energies, then the
Fermi functions are sharp and electrons cannot tunnel up in
energy from the right lead to the center, and therefore only
the positive direction transport processes remain. First, an

electron tunnels from the left lead to the center by absorbing
a photon, and then due to the strong tunnel coupling of the
second junction it discharges to the right lead. Thus each
tunneling electron transfers heat from hot to cold and performs
useful work, leading to optimal thermoelectric performance.
On the other hand, for a hot electron system, the Fermi
functions are smeared and in general electrons can tunnel
in both directions without absorbing or emitting photons.
Such environment-decoupled processes transport electrical
current down the voltage bias, that is, they produce Joule
heating from work, hence severely degrading the engine
power and efficiency. Only a fully energy-selective junction
is able to force the tunneling electrons to always interact
with the environment, resulting in highly efficient energy
conversion.

Achieving high efficiency is typically a major goal in heat
engine design but for the purposes of waste heat recovery
the thermal input energy of the device can be considered free
and abundant, making efficiency an irrelevant quantity. In this
case, one should instead concentrate on maximizing the power
output, as has been done in Sec. IV. From Fig. 2, one can
see that the attainable power is roughly 0.01 . . . 0.1, expressed
in units of 2π |t |2 for a junction between quantum dots, �T0

for a metal-quantum dot junction, and γ T 2
0 for a metal-metal

junction. We have concluded that these three expressions are all
bounded to be much smaller than T 2

0 , which leads us to estimate
that the maximum power achievable with this type of device
is about 10−2T 2

0 . If T0 = 1 K , the generated power falls in the
femtowatt range. This is a typical figure for low-temperature
single-electron devices.22,30

In principle, it is possible to increase the power pro-
duction by having several engine units in parallel with
the external impedance. The coupling energy EC scales
inversely with the number of parallel devices and there-
fore the capacitances of the individual junctions should
be decreased. However, in order to see an actual increase
in current and power, this change in the capacitances
should not considerably lower the tunneling rates of the
junctions.

Even if one is not concerned with efficiency, heat leaks
between the thermal baths should be minimized in order to
have a maximally large temperature difference. Phononic heat
conduction is a problem with all thermoelectric systems. Since
phonons are not part of our model, we only note that at very
low temperatures the electron-phonon coupling becomes weak
and this conduction channel can be ignored. On the other hand,
two heat leak mechanisms particular to the type of devices
considered here are heat conduction by electrons moving
between the junction and the external circuit, and photonic
heat transfer between the external impedance and the metallic
reservoirs of the junction system. The first leakage channel can
be eliminated by using superconducting wires, and the second
one is suppressed if the resistance of the electron reservoirs is
much smaller than the tunnel resistance of the junctions.

We have assumed that the whole electron transport system
remains at the same temperature T . This is a nontrivial
requirement especially for the small dots which can be easily
driven to different temperatures or even out of equilibrium.
However, one central assumption leading to Eq. (6) was that
those junctions which are effectively uncoupled from the
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environment have a relatively high transmittance, and the back
and forth tunneling of electrons through these junctions will
equilibrate the dot with the reservoir.

One should also note that since the generated current flows
through the external impedance Z(ω), the power P and voltage
bias V must be related by Z(ω → 0) = V 2/P if there are no
other voltage sources. For example, from Fig. 2(b), we have
Z(0) ∼ 102T0/� which is consistent with the assumption of a
high-impedance environment since the validity of P (E) theory
requires T0/� � 1. Of course, a nonthermoelectric voltage
source in series with the heat engine can be used to drive the
current through an even larger load.

In conclusion, we have investigated the heat engine perfor-
mance of several types of single-electron junctions coupled to

linear electromagnetic environments. Highest thermoelectric
performance is obtained when only a single junction in an
array of junctions is coupled to the external heat bath, and
in this case a simple formula is able to describe the essential
dynamics. It was confirmed that an energy-selective junction
between two quantum dots is capable of highly efficient energy
conversion, while equally large power production is possible
with all studied junction types.
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