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Analytical expressions for the kinetic friction in the Prandtl-Tomlinson model
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Analytical expressions are presented for the motion of a point mass driven on a periodic potential by a lateral
spring, approximating an atomically sharp tip rubbing over a crystal surface. The tip position before and after
jumping between two consecutive minima, the kinetic friction force Fkin, and the energy barrier �E preventing
the tip jumps are expressed in terms of a parameter η, which is the ratio between the maximum curvature of the
substrate potential and the elastic spring constant. In the two limiting cases of η → 1 (superlubric transition)
and η � 1, we demonstrate that Fkin ∝ (η − 1)2 and Fkin ∝ η, respectively. We also show that the relation
�E ∝ (Fc − F )3/2, which is valid in the case of a strong interaction, is replaced by �E ∝ (F − Fc)3 close to the
superlubric transition. The proportionality coefficients are determined in all cases. The case of multiple jumps is
also studied, and numerical results reproducing the influence of the finite temperature and the viscous damping
accompanying the tip slippage are shown.
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I. INTRODUCTION

The development of friction force microscopy1 (FFM)
made clear that the motion of a sharp tip elastically driven
on a crystal surface can be ultimately interpreted in the
framework of the so-called Prandtl-Tomlinson (PT) model.2,3

In its basic version, the PT model describes the stick-slip
motion of a point mass transversally pulled by a spring on
a potential Vint with the symmetry of the surface lattice. The
point mass represents the tip apex of the FFM, whereas the
spring combines the torsion of the microcantilever supporting
the tip with the lateral deformation of the contact region.4,5 If
the ratio between the sliding velocity and the lattice constant
is well below the characteristic vibrational frequencies of the
tip in the minima of the potential Vint, the average tip position
moves quasistatically until the spring elongation reaches a
critical value, and the tip suddenly jumps into (usually) the
closest minimum defined by the scan direction. Remarkable
formal analogies with this problem can be recognized in the
dynamics of driven charge-density waves.6

The previous picture is modified at a finite temperature
T . In such a case, a tip jump can be thermally activated
when the energy barrier �E preventing it becomes compa-
rable to kBT , where kB is Boltzmann’s constant. Thermal
activation was invoked to predict the dependence of friction
on the temperature and the sliding velocity already in the
seminal work by Prandtl.2 Experimental confirmations of
Prandtl’s predictions have come from high-resolution FFM
measurements in ultrahigh vacuum.7,8 In order to get further
understanding of these processes, one has to know how the
barrier �E changes with time t and/or with the lateral force
F acting on the tip. As long as the tip-surface interaction
is strong enough, the dependence of the energy barrier on
the lateral force is given by �E ∝ (const − F )3/2 (ramped
creep). Regarding the coefficient of proportionality, different
expressions have been reported.9–12 Alternatively, the linear
approximation �E ∝ (const − F ) (linear creep) is also in a
certain agreement with experimental studies at low speed.7

Compared to the ramped creep, the choice of the time t (or
the force F ) around which the energy barrier can be linearly
approximated is arbitrary, and no specific expressions for
the coefficient of proportionality have been reported to our
knowledge.

Even more surprisingly, analytical expressions for the tip
location x ′

c immediately after jump are not discussed in the
literature. As shown below these expressions are required
to relate the average value of the kinetic friction force
to the amplitude of the interaction potential Vint, which is
essential for the theoretical foundations of nanotribology.
These observations motivated the development of the present
article. After a brief review of the PT model in one dimension
(1D) in Sec. II, analytical approximations are obtained for
the position x ′

c and the kinetic friction Fkin in the limiting
cases of high tip-surface interaction and close to the opposite
regime of continuous sliding or superlubricity (Sec. III). In
Sec. IV the energy barrier �E is estimated as a function of
t and F . Original formulas are derived for the energy barrier
close to superlubricity (in the ramped regime) and in the linear
regime. Finally, Sec. V addresses the case of jumps over
several lattice constants, which has been recently described
in experimental studies on graphite and alkali-metal halide
crystal surfaces.13,14 Here, analytical results are complemented
by numerical calculations relating the appearance of multiple
jumps to the lateral damping of the tip oscillations.

II. THE MODEL

In a first approximation, a sharp asperity (tip) sliding
on a crystal lattice moves like a point mass driven by an
elastic spring on a sinusoidal potential Vint. In this case, it
is convenient to introduce the parameter

η = 4π2V0

ka2
, (1)

where V0 and a are the amplitude and periodicity of the
potential Vint, and k is the spring constant. If η < 1 the
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FIG. 1. The equilibrium of a particle driven by a lateral spring
on a sinusoidal potential is broken at a critical time tc when the tip
suddenly jumps from the minimum position xc to the next one, x ′

c.

motion is continuous (superlubric), whereas a series of abrupt
jumps with fast recovery of the tip equilibrium (stick-slip) are
observed when η > 1. A typical situation in FFM experiments,
corresponding to the value η = 10, is shown in Fig. 1. It is
important to observe that, if the interaction potential Vint is not
sinusoidal, the definition (1) is not well posed and the stick-slip
condition becomes −V

′′(max)
int /k > 1.9

To simplify our calculations, we substitute a → 2π and
k → 1. In the new units the forces are expressed in multiples
of ka/2π , and the interaction potential Vint has an amplitude
V0 = η, so that

V (x,t) = −η cos x + 1
2 (x − vt)2 (2)

is the total potential experienced by the tip. Standard units will
be adopted only in the formulas describing the final results.
The tip position xmin is given by the equilibrium condition
∂V/∂x = 0, which, in our case, becomes

η sin x + x − vt = 0. (3)

In a first approximation (when t → 0 or η � 1):

xmin � vt

1 + η
, F � η

1 + η
vt. (4)

The equilibrium position xmin slightly moves forwards
when the pulling spring is elongated along the direction
x. When the tip reaches the critical position xc defined
by ∂2V/∂x2 = 0, the equilibrium becomes unstable. This
position is given by

xc = arccos

(
− 1

η

)
,

and the corresponding critical time is

vtc =
√

η2 − 1 + arccos

(
− 1

η

)
≡ f (η). (5)

At this point the (static) lateral force F = vt − xmin acting on
the tip is

Fstat = ka

2π

√
η2 − 1. (6)

Note that this value is lower than the maximum value Fmax =
η of the lateral force.15 The value Fmax is reached shortly
before jumping, when the tip, which is strongly accelerated,
overcomes the velocity v of the spring support.

When t = tc the tip jumps towards the next minimum
x ′

min = x ′
c (multiple jumps with n > 1 are discussed in Sec. V).

In the limiting cases η → 1 and η � 1 the quantity x ′
c takes

the values x ′
c(1) = π and x ′

c(∞) = 5π/2, respectively. At each
jump the energy amount �V = V (xc) − V (x ′

c) is released
from the contact region in the form of phonons. The average
(kinetic) friction force can be easily estimated from this
quantity as Fkin = �V/2π , whereas the variation of the lateral
force in the jump is given by �F = x ′

c − xc (in reduced
units). Furthermore, the energy barrier �E preventing the
jump is defined as �E = V (xmax) − V (xmin), where xmax is
the position of the first maximum next to xmin (see Fig. 1).

In the following, the tip positions xc and x ′
c, the kinetic

friction force Fkin, and the energy barrier �E are estimated by
Taylor expansions in the limiting cases η → 1 and η � 1.

III. CRITICAL POSITIONS AND KINETIC FRICTION

A. Case η → 1

If η → 1 we expand the function f (η) defined by (5),
introducing the variable ν = √

η − 1:

f (η) = π + 2
√

2

3
ν3 − 3

5
√

2
ν5 + 23

56
√

2
ν7 + · · · . (7)

Next we assume that

x ′
c = π + α.

From the minimum condition ∂V/∂x = 0 we obtain

− (ν2 + 1) sin α + π + α = f. (8)

Taking into account that the Taylor expansion of sin α contains
only odd powers of α, we assume that α = ∑

k akν
k , with

k = 1,3,5, . . . . Substituting and expanding in (8), and using
the expression (7) for the function f , we find two series of
values for the coefficients ak , which describe the tip position
before and after jumping, respectively. Retaining the first three
terms in the expansion of α, we have,

xc = π −
√

2ν + 5

6
√

2
ν3 − 43

80
√

2
ν5 + · · · , (9)

x ′
c = π + 2

√
2ν − 19

15
√

2
ν3 + 0.5237ν5 + · · · . (10)

The energy variation in the jump, �V , can be estimated by
substituting the expressions (9) and (10) into (2), with t = tc,
and expanding.

The kinetic friction force, obtained as described in
Sec. II, is

Fkin = ka

2π

(
9

4π
(η − 1)2 − 9

5π
(η − 1)3

+ 0.4829(η − 1)4 − · · ·
)

, (11)

whereas the variation of the lateral force is given, as a first
approximation, by �F � 3

√
2(η − 1).
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B. Case η � 1

If η � 1 we expand the function f (η) introducing the
variable ν = 1/

√
η:

f (η) = 1

ν2
+ π

2
+ ν2

2
+ ν6

24
+ · · · . (12)

The positions of the tip before and after jumping are

xc = π

2
+ β, x ′

c = 5π

2
+ γ.

The condition ∂V/∂x = 0 gives

cos β

ν2
+ π

2
+ β = f (13)

and, respectively,

cos γ

ν2
+ 5π

2
+ γ = f. (14)

Taking into account that the Taylor expansion of cos β contains
only even powers of β, we assume that β = ∑

k bkν
k , with

k = 0,2,4, . . . . Substituting and expanding in (14), and using
the expression (12) for the function f , we find that

xc = π

2
+ ν2 + ν6

6
+ 3

40
ν10 + · · · . (15)

In the Taylor expansion of γ both odd and even terms need to be
considered: γ = ∑

k ckν
k , with k = 0,1,2, . . . . Substituting

and expanding in (14), and using again the expression (12) for
the function f , we have

x ′
c = 5π

2
− 2

√
πν + ν2 − π3/2

3
ν3 + · · · . (16)

Using again (2), with t = tc, to estimate the energy variation
�V , we obtain the following expression for the kinetic friction
force:

Fkin = ka

2π

(
η − π + 4

3

√
π

η
− 1

2η
+ · · ·

)
, (17)

whereas �F is independent of η and equal to 2π (in a first
approximation).

C. Discussion

The relations (11) and (17) lead to the important conclusion
that the kinetic friction force Fkin is proportional to the param-
eter η when η � 1, whereas Fkin approaches the superlubric
transition according to the law Fkin ∝ (η − 1)2. We notice that
these laws already appeared (without derivation) in an earlier
work by Helman et al.16

In order to determine the range of validity of the previous
results, we have plotted the tip positions xc(η) and x ′

c(η), as
estimated from (9),(10) and (15),(16) together with numerical
solutions of the equation ∂V/∂x = 0 with V (x,t) given by
(2): See Figs. 2(a) and 2(b). Similarly, the dependence Fkin(η)
given by (11) and (17) is compared to the values obtained
numerically in Fig. 2(c). The corresponding errors (not shown)
reveal that the analytical approximations hold quite well for
xc, they are less precise for x ′

c and they are unsatisfactory for
Fkin in the region around η = 1.5–2, where the convergence
of the series is slow and the relative error is >10%. Since
the parameter η in FFM experiments often takes values in the
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FIG. 2. (a) Tip position xc before jumping, (b) tip position x ′
c

after jumping, and (c) kinetic friction force Fkin in the overdamped
limit vs the parameter η defined by (1). The open circles correspond
to numerical solutions of the conditions of stability of the nanotip.
The dashed curves represent the approximations (9), (10), and (11)
derived in the text when η → 1. The continuous curves represent the
approximations (15), (16), and (17) when η � 1.

last range, we have also approximated the dependence Fkin(η)
around η = 2. This point is not singular and a linear relation
holds:

Fkin(η) = 0.4029 + 0.1791(η − 2) + · · · , (18)

which can be useful for practical applications (the coefficient
of friction once the relation between the normal force FN and
the parameter η is known).

Incidentally, it also makes sense to consider the ultrasuper-
lubric case η → 0. In such a case, the tip follows the support
without accelerating, so that xmin = vt and F (t) = η sin vt .
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Thus, the force F (t) perfectly reproduces the sinusoidal
potential Vint. This remains true for an arbitrary shape of the
periodic potential, not only in 1D.

IV. ENERGY BARRIER FOR THERMALLY
ACTIVATED JUMPS

A. Ramped creep

In order to determine the energy barrier �E as a function
of the actual lateral force F (t), we write the tip position before
jumping as

xmin = xc − δ.

Substituting into the condition ∂V/∂x = 0, we obtain a
transcendental equation for δ as a function of time. Expanding
it up to the second order in δ and taking into account the
definition (5), we find

δ � ±A
√

f − vt, A ≡
√

2

(η2 − 1)1/4
. (19)

The negative solution corresponds to the position of the
maximum xmax. At the same order in δ we can approximate
the energy barrier as �E � 2(f − vt)δ and, using (19),

�E � 2
√

2

(η2 − 1)1/4
(f − vt)3/2,

or, in normal units (in which the energies are expressed as
multiples of V0/η),

�E � 8V0

η(η2 − 1)1/4

(
πv

a

)3/2

(tc − t)3/2. (20)

Note that this result differs by a factor 3/2 from the one
derived by Müser9 and previously reported by Sang et al.10

and Persson et al.11 The result presented in these references
can be recovered if �E is expanded up to the third order in δ,
but this is not consistent with the second-order approximation
leading to Eq. (19).

In general it is easy to see that, in reduced units, the
following relation holds (since Fc =

√
η2 − 1):

F = vt − xmin � Fc − (f − vt) + A
√

f − vt. (21)

Close to the transition the third term on the right-hand side
is much larger than the second one. Thus we can assume that√

f − vt � (F − Fc)/A and conclude that

�E � (η2 − 1)2

η

(
F

Fc

− 1

)3

V0. (22)

If η � 1, the relation (22) holds only in a very limited range
of values close to the transition. Out of this range, f − vt �
Fc − F and Eq. (20) implies that

�E � 2
√

2

(
1 − F

Fc

)3/2

V0. (23)

This formula was already used by Dudko et al. [Eq. (4) in
Ref. 12]. However, Eq. (22) has not been reported to our
knowledge. This result can be useful for further theoretical
studies on the superlubric transition.

Different situations corresponding to η = 1.1, 2, 5, and
10 are shown in Fig. 3. Here, numerical solutions for the

(b)

(a)

FIG. 3. (a) Energy barrier �E (see Fig. 1) as a function of the
lateral force F (in double logarithmic scale) when η = 1.1, 2, 5, and
10. The black lines represent numerical solutions of the equation of
motion of the nanotip; the continuous and dotted gray lines correspond
to the analytical approximations (23) and (22), respectively. Note
that, when η → 1, the maximum xmax and the energy barrier �E are
defined only in close proximity to F = Fc. (b) Ramped approximation
(continuous gray curve) and linear approximation (dotted gray curve)
compared to the numerical solution (continuous black curve) for the
dependence �E(F ) when η = 10.

energy barrier �E are plotted as functions of the lateral force
(continuous lines). The analytic expressions (22) and (23) are
also plotted as functions of the same variable. Note that the
critical value of the lateral force when η = 1.1 (Fc = 0.458)
is much lower than the maximum value Fmax = 1.1, so that
the decrease of F is well pronounced when the threshold
�E = 0 is approached. This is not the case when η = 10,
where Fc = 9.95 is quite close to Fmax = 10 and the slight
reentrance of the lateral force cannot be appreciated even in a
double logarithmic scale.

B. Linear creep

For estimating the energy barrier in the case of linear creep,
we choose the symmetric configuration considered by Tshiprut
et al.,17 where the energy barrier for a forward jump xmin →
x ′

min equals the energy barrier for a backward jump x ′
min →

xmin. Assuming that xmin = xmax − ε and x ′
min = xmax + ε,

the condition V (xmin) = V (x ′
min) implies that xmax − vt =
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−η sin ε sin xmax/ε. Since the maximum xmax also satisfies
the condition (3) we conclude that xmax = π . The quantity
ε is determined by equating the two derivatives of the total
potential V in the minima xmin and x ′

min, which gives

ε − η sin ε = 0 (24)

for the implicit relation ε = ε(η), and

�E0 = −ε2

2
+ η(1 − cos ε) (25)

for the energy barrier in the chosen configuration.
It is easy to see that

ε �
√

6(η − 1), �E0 = 3
2 (η − 1)2 − 6

5 (η − 1)3 + · · ·
when η → 1 and

ε � η

1 + η
π, �E0 = 2η − π2

2
+ π2

2η
+ · · ·

when η � 1.
Let us now assume that the tip position slightly deviates

from the symmetric configuration. In this case xmin = π −
ε − δ and xmax = π + δ′. Equating the derivative ∂V/∂x to
zero and using (24), we get

δ � π − vt

1 − η cos ε
, δ′ � π − vt

η − 1

and, for the energy barrier,

�E � �E0 + ε(π − vt).

When η � 1, using (4),

�E � 1 + 5η2 + 4η3

2η2(1 + η)
V0 − a

2
F, (26)

which is plotted as the dashed line in Fig. 3(b). The final result
is quite simple: The slope of the �E vs F curve is equal to
a/2 (this quantity was referred to as λ in Ref. 7).

V. MULTIPLE JUMPS

Depending on the value of the parameter η, other equilib-
rium positions are possible beyond x ′

c.13 A jump over κ lattice
constants (towards the position x = x(κ)

c ) may appear if the
conditions ∂V/∂x = 0 and ∂2V/∂2x > 0 are satisfied in at
least κ points. It is not difficult to see that the appearance of
this kind of jump is given by the condition

f (ηk) = κπ,

corresponding to the values of η1 = 1, η2 = 4.603, η3 =
7.790, etc. Using the same approach as in Sec. III, it can
be proven that, when η � 1, the tip position after a jump over
k lattice constants is given by

x(κ)
c = π

2
+ 2κπ − 2

√
κπν + ν2 − (κπ )3

3
ν3 + · · · ,

and the kinetic friction force is given by the expression (17)
with π replaced by κπ everywhere.

The previous derivations were implicitly carried out assum-
ing that the tip motion is quasistatic, i.e., the tip is always in
mechanical equilibrium, except when it slips. The quasistatic
approximation also allows an estimation of the frictional force

FIG. 4. Depending on the values of the damping coefficient γ in
Eq. (27) the nanotip can jump over multiple numbers of the lattice
constant a in both overdamped (γ > γc) and underdamped (γ < γc)
regimes. Here, the regions of occurrence of multiple jumps have been
estimated (a) at zero temperature and (b) at T = 300 K. In both cases
the tip response becomes chaotic if γ � 0.3γc.

accompanying a jump over κ lattice constants. However, it
cannot predict which value of κ will be experienced in the
jump. In order to answer this question, the equation of motion
of the nanotip has to be solved. At a finite temperature T , this
equation is

mẍ + mγ ẋ + V ′(x) = ξ (t), (27)

where the damping coefficient γ describes the coupling with
phonon and possible electron oscillations in the substrate,
and the term ξ (t) describes the Brownian motion of the tip
according to the fluctuation-dissipation theorem: 〈ξ (t)ξ (t ′)〉 =
2mγkBT δ(t − t ′). Equation (27) has been solved with m =
10−12, v = 50 lattice constants per unit time, and γ expressed
in units of γc = 2

√
k/m for both T = 0 and T = 300 K. As

a result, we observe that the η-γ plane can be divided into

FIG. 5. Potential profile V (x) corresponding to a critical position
of the tip (thick curve) and variation of the total tip energy E while
jumping in the underdamped case γ = 0.1γc with η = 12.8 (thin
curve). Distances are expressed in terms of the lattice constant a and
the energies in multiples of ka2/4π 2.
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different regions, as shown in Figs. 4(a) and 4(b). At zero
temperature, jumps of κ lattice constants occur (for a fixed
value of the parameter η) only if γc,κ (η) < γ < γc,κ−1(η)
(when κ > 1) or γ > γc,1(η) (when κ = 1). However, the
situation changes if γ is low. If γ � 0.3γc a chaotic regime is
indeed observed, in which the “landing” position of the tip may
be several lattice constants away from the “take-off” position
and may change significantly with little variation of the
parameters η and γ . At finite temperature the curves separating
regions corresponding to jumps with different values of
κ are smoothed, and overall shifted towards larger values
of η.

In order to get better insight into the relaxation process
of the tip (at zero temperature), we have also represented
the total energy E = (1/2)mẋ2 + V (x) as a function of the
instantaneous tip position when a multiple jump occurs. In
Fig. 5, corresponding to η = 12.8 and γ = 0.1γc, it can be
seen that the tip bounces back and forth between different
equilibrium positions until it is conveyed by the potential
profile V (x) two lattice constants beyond the take-off position,
where the tip finally accommodates. The actual value of κ is
thus determined by the shape of V (x) and, in the underdamped
case, is extremely sensitive to the value of the coefficient γ . A
detailed analysis of the tip trajectories in this chaotic regime
goes beyond the goals of this paper.

VI. CONCLUSION

In conclusion, analytical expressions for the average fric-
tion force and the energy barrier in the one dimensional
Prandtl-Tomlinson model have been derived analytically in the
quasistatic limit. The friction force can be precisely described
in the case of very high friction and also at the onset of

superlubricity. Previous assumptions for the energy barrier
have been confirmed and the coefficients of proportionality
have been estimated. Although the range of application of the
power laws that we obtained is somewhat limited, due to the
slow convergence of the series which appear in their derivation,
these results can be used as an important starting point for
further experimental and computational work aimed at a better
understanding of atomic-scale friction and superlubricity in
two dimensions, where the analysis is complicated by the
symmetry properties of the crystal lattice.18,19

Furthermore, the equation of motion of the tip has been
numerically solved for different values of the control param-
eters η and γ , which describe the curvature of the tip-surface
interaction (as compared to the lateral contact stiffness) and the
damping coefficient of the lateral tip oscillations. The number
of lattice constants crossed in a tip jump has been related to
these parameters at both zero and room temperature. A chaotic
response is observed in the underdamped limit and associated
with the tip bouncing back and forth between the potential
walls, causing the stick-slip motion.

Note added in proof. Bistable solutions of (5) appear only in
a limited x-range centered about xc = π as long as x ′

c < 3π/2.
As discussed in Ref. 13, this occurs for 1 < η < 4.603. This
explains why the curves for η = 1.1 and 2 do not extend back
to F = 0, whereas those for η = 5 and 10 do so.
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