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Linear magnetoresistance on the topological surface
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A positive, nonsaturating, and dominantly linear magnetoresistance is demonstrated to occur in the surface
state of a topological insulator having a wave-vector linear energy dispersion together with a finite positive
Zeeman energy splitting. This linear magnetoresistance shows up within quite wide magnetic-field range in a
spatially homogeneous system of high carrier density and low mobility in which the conduction electrons are in
extended states and spread over many smeared Landau levels, and is robust against increasing temperature, in
agreement with recent experimental findings in Bi2Se3 nanoribbons.
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I. INTRODUCTION

It is well known that the classical magnetoresistance (MR)
in metals or semiconductors with a closed free-electron Fermi
surface increases quadratically with increasing magnetic field
B for μB � 1 and saturates when μB > 1. Here, μ is the
zero-magnetic-field mobility. Hence, the extraordinarily high
and linear MR (LMR), which breaks this familiar rule, has
been gaining much attention as soon as its discovery. In the
past decade, this unexpected LMR has been reported in silver
chalcogenide,1 indium antimonide,2 silicon,3 MnAs-GaAs
composite material,4 and graphene.5

Kapitza’s linear law6 indicates that the metal shows a
magnetoresistance linear in perpendicular magnetic field when
it has an open Fermi surface and a mean-free path longer
than the electronic Larmor radius. Recently, another two
models, irrespective of the open Fermi surface, have been
constructed to provide possible mechanisms for the LMR
phenomenon. Abrikosov suggested a quantum-limit origin
of LMR for the homogeneous system with a gapless linear
energy spectrum.7,8 His model requires that Landau levels
are well formed and the carrier concentration is small so
that all electrons occupy only the lowest Landau band. Alter-
natively, Parish and Littlewood developed a classical model
without involving linear spectrum.9 Ignoring the concrete
microscopic mechanism, they attributed this unusual MR
to the mobility fluctuations in a strongly inhomogeneous
system.

Topological insulators10–12 (TIs) are novel materials with a
full energy gap in bulk, while there are gapless surface states.
Due to its unique band structure with only one helical Dirac
cone and linear energy dispersion,13–15 the surface states of
the TI Bi2Se3 become an excellent platform for the study of
quantum-limit LMR. The recent experiment in this flat surface
system, however, reported that a large positive MR, which
becomes very linear above a characteristic field of 1 ∼ 2 T, was
observed even in an opposite situation where the carrier-sheet
density is high so that electrons occupy more than one Landau
level.16 Moreover, they found that raising temperature to room
temperature almost has no influence on the observed LMR. It
is striking that this observation is in conflict with Abrikosov’s
model and also with the classical Parish-Littlewood model. So
far, a reliable theoretical scheme capable of explaining this
novel experiment has still been lacking.

In this paper, we generalize the balance-equation
approach17 to a system modeling the surface states of a
three-dimensional TI to investigate the two-dimensional mag-
netotransport in it. We find that a positive, nonsaturating, and
dominantly linear magnetoresistance can appear within quite
wide magnetic-field range in the TI surface state having a
positive and finite effective g factor. This linear magnetoresis-
tance shows up in the system of high carrier concentration and
low mobility when electrons are in extended states and spread
over many smeared Landau levels, and persists up to room
temperature, providing a possible mechanism for the recently
observed linear magnetoresistance in topological-insulator
Bi2Se3 nanoribbons.16

II. BALANCE-EQUATION FORMULATION FOR
MAGNETORESISTIVITY

We consider the surface state of a Bi2Se3-type large bulk
gap TI in the x-y plane under the influence of a uniform
magnetic field B applied along the z direction.15 Following the
experimental observation,16 we assume that the Fermi energy
locates in the gap of the bulk band and above the Dirac point,
i.e., the surface carriers are electrons. Further, the separations
of the Fermi energy from the bottom of bulk band and Dirac
point are much larger than the highest temperature (300 K)
considered in this work. Hence, the contribution from the bulk
band to the magnetotransport is negligible. These electrons,
scattered by randomly distributed impurities and by phonons,
are driven by a uniform in-plane electric field E = (Ex,Ey)
in the topological surface. The Hamiltonian of this many-
electron and phonon system consists of an electron part He, a
phonon part Hph, and electron-impurity and electron-phonon
interactions Hei and Hep:

H = He + Hei + Hep + Hph. (1)

Here, the electron Hamiltonian is taken in the form

He =
∑

j

[
vF

(
πx

j σ
y

j −π
y

j σ x
j

) + 1

2
gzμBBσz

j +erj · E
]
, (2)

in which π j ≡ pj + eA(rj ) = (πx
j ,π

y

j ), rj = (xj ,yj ), pj =
(pjx,pjy), and σ j = (σx

j ,σ
y

j ,σ z
j ) stand, respectively, for the

canonical momentum, coordinate, momentum, and spin oper-
ators of the j th electron having charge −e, A(r) = (−By,0)
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is the vector potential of the perpendicular magnetic field
B = Bẑ in the Landau gauge, vF is the Fermi velocity, gz is
the effective g factor of the surface electron, and μB = e/2m0

is the Bohr magneton with m0 the free-electron mass. The sum
index j in Eq. (2) goes over all electrons of total number N in
the surface state of unit area.

In the framework of the balance-equation approach,17–19

the two-dimensional center-of-mass (c.m.) momentum and
coordinate P = ∑

j pj and R = N−1 ∑
j rj , and the relative-

electron momenta and coordinates p′
j = pj − P/N and r ′

j =
rj − R are introduced to write the Hamiltonian He into the
sum of a single-particle c.m. part Hcm and a many-particle
relative-electron part Her: He = Hcm + Her, with

Hcm = vF
(
�xσ

y
c − �yσ

x
c

) + NeE · R, (3)

Her =
∑

j

[
vF

(
π ′x

j σ
y

j − π
′y
j σ x

j

) + 1

2
gzμBBσz

j

]
. (4)

In this, � ≡ P + NeA(R) = (�x,�y) is the canonical mo-
mentum of the center of mass and π ′

j ≡ p′
j + eA(r ′

j ) =
(π ′x

j ,π
′y
j ) is the canonical momentum for the j th relative

electron. Here, we have also introduced c.m. spin operators
σx

c ≡ N−1 ∑
j σ x

j and σ
y
c ≡ N−1 ∑

j σ
y

j . The commutation
relations between the c.m. spin operators σx

c and σ
y
c and the

spin operators σx
j , σy

j , and σ z
j of the j th electron are of order of

1/N : [σβ1
j ,σ

β2
c ] = N−12 i εβ1β2β3σ

β3
j with β1,β2,β3 = (x,y,z).

Therefore, for a macroscopic large-N system, the c.m. part
Hcm actually commutes with the relative-electron part Her in
the Hamiltonian, i.e., the c.m. motion and the relative motion
of electrons are truly separated from each other. The couplings
between the two emerge only through the electron-impurity
and electron-phonon interactions. Furthermore, the electric
field E shows up only in Hcm. And, in view of [r ′

iα,p′
jβ] =

iδαβ(δij − 1/N ) � iδαβδij , i.e., the relative-electron momenta
and coordinates can be treated as canonical conjugate vari-
ables, the relative-motion part Her is just the Hamiltonian of
N electrons in the surface state of TI in the magnetic field
without the presence of the electric field.

In terms of the c.m. coordinate R and the relative-electron
density operator ρq = ∑

j ei q·r ′
j , the electron-impurity and

electron-phonon interactions can be written as18,19

Hei =
∑
q,a

U (q) ei q·(R−ra )ρq, (5)

Hep =
∑
Q,λ

M( Q,λ) φQλe
i q·Rρq . (6)

Here, U (q) and M( Q,λ) are, respectively, the impurity
potential (an impurity at randomly distributed position ra) and
electron-phonon coupling matrix element in the plane-wave
representation, and φQλ ≡ bQλ + b

†
− Qλ with b

†
Qλ and bQλ

being the creation and annihilation operators for a phonon of
wave vector Q = (q,qz) in branch λ having frequency �Qλ.

The c.m. velocity (operator) V is the time variation
of its coordinate: V = Ṙ = −i[R,H] = vF(σy

c î − σx
c ĵ ). To

derive a force-balance equation for steady-state transport, we
consider the Heisenberg equation for the rate of change of the

c.m. canonical momentum �:

�̇ = −i [�,H] = −Ne(V × B) − NeE + Fi + Fp, (7)

in which the frictional forces Fi and Fp share the same
expressions as given in Ref. 19.

The statistical average of the operator equation (7) can
be determined to linear order in the electron-impurity and
electron-phonon interactions Hei and Hep with the initial
density matrix ρ̂0 = Z−1e−(Hph+Her)/T at temperature T when
the in-plane electric field E is not strong. For steady-transport
states we have 〈�̇〉 = 0, leading to a force-balance equation
of the form

0 = −Nev × B − NeE + f i + f p. (8)

Here, v = 〈V 〉, the statistically averaged velocity of the
moving center of mass, is identified as the average rate of
change of its position, i.e., the drift velocity of the electron
system driven by the electric field E, and f i and f p are
frictional forces experienced by the center of mass due to
impurity and phonon scatterings:

f i =
∑

q

|U (q)|2q�2(q,ω0), (9)

f p =
∑
Q,λ

|M( Q,λ)|2q�2(q,�Qλ + ω0)

×
[
n

(
�Qλ

T

)
− n

(
�Qλ + ω0

T

)]
, (10)

in which n(x) = (ex − 1)−1 is the Bose distribution function,
ω0 ≡ q · v, and �2(q,ω) stands for the imaginary part of the
Fourier spectrum of the relative-electron density correlation
function defined by

�(q,t − t ′) = −i θ (t − t ′)〈[ρq(t), ρ−q(t ′)]〉0, (11)

where ρq(t) = eiHert ρq e−iHert and 〈· · · 〉0 denotes the statisti-
cal averaging over the initial density matrix ρ̂0.17

The force-balance equation (8) describes the steady-state
two-dimensional magnetotransport in the surface state of a TI.
Note that the frictional forces f i and f p are in the opposite
direction of the drift velocity v and their magnitudes are
functions of v = |v| only. With the drift velocity v = (v,0) in
the x direction, the force-balance equation (8) yields a trans-
verse resistivity Rxy = −Ey/(Nev) = −B/(Ne), and a longi-
tudinal resistivity Rxx = −Ex/(Nev) = −(fi + fp)/(N2e2v).
The linear one is in the form

Rxx = − 1

N2e2

∑
q

|U (q)|2q2
x

∂

∂ω
�2(q,ω)

∣∣
ω=0

− 1

2T N2e2

∑
Q,λ

|M( Q,λ)|2q2
x�2(q,�Qλ)

× csch2

(
�Qλ

2T

)
. (12)
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III. DENSITY CORRELATION FUNCTION IN THE
LANDAU REPRESENTATION

For calculating the electron density correlation function
�2(q,ω), we proceed in the Landau representation.19,20

The Landau levels of the single-particle Hamiltonian h =
vF(πxσ y − πyσ x) + 1

2gzμBBσz of the relative-electron sys-
tem in the absence of electric field are composed of a positive
(“+”) and a negative (“−”) branch21–25

ε±
n = ±

√
2nε2

s + δ2
z = ±εn (n = 1,2, . . .) (13)

with εs = vF

√
eB and δz = − 1

2gzμBB, and a zero (n = 0)
level

ε0 = δz = − 1
2gzμBB. (14)

The corresponding Landau wave functions are

�+
n,kx

(r) = 1√
Rn

eikxx

(
iPnφn−1,kx (y)

φn,kx
(y)

)
(15)

and

�−
n,kx

(r) = 1√
Rn

eikxx

(
φn−1,kx

(y)
iPnφn,kx

(y)

)
(16)

for n = 1,2, . . .; and

�0,kx
(r) = eikxx

(
0

φ0,kx
(y)

)
(17)

for n = 0. Here, kx is the wave vector of the system
along the x direction; Rn = 1 + P2

n with Pn = √
2nεs/(δz +√

2nε2
s + δ2

z ); and φn,kx
(y) = Dn exp(−γ 2/2)Hn(γ ) is the

harmonic-oscillator eigenfunction with Hn(x) being the
Hermite polynomial, γ ≡ (y − yc)/lB = √

eB(y − kxl
2
B), and

Dn = 1/(2nn!)1/2(eB/π )1/4.
Each Landau level contains nB = eB/2π = 1/(2πl2

B) elec-
tron states for a system of unit surface area. The positive branch
ε+
n = εn and the n = 0 level ε0 of the above energy spectra are

indeed quite close to those of the surface states in the bulk gap
of Bi2Se3-family materials derived from microscopic band
calculation.15

The Landau levels are broadened due to impurity, phonon,
and electron-electron scatterings. We model the imaginary part
of the retarded Green’s function, or the density of states, of the
broadened Landau level n (written for “+” branch and n = 0
levels), using a Gaussian-type form26

ImGn(ε) = −
√

2π

�
exp

[
−2(ε − εn)2

�2

]
, (18)

with a half-width � of the form22 � = [2ωc/(πτs)]1/2. Here,
τs is the single-particle lifetime and ωc = eBv2

F/ε
0
F is the

cyclotron frequency of linear-energy-dispersion system with
ε0

F = 2vF

√
πN being the zero-temperature Fermi level. Using

a semiempirical parameter α to relate τs with the transport
scattering time τtr = 4ατs , and expressing τtr with the zero-
field mobility μ at finite temperature,27 we can write the
Landau-level broadening as

� = (evF/π )[2Bα/(Nμ)]1/2. (19)

In this study, we consider the case of n doping, i.e. the Fermi
level is high enough above the energy zero of the Dirac cone
in the range of “+”-branch levels and the states of “−”-branch
levels are completely filled, that they are irrelevant to electron
transport.

Special attention has to be paid to the n = 0 level since,
depending on the direction of exchange potential, the effective
g factor of a TI surface state gz can be positive, zero, or
negative.24,25 The sign and magnitude of the effective g factor
determines how many states of the zero level should be
included in or excluded from the available states for electron
occupation in the case of n doping at a magnetic field. (i)
If gz = 0, the n = 0 level center is exactly at ε0 = 0 and
the system is electron-hole symmetric. The total number of
negative energy states (including the states of the lower half
of the n = 0 level and states of the “−”-branch levels) and
that of positive energy states (including the states of the upper
half of the n = 0 level and states of the “+”-branch levels)
do not change when changing magnetic field. Therefore, the
lower-half negative energy states of this level are always filled
and the upper-half positive-energy states of it are available
for the occupation of particles, which are counted as electrons
participating in transport in the case of n doping. (ii) For a
finite positive gz > 0, the n = 0 level ε0 moves downward
to negative energy and its distance to the nearest “−”-branch
level is 2|δz| = gzμBB closer than to the nearest “+”-branch
level at finite magnetic-field strength B. This is equivalent to
the opening of an increasingly enlarged (with increasing B)
energy gap between the “+”-branch states and the states of
the zero-level and the “−”-branch levels. The opening of a
sufficient energy gap implies that with increasing magnetic
field, the states in the “+”-branch levels would no longer
shrink into the zero level, and thus the n = 0 level should
be completely excluded from the conduction band, i.e., only
particles occupying the “+”-branch states are counted as
electrons participating in transport in the case of n doping,
when the magnetic field B gets larger than a certain value
(depending on the magnitude of gz). (iii) For a finite negative
gz < 0, the n = 0 level ε0 moves upward to positive energy and
an increasingly enlarged energy gap will be opened between
the states of the zero-level and the “+” branch and the states
of “−”-branch levels, and particles occupying the n = 0 level
and “+”-branch states are electrons participating in transport
when the magnetic field B gets larger than a certain value.

As a result, the experimentally accessible sheet density N

of electrons participating in transport is related to the Fermi
energy εF by the following equation valid at finite gz for the
magnetic field B larger than a certain value:

N = − 1

2(πlB)2

∫
dε f (ε)

∞∑
n

ImGn(ε), (20)

in which f (ε) = {exp[(ε − εF)/T ] + 1}−1 is the Fermi distri-
bution function at temperature T and the summation index n

goes over (1,2, . . .) for gz > 0, or (0,1,2, . . .) for gz < 0. In
the case of gz = 0,

N = − 1

2(πlB)2

∫
dε f (ε)

[ ∞∑
n=1

ImGn(ε) + ImG
p

0 (ε)

]
(21)
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valid for arbitrary magnetic field, in which ImG
p

0 (ε) =
ImG0(ε)θ (ε).

The imaginary part of relative-electron density correlation
function in the presence of a magnetic field �2(q,ω) can be
expressed in the Landau representation as19,20

�2(q,ω) = 1

2πl2
B

∑
n,n′

Cn,n′
(
l2
Bq2

/
2
)
�2(n,n′,ω), (22)

in which the transform factor

Cn,n′ (ξ ) ≡ e−ξ ξn2−n1

RnRn′

n1!

n2!

[
Ln2−n1

n1
(ξ )

+ snsn′PnPn′

√
n2

n1
L

n2−n1
n1−1 (ξ )

]2

, (23)

with n1 = min(n,n′), n2 = max(n,n′), sn = 1 − δn,0, and
Lm

n (x) being associated Laguerre polynomials. The Landau-
representation correlation function �2(n,n′,ω) in Eq. (22) can
be constructed with the imaginary part of the retarded Green’s
function ImGn(ε), or the density of states, of the nth Landau
level as19,20

�2(n,n′,ω) = − 1

π

∫
dε[f (ε) − f (ε + ω)]

× ImGn(ε + ω)ImGn′ (ε). (24)

The summation indices n and n′ in Eq. (22) are taken over
(1,2, . . .) for gz > 0, or (0,1,2, . . .) for gz < 0. In the case of
gz = 0, Eq. (22) still works and the summation indices n and
n′ go over (0,1,2, . . .), but with ImG0(ε) replaced by ImG

p

0 (ε)
in Eq. (24).

IV. NUMERICAL RESULTS AND DISCUSSIONS

Numerical calculations are performed for the magne-
toresistivity Rxx of surface state in a uniform TI Bi2Se3.
At zero temperature, the elastic scattering contributing to
the resistivity is modeled by a Coulomb potential due to
charged impurities:28,29 U (q) = nie

2/(2ε0κq) with ni being
the impurity density, which is determined by the zero-
magnetic-field mobility μ. At temperatures higher than 50 K,16

phonon scatterings play an increasingly important role and the
dominant inelastic contribution comes from optical phonons.
For this polar material, the scattering by optical phonons via
the deformation potential can be neglected. Hence, we take ac-
count of inelastic scattering from optical phonons via Fröhlich
coupling: |M( Q)|2 = e2�/(2ε0Q

2)(κ−1
∞ − κ−1). In the nu-

merical calculation, we use the following parameters:15,29–31

Fermi velocity vF = 5.0 × 105 m/s, static dielectric constant
κ = 100, optical dielectric constant κ∞ = 20, and phonon
energy � = 7.4 meV. The broadening parameter is taken to
be α = 3.

Figure 1 shows the calculated magnetoresistivity Rxx

versus the magnetic field strength B for a TI surface system
with electron sheet density N = 1.3 × 1012 cm−2, but having
different effective g factors: gz = 0,10, and −10 for two
values of zero-magnetic-field mobility μ = 0.2 m2/Vs and
μ = 0.7 m2/Vs, representing different degrees of Landau-
level broadening. In the case without Zeeman splitting (gz =
0), the resistivity Rxx exhibits almost no change with changing

0 2 4 6 8 10
2.6

2.8

3.0

3.2

g
z
 = -10

g
z
 = 0

g
z
 = 10

N = 1.3x1012 cm-2

R
xx
 (

kΩ
) 

 

(a) 

μ = 0.2 m2/Vs

 

 

0 2 4 6 8 10

0.75

0.80

0.85

0.90

6
ν = 7

6ν = 7

6
ν = 7

g
z
 = -10

g
z
 = 0

g
z
 = 10T = 0 K

B (T) B (T) 

(b) 

μ = 0.7 m2/Vs

 

FIG. 1. (Color online) The calculated resistivity Rxx as a function
of the magnetic field B having different effective g factors: gz =
0,10, and −10 for a TI surface system with electron sheet density
N = 1.3 × 1012 cm−2 in the cases of zero-magnetic-field mobility
μ = 0.2 m2/Vs (a) and μ = 0.7 m2/Vs (b). Several integer-number
positions of filling factor ν = 2πN/(eB) are marked in (b).

magnetic field up to 10 T, except the Shubnikov–de Haas
(SdH) oscillation showing up in the case of μ = 0.7 m2/Vs.
This kind of magnetoresistance behavior was indeed seen
experimentally in the electron-hole symmetrical massless
system of single-layer graphene.32 In the case of a positive g

factor, gz = 10, the magnetoresistivity increases linearly with
increasing magnetic field, while for a negative g factor, gz =
−10, the magnetoresistivity decreases linearly with increasing
magnetic field.

In the following, we will give more detailed examination
on the linearly increasing magnetoresistance in the posi-
tive gz case. Figure 2 shows the calculated resistivity Rxx

versus the magnetic-field strength B at lattice temperature
T = 0 K for system of carrier sheet density N = 1.3 ×
1012 cm−2 and gz = 10, having different zero-field mobil-
ity μ = 0.2,0.35,0.5,0.65,0.8, and 5 m2/Vs. All resistivity
curves for mobility μ � 0.8 m2/Vs exhibit clear linearity in
the magnetic-field range and appear to have no tendency of
saturation at the highest field shown in the figure. Especially,
for the case μ = 0.2 m2/Vs, the linear behavior extends even
up to the magnetic field of 30 T, as illustrated in the inset
of Fig. 2(a). This feature contradicts the classical MR which
saturates at sufficiently large magnetic field B � μ−1.

Note that here we only present the calculated Rxx for
magnetic field B larger than Bc = 1 T, for which a sufficient
energy gap 2|δz| = gzμBB is assumed to open that, with
further increase of the magnetic field, the states in the “+”-
branch levels no longer shrink into the zero level and thus
it should be excluded from the conduction band. This is of
course not true for very weak magnetic field. When B → 0,
the energy gap 2|δz| → 0, the situation becomes similar to the
case of gz = 0: the whole upper half of the zero-level states
are available to electron occupation and we should have a flat
resistivity Rxx when changing magnetic field. With increasing
B, the portion of the zero-level states available to conduction
electrons decreases until the magnetic field reaches Bc. As a
result, the resistivity Rxx should exhibit a crossover from a flat
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FIG. 2. (Color online) The longitudinal re-
sistivity Rxx is shown as a function of the
magnetic field B for different values of zero-
magnetic-field mobility: (a) μ = 0.2, (b) 0.35,
(c) 0.5, (d) 0.65, (e) 0.8, and (f) 5 m2/Vs. The
inset of (a) illustrates the same for a larger
magnetic-field range 0 < B < 30 T. The filling
factor ν is plotted versus the magnetic field in
(f); and several integer-number positions of ν

are also marked in (d) and (e). Here, the surface
electron density N = 1.3 × 1012 cm−2 and the
lattice temperature T = 0 K.

changing at small B to positively linear increasing at B > Bc.
This is just the behavior observed in the TI Bi2Se3.16

Note that in the case of μ = 0.2 m2/Vs, the broadened
Landau-level widths are always larger than the neighboring
level interval: 2� � �εn = εn+1 − εn, which requires μ �
(4eα/N )[(

√
n + 1 + √

n)/π ]2, even for the lowest Landau
level n = 1, i.e., the whole Landau-level spectrum is smeared.
With increasing the zero-field mobility, the magnitude of
resistivity Rxx decreases, and when the broadened Landau-
level width becomes smaller than the neighboring level interval
2� � �εn, a weak SdH oscillation begins to occur around
the linearly dependent average value of Rxx at higher portion
of the magnetic-field range, as seen in Figs. 2(c)–2(e) for
μ = 0.5,0.65, and 0.8 m2/Vs. On the other hand, in the case
of large mobility, e.g., μ = 5 m2/Vs, where the broadened
Landau-level widths 2� are much smaller than the neighboring
level interval even for level index n as large as 30, the
magnetoresistivity shows pronounced SdH oscillation and the
linear-dependent behavior disappears, before the appearance
of quantum Hall effect,22,33,34 as shown in Fig. 2(f).

Abrikosov’s model for the LMR requires the applied
magnetic field large enough to reach the quantum limit at
which all the carriers are within the lowest Landau level,7

while it is obvious that more than one Landau level is occupied
in the experimental samples in the field range in which the
linear and nonsaturating magnetoresistivity was observed.16

For the given electron surface density N = 1.3 × 1012 cm−2,
the number of occupied Landau levels, or the filling factor
ν = 2πN/(eB), at different magnetic fields is shown in
Fig. 2(f), as well as in the Figs. 2(d) and 2(e), where the
integer-number positions of ν, i.e., filling up to entire ν Landau
levels, coincide with the minima of the density of states or the
dips of SdH oscillation. This is in contrast with the gz = 0
case, where the integer number of ν, which implies a filling up
to the center position of the νth Landau levels, locates at a peak
of SdH oscillation, as shown in Fig. 1(b). The observed SdH
oscillations in the Bi2Se3 nanoribbon exhibiting nonsaturating
surface LMR in the experiment16 favor the former case: a finite
positive effective gz > 0.

Next, we examine the density dependence of the linear
magnetoresistivity. To compare with Abrikosov’s quantum
magnetoresistance, which suggests a Rxx ∝ N−2 behavior,7,35

we show the calculated RxxN
2 for the above LMR versus

the carrier-sheet density N in Fig. 3 at fixed magnetic
field B = 3 T. The mobility is taken respectively to be
μ = 0.2,0.3,0.4,0.5, and 0.6 m2/Vs to make the resistivity
in the LMR regime. A clearly linear dependence of RxxN

2

on the surface density N is seen in all cases, indicating
that this nonsaturating linear resistivity is almost inversely
proportional to the carrier density. In the figure, we also
show RxxN

2 versus N under the condition of different given
conductivity σ = Neμ = 10,13,16, and 20 e2/h. In this case,
the half-width � is independent of surface density. The linear
dependence still holds, indicating that this linear behavior is
not sensitive to the modest N dependence of Landau-level
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FIG. 3. (Color online) RxxN
2 is plotted as a function of the

surface electron density N at magnetic field B = 3 T: (a) at different
values of zero-field mobility μ, and (b) at different values of zero-field
conductivity σ .
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FIG. 4. (Color online) The longitudinal resistivity of the surface
state of a TI versus magnetic field B at various lattice temperatures.
Here, the zero-magnetic-field mobility at zero temperature is μ(0) =
0.6 m2/Vs.

broadening � as long as the system is in the overlapped
Landau-level regime.

From the above discussion, it is obvious that LMR shows
up in the system having overlapped Landau levels, and the
separation of Landau levels makes the MR departure from the
linear increase. At high temperature, the thermal energy would
smear the level separation, and phonon scatterings further
broaden Landau levels. Hence, it is believed that this LMR will
be robust against raising temperature. This is indeed the case as
seen in Fig. 4, where we plot the calculated magnetoresistivity
Rxx for the above system with zero-temperature linear mobility
μ(0) = 0.6 m2/Vs versus the magnetic field at different lattice
temperatures. We can see that raising temperature to room
temperature has little effect on the linearity of MR. Due to
the decreased mobility at higher temperature from phonon
scattering, the weak SdH oscillation on the linear background
tends to vanish. These features are in good agreement with the
experimental report.16

V. SUMMARY

In summary, we have studied the two-dimensional magne-
totransport in the flat surface of a three-dimensional TI, which
arises from the surface states with a wave-vector linear energy
dispersion and a finite, positive Zeeman splitting within the
bulk energy gap. When the level broadening is comparable to
or larger than the Landau-level separation and the conduction
electrons spread over many Landau levels, a positive, dom-
inantly linear, and nonsaturating magnetoresistance appears
within a quite wide range of magnetic field and persists up to
room temperature. This remarkable LMR provides a possible
mechanism for the recently observed linear magnetoresistance
in topological insulator Bi2Se3 nanoribbons.16

In contrast to quantum Hall effect, which appears in the case
of well-formed Landau levels and to Abrikosov’s quantum
magnetotransport,7,8 which is limited to the extreme quantum
limit that all electrons coalesce into the lowest Landau
level, the discussed LMR is a phenomenon of pure classical
two-dimensional magnetotransport in a system having linear
energy dispersion, appearing in the regime of overlapped
Landau levels, irrespective of its showing up in relatively high
magnetic-field range. Furthermore, the present scheme deals
with spatially uniform case without invoking the mobility
fluctuation in a strongly inhomogeneous system, which is
required in the classical Parish and Littlewood model to
produce a LMR.9

The appearance of this significant positive-increasing linear
magnetoresistance depends on the existence of a positive and
sizable effective g factor. If the Zeeman energy splitting is
quite small, the resistivity Rxx would exhibit little change
with changing magnetic field. In the case of a negative
and sizable effective g factor, the magnetoresistivity would
decrease linearly with increasing magnetic field. Therefore,
the behavior of the longitudinal resistivity versus magnetic
field may provide a useful way for judging the direction and
the size of the effective Zeeman energy splitting in TI surface
states.
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