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Validity of the Wiedemann-Franz law in small molecular wires
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Center for Nonlinear and Complex Systems, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy

Giuliano Benenti
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We report our investigations on the finite-size effects of the Lorenz number in a molecular wire. Using
Landauer-Büttiker formalism, we find that for sufficiently long wires there are two validity regimes of the
Wiedemann-Franz (WF) law, the cotunneling and the sequential tunneling regimes, while in small systems only
the first regime survives. We compare our results with the standard Kubo formalism and explain its failure to
obtain the WF law in small systems. Furthermore, our studies on exponentially localized disordered wires show
that the Lorenz number value L0 = (π 2/3)(kB/e)2 predicted by the WF law is obtained only in the cotunneling
regime. Also, the Lorenz number L exhibits a typical distribution at different temperatures corresponding to
different tunneling processes. In particular, first-order tunneling results in a low value of L, whereas second-order
tunneling recovers the universal value L0.
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I. INTRODUCTION

Thermoelectricity is attracting huge scientific interest on
account of its applications in future energy production and
utilization.1–6 Much of the work has focused on developing
efficient thermoelectric materials to convert waste heat energy
to electric current and, in reverse, to perform refrigeration.
Compared to bulk materials, low-dimensional systems have
the potential to achieve improved thermoelectric efficiency
owing to their highly peaked density of states and to the high
density of interfaces that could be used to reduce parasitic
heat flow.7–10 In this regard, studies related to thermal and
electrical transport in nanoscaled molecular wires have gained
considerable attention.

Thermoelectric conversion efficiency is characterized by
the figure of merit ZT = T S2σ/κ , where S is the thermopower
and σ and κ are the electrical and thermal conductivity at
temperature T . For practical applications, it is required that
ZT � 1. However, this is practically hard to achieve, as
the thermal and electrical conductivity are related by the
Wiedemann-Franz (WF) law, which states that the Lorenz
number L = κ/σT is constant.11 The constant value L0 =
(π2/3)(kB/e)2 for noninteracting systems, where kB is the
Boltzmann constant and e the charge carried by each electron.
The WF law follows from the single-particle Fermi liquid
(FL) theory, which assumes that both electric and thermal
current are carried by the same FL particles at sufficiently
low temperatures, so that the Sommerfeld expansion can be
applied.12 The WF law is valid in the thermodynamic limit
of a noninteracting system even in the presence of arbitrary
disorder provided that the FL theory holds.13 Studies in
interacting systems showed that the law is violated largely
due to the non-FL behavior.14–18

However, studies reported so far have mainly focused on
either one or two quantum molecules or on the thermodynamic
limit. In mesoscopic physics, the thermodynamic limit is
meaningless and one is interested in the transport properties of
finite systems. Finite-size effects are expected to influence the

properties considerably in low-dimensional quantum systems.
For instance, using the Landauer-Büttiker formalism, Vavilov
and Stone showed that deviation from the WF law occurs
around the Thouless temperature Tc, where the FL theory still
holds.19 Note, however, that these investigations were carried
out on diffusive mesoscopic conductors. Studies of finite-size
effects on one-dimensional integrable systems showed that the
thermopower S does not follow the relation S ∝ T as expected
in the thermodynamic limit.20 Furthermore, the Lorenz number
is shown to diverge in the infinite-frequency limit of a finite-
sized closed system.21 The above-mentioned works follow
from the Kubo formula, without explicitly considering the
connections to the baths. Recently, the transport properties
obtained using the Kubo formula were shown to differ signifi-
cantly from the Redfield quantum master equation (QME) ap-
proach, which takes into account the effect of baths.22 In prac-
tice, it is required that both ends of the molecular wire are in
contact with baths, which are able to exchange charges and en-
ergy with the wire. The validity regimes of the WF law in these
finite-sized clean molecular wires is still an open question.

Following the seminal work of Anderson,23 disorder has
played an important role in understanding the transport proper-
ties of mesoscopic systems. Moreover, disorder has interesting
effects on the properties of a finite system, as the transport
properties are affected considerably, depending upon the
system’s size. For instance, a disordered system shows ballistic
transport if the localization length is very large compared to the
system length.24 Conductivities of strongly localized systems
decrease exponentially with the system size.25 However, it
is not yet clear how the Lorenz number varies with disorder
in finite systems. When considering disordered systems, it is
worthwhile to study the statistical distribution of observables.
Studies in theses directions showed that the conductances of a
strongly disordered system follow a log-normal distribution.26

Hence, it is interesting to explore whether the Lorenz number
still holds this log-normal distribution.

In this paper, we investigate the validity regimes of the
WF law in a finite noninteracting molecular wire attached
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to reservoirs using the Landauer-Büttiker formalism for
phase-coherent quantum transport from one reservoir to the
other. With this approach we obtain conductances rather than
conductivities and the Lorenz number is redefined as L =
�/GT , with G and � the electrical and thermal conductances,
respectively. We compare our results with two other commonly
used formalisms, namely, the standard Kubo formalism and
the QME, in exploring the transport properties of finite-sized
systems. In the latter part of the work, the studies are extended
to disordered systems. In particular, our results show that the
validity regimes of the WF law depend on the finite size
of the system even for a noninteracting system. For long
clean wires, there are saturation plateaus of Lorenz number
at the universal value of (π2/3)(kB/e)2 in two temperature
regimes, corresponding to the cotunneling and the sequential
tunneling process. As the wire length is reduced, one of the
plateaus vanishes. The validity of the law in different tunneling
regimes is explained in terms of the energy integrals giving
the conductances following the studies of Vavilov and Stone
in Ref. 19. We also find that the standard Kubo formalism and
QME approach fail, for any system size, to obtain the WF law
in the cotunneling regime. With disordered localized wires, the
WF law is valid only in the cotunneling regime. In addition,
the Lorenz number shows a typical distribution at different
temperature regimes.

The outline of the paper is as follows. We introduce the
model system and discuss the Landauer-Büttiker formalism
to calculate conductances and the Lorenz number in Sec. II.
Numerical results are discussed for a clean model in Sec. III
and for a disordered one in Sec. IV. Finally, we draw our
conclusions in Sec. V.

II. MODEL AND FORMALISM

We consider a molecular junction formed by connecting a
one-dimensional molecular wire between two electrodes. The
Hamiltonian of our molecular system is

H = HW + HE + HWE,

HW = −t

N−1∑
i=1

(c†i ci+1 + h.c.),

(1)
HE =

∑
j=L,R

∑
k

Ekjd
†
kj dkj ,

HWE =
∑

k

(tkLc
†
1dkL + tkRc

†
NdkR + h.c.).

The first term HW corresponds to a wire of N sites with
nearest-neighbor interactions; the second term HE , to the two
electrodes, left (L) and right (R); and the last term HWE , to
the wire-electrode coupling. The operators c

†
i (ci) and d

†
kj (dkj )

are creation (annihilation) operators of electrons in the wire
and electrode j , respectively. t is the hopping constant, Ekj is
the energy of the kth electron in the j th electrode, and tkj is
its tunneling amplitude. Here, the electrodes are reservoirs of
noninteracting electrons in equilibrium at some temperature T

and electrochemical potential μ.
Below we outline the calculations of thermoelectric prop-

erties in our model using the Landauer-Büttiker formalism.
The current through the wire is due to the electrons tunneling

from one electrode to another. An electron at a given energy
E scatters at the junction and can be transmitted through
it or reflected back. The probability of tunneling across the
junction is given by the transmission coefficient τ (E). Hence,
the electric (Je) and thermal (Jq) currents (from left to right
reservoir) in the molecular wire are given by27

Je = e

h

∫
dEτ (E)[fL(E) − fR(E)],

(2)

Jq = 1

h

∫
dE(E − μ)τ (E)[fL(E) − fR(E)].

Here, e is the electronic charge, h is Planck’s constant, and
fL(E) and fR(E) are the electron Fermi distributions in
the left (L) and right (R) electrodes with temperature TL,R

and electrochemical potential μL,R . (fL,R(E) = {exp[(E −
μL,R)/kBTL,R] + 1}−1, where kB is the Boltzmann constant.)
In this work, we are interested in the linear response of
the system and hence assume that the differences �μ =
μL − μR and �T = TL − TR are infinitesimally small. Hence,
in Eq. (2), the electrochemical potential μ ≈ μL ≈ μR and the
temperature T ≈ TL ≈ TR .

Using the nonequilibrium Green’s function technique, the
transmission coefficient can be expressed as

τ (E) = Tr(�L(E)G†
s(E)�R(E)Gs(E)), (3)

where Tr is the trace, Gs(E) = (E − HW − 	L − 	R)−1 is
the retarded single-particle Green’s function operator, and
�L,R(E) = i[	L,R(E) − 	

†
L,R(E)] are the level broadening

functions. 	L and 	R are the retarded self-energies of the left
and right electrodes, respectively.

We assume a wide band limit of the electrodes. Hence the
level widths are energy independent and are given by γj =
2π

∑
k |tkj |2δ(E − Ekj ). Furthermore, we take γL = γR = γ .

Thus, �L = γ c
†
1c1, �R = γ c

†
NcN , and Eq. (3) can be rewritten

as

τ (E) = γ 2|〈1|Gs(E)|N〉|2. (4)

Note that γ is the coupling strength, which physically measures
the rate at which the electrons tunnel across the junction.

Using the Taylor expansion,

fL(E) ≈ fR(E) + ∂fR(E)

∂μ
�μ + ∂fR(E)

∂T
�T, (5)

in Eq. (2), the response of the system is given by(
Je

Jq

)
=

(
L11 L12

L21 L22

) (
�μ/eT

�T/T 2

)
, (6)

where the Onsager coefficients L11, L12, L21, and L22 are given
by

L11 = T 2

h

∫
dE τ (E)

[
−∂f (E)

∂E

]
,

L12 = T e

h

∫
dE τ (E)

[
−∂f (E)

∂E

]
(E − μ),

(7)

L22 = T

h

∫
dE τ (E)

[
−∂f (E)

∂E

]
(E − μ)2,

L21 = L12.
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The (isothermal) conductance G, defined as the electric
current under the application of the voltage �μ/e with no
temperature gradient, is

G = eJe

�μ

∣∣∣∣
�T =0

= L11

T
. (8)

The thermal conductance �, the heat current per unit temper-
ature gradient for zero electric current, is

� = Jq

�T

∣∣∣∣
Je=0

= L11L22 − L2
12

L11T 2
, (9)

and the Lorenz number L is

L = �

GT
. (10)

For a smooth function τ (E), the Sommerfeld expansion12 of
the integrals in Eq. (7) to lowest order in kBT /EF , with EF

the Fermi energy, leads to the WF law:

L = L0 = π2

3

(
kB

e

)2

. (11)

Note that to derive Eq. (11) from Eqs. (8) and (9), the L2
12 term

has to be neglected, i.e., one needs L11L22 � L2
12.28

In the following sections we investigate in detail the
dependence of the Lorenz number L on the temperature T

and coupling strength γ for a clean and disordered molecular
wire.

III. CLEAN WIRE

The transport mechanisms in the molecular system can
be understood from the transmission function τ (E) of the
molecular wire. For a wire of N sites, there are N quantum
states with discrete energies. The density of states and τ (E) in
the limit γ → 0 consist of series of δ functions corresponding
to these energies. While coupling to electrodes, electrons can
enter or leave the wire and hence these δ peaks are broadened
due to the finite lifetime of the electrons. If the coupling is very
weak, then the densities of states remain as δ peaks broadened
by a factor proportional to the coupling strength γ , whereas for
a strong coupling all the peaks merge. Depending on its energy
relative to the energy spacing between the different levels in
the wire (�E), an electron can tunnel the junction mainly in
three ways.

(1) Sequential tunneling: At temperature T � �E, the
energy of the electron is very high and hence can tunnel
across the junction in a sequential manner by spending a finite
lifetime within the wire. Hence, the current in this regime is
proportional to the coupling γ .

(2) Cotunneling: This is a second-order tunneling process
occurring at temperature T � �E. In this regime, the current
through the wire varies quadratically with the coupling
strength γ .

(3) Resonant tunneling: This occurs when the energy of an
electron matches exactly one of the discrete energy levels in the
wire. Under these conditions, the electron is transmitted with
unit probability and the current through the system increases
sharply. Furthermore, at temperature T � �E, a mixing of the
first-order and the second-order tunneling processes occurs.

FIG. 1. (Color online) Dependence of Lorenz number on tem-
perature T for a wire of length N = 110 coupled to electrodes with
strength γ = 10−4. Here L0 = π 2/3. Note that the WF law is satisfied
in two regimes at low temperatures. All the parameters in this figure
and throughout the paper are scaled in units of hopping constant t .
Also, we set h̄ = e = kB = 1, t = 1, and μ = 0. For a typical wire
of phenyl dithiol connected to Au electrodes, T = 1 in our units
corresponds to temperature of the order of 104 K. (See, e.g., Ref. 29.)

To investigate the validity of the WF law, we study the
variation of Lorenz number with temperature T . Figure 1
shows one example of our findings with a wire of N = 110
sites. We found two plateaus where the law is satisfied exactly,
i.e., when the ratio L/L0 is 1. Our numerical analysis shows
that these two valid regimes correspond to sequential and
cotunneling processes. Between these two plateaus, there is
a region bounded by the temperatures T1 and T2 where,
upon lowering T , the Lorenz number increases initially
due to resonance tunneling and thereafter decreases when
mixing of higher order tunneling occurs. Furthermore, at high
temperatures the Lorenz number decreases quadratically.

Validity regimes of the WF law can be understood19

from the energy integrals of the Onsager coefficients in
Eq. (7). In particular, when the derivative of the Fermi
distribution function is sharp (T � �E) or broad (T � �E),
the transmission function can be considered a smooth function
or its energy dependence can be averaged out, respectively.
Hence, the Sommerfeld expansion of the integrals leads to the
WF law provided that L11L22 � L2

12 and kBT /EF � 1. At
temperatures where the derivative of the Fermi distribution
function is neither too sharp nor too broad, the transmission
peaks are not averaged out and violation of the WF law is
expected. To illustrate this, the derivative of the Fermi distri-
bution function (thick lines) in different tunneling regimes and
the transmission function τ (E) (thin lines) of the investigated
wire are plotted in Fig. 2. Note that the conduction band
width of our model is [−2,2] and the mean level spacing
�E ∼ 0.03. As the electrochemical potential μ = 0, the Fermi
distribution function is peaked around the energy E = 0.
(i) In the sequential tunneling regime (at temperature T �
�E) the derivative of the Fermi distribution function is broad
[see Fig. 2(a)] so that peaks in the transmission function
τ (E) are averaged out. (ii) At temperatures in the cotunneling
regime (T � �E), the derivative of the Fermi distribution
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FIG. 2. (Color online) Derivative of the Fermi distribution
function f ′(E) = ∂f (E)

∂E
(thick curve) at temperatures (a) T = 0.1,

(b) T = 0.000 01, and (c) T = 0.01. In the background, the transmis-
sion function τ (E) of a wire of N = 110 sites is plotted as thin vertical
lines. Note that τ (E) is a smooth function only in the sequential
tunneling (a) and cotunneling (b) regimes.

function is sharp and hence the transmission function τ (E)
can be considered as a smooth, constant function on the scale
kBT where the derivative of the Fermi distribution function
is significantly different from 0. This is clear from Fig. 2(b).
(iii) In the intermediate temperature regimes (T ∼ �E) where
resonant tunneling or mixing occurs, the derivative is neither
too sharp nor too broad and the different transmission peaks
are not smoothed as shown in Fig. 2(c). Thus, the Sommerfeld
expansion of the energy integrals in Eq. (7) can be applied only
in the sequential and cotunneling regimes, so that the WF law is
valid only in these two regimes. Note that for μ = 0, L12 = 0
and hence we satisfy the relation L11L22 � L2

12. Deviation
of the Lorenz number L from the constant value L0 at high
temperatures in the sequential tunneling regime is justified, as
it follows from the analytical derivation of the WF law that the
Lorenz number is obtained only at low temperatures T � EF ,
where the Sommerfeld expansion holds. The conduction band
width for our model is [−2,2] and hence the Fermi energy,
EF is of the order of 2 (see, e.g., Ref. 12). Also, at high
temperatures the conduction band width is exceeded, resulting
in the quadratic decrease in Lorenz number L.

In order to clarify our statement that the WF law is satisfied
only in the sequential and cotunneling regimes, we study the
variation of T1 and T2 with the number of sites N . Note
that these regimes correspond to cases where T � �E and
T � �E, respectively. The mean level spacing �E in the
molecular wire decreases with the number of sites N as 1/N .
Thus dependences of temperatures T1,T2 ∝ 1/N are expected.
This is indeed what we obtain in Fig. 3. There, the top panel
represents the highest temperature T1 in the cotunneling regime
where the WF law is satisfied. The bottom panel represents the
lowest temperature T2 in the sequential tunneling regime. The
temperatures T1 and T2 are calculated such that the ratio L/L0

is 1 up to the third decimal point.
From Fig. 3, it is clear that the temperature T2 is 0.075

for a chain of 40 sites. The decrease T2 ∝ 1/N suggests that

FIG. 3. (Color online) Variation of characteristic temperatures T1

and T2 with the length N of a molecular wire attached to electrodes
with coupling strength γ = 10−4. Here T1 is the highest temperature
in the cotunneling regime and T2 is the lowest temperature in the
sequential tunneling regime, where the Lorenz number L = L0 .
Between T1 and T2, the WF law is not valid. Note that a variation of
the temperatures ∝1/N is obtained.

T2 for N = 10 should be �0.18. In Fig. 4, we have plotted
the Lorenz number ratio as a function of temperature for
N = 10 sites. From the figure, it is clear that at T = 0.18
the ratio L/L0 is 0.953. Also, the Lorenz number increases
with decreasing temperature T without any saturation in
the sequential tunneling regime. Indeed, numerical results
showed that the plateau of constant Lorenz number seen in
the sequential tunneling regime decreases with decreasing N

and is almost absent below N = 40. This follows from the fact

FIG. 4. (Color online) Same as Fig. 1, but for a wire of length
N = 10. Note that here the WF law is satisfied only in the cotunneling
regime.
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FIG. 5. (Color online) Dependence of the Lorenz number on the
electrode temperature T for a wire of length N = 100 with different
coupling strengths γ . The straight line corresponds to the results
obtained analytically for γ → 0.

that for wires with N � 40, the mean level spacing �E is so
large that the resonant tunneling occurs at temperatures higher
than Fermi energy EF .

So far we have discussed only the length dependence of
the Lorenz number ratio for weak couplings to the electrodes.
However, the strength of the coupling also plays an important
role in modifying the transmission spectrum. Hence we have
investigated the Lorenz number as a function of the coupling
strength γ in a wire of length N = 100 in Fig. 5. As shown in
the figure, the large variation in Lorenz number is smoothed
for stronger coupling. This is due to the fact that a strong
coupling broadens the transmission function such that different
resonance peaks overlap. Hence, it is difficult to observe the
sharp increase in current due to the δ peaked transmission
function.

Our numerical analysis shows that the temperature TQ at
which L is maximum and below which the mixing regime
(mixing of first-order and second-order tunneling process)
occurs linearly increases with γ . This is illustrated in Fig. 6,
where TQ is plotted versus γ for a wire of 10 sites. The
temperature TQ decreases from 0.051 to 0.017 as the coupling
strength γ is varied from 0.1 to 10−6. Also, TQ decreases
∝1/N with increasing length of the wire.

Another important observation is that for fixed coupling
strengths γ the magnitude of violation of the WF law is
almost independent of the length of the wire. This is illustrated
in Fig. 7, where the value of L/L0 at temperature TQ is
plotted for different lengths of the wire. For a wire coupled
to the electrode with γ = 0.1, the maximum value obtained
for the ratio of Lorenz number is around 4. As the coupling
strength is reduced to 10−4, the maximum value obtained
increases to 32. Indeed, our analytical calculations show that
the Lorenz number diverges as 1/T 2 for γ → 0. (Details of
the calculations are given in the Appendix.) This perturbative
(in γ ) result is plotted as a straight line in Fig. 5.

We have also examined the narrow band limit of the
electrode with its density of states modeled as Lorentzian

FIG. 6. Temperature TQ as a function of the coupling strength γ

for a wire of length N = 10. Here TQ is the temperature at which the
Lorenz number takes its maximum value.

centered at zero energy with a width νD . In the sequential
tunneling regime, there is smoothing of the transmission peaks
only with larger widths νD or longer wires. Hence, in general
the WF law is not recovered in the sequential tunneling regime.
However, for all values of νD the WF law is found to be valid
at low temperatures.

Another approach commonly used in investigating the
transport properties of finite systems is the Kubo formalism.
Here, details regarding the baths (in our case, electrodes) and
coupling to the system (wire) are neglected and only the steady-
state distribution of the system is used. These assumptions are
justified for investigating the linear response of an infinite
system. However, formulas for finite systems are derived
by extrapolating results of N → ∞. The Lorenz number is
computed in terms of electrical and thermal conductivities, σ

and κ , instead of the conductances G and �, i.e., L = κ/σT .

FIG. 7. (Color online) Length dependence of the peak value of
the Lorenz number with different coupling strengths γ . The lines
from top to bottom correspond to γ = 10−4, 10−3, 10−2, and 10−1,
respectively. For constant γ , the maximum value of the Lorenz
number is independent of the length of the wire.
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FIG. 8. (Color online) Comparison of the Landauer and Kubo
formulas for the Lorenz number of a wire of length N = 200. The
wire is attached to electrodes with a strength γ = 10−4. Note that
the results of the Kubo formula coincide with those of the Landauer
formula only above a temperature TK .

The Onsager coefficients are given by

L11 = e2T [D11δ(ω) + σ11(ω)],

L12 = eT [D12δ(ω) + σ12(ω)], (12)

L22 = T [D22δ(ω) + σ22(ω)].

Here,

Dlm = πβm

ZN

∑
i,k

Ei = Ek

e−βEi 〈i|jl|k〉〈k|jm|i〉,

(13)

σlm(ω) = πβm−1

ZN

1 − e−βω

ω

∑
i,k

Ei 
= Ek

e−βEi

×〈i|jl|k〉〈k|jm|i〉δ(ω − �E).

Ei and |i〉 are the ith eigenenergy and eigenstate of the
system, �E = Ei − Ek; ω is the frequency, β = 1/kBT ; Z

is the partition function; and j1 and j2 are the charge and
heat currents. Currents j1 and j2 are calculated as j1 = Je

and j2 = Jq − μJe, where Je[q] = i
∑N−1

l=1 [hl−1,de[q]]. de is
the number of electrons in the wire and dq = hl−1 is the
local system Hamiltonian. Note that HW = ∑N−1

l=1 hl , where
hl = −t(c†l cl+1 + h.c.).

Figure 8 shows the ratio of the Lorenz number calculated
using the above formula for our model with N = 200 sites.
For comparison, results obtained using the Landauer-Büttiker
formalism are also plotted. The results are the same until
the temperature TK = 0.03, below which the ratio computed
using the Kubo formula deviates from that using the Landauer
formula. We found that the temperature TK decreases ∝1/N

with an increase in the length N of the wire. This can
be understood as follows. Equations (12) are exact only
for infinite systems for which the partition function Z =∑

i e
−βEi � 1. For small molecular wires, Z can be large

only for high temperatures T . Figure 9 shows a plot of the
temperature TK with the variation in length of the wire N . It
is clear from Figs. 3 and 9 that the temperature T2 < TK . This
implies that the Kubo formula gives the results only for the

FIG. 9. Variation of the temperature TK with the length of the wire
N . Here TK is the temperature at which the Kubo formula deviates
from that of Landauer. Note that TK varies ∝1/N with the length of
the wire N .

sequential tunneling regime and hence can reproduce only one
regime of the WF law even in arbitrarily long wires.

Finally, we have compared the results obtained by means of
the Landauer-Büttiker approach vs the Redfield QME.22,30,31

By construction, the QME is first-order perturbative in the
coupling γ and hence reproduces the results in the perturbative
regime of the Landauer formula. This regime is bounded by the
temperature TQ from below. Since T1 < TQ, the QME cannot
reproduce the WF law in the cotunneling regime.

IV. DISORDERED WIRE

In this section, we discuss the validity of the WF law in a
disordered wire. We model the disorder by introducing on-site
energies εi with randomness. The Hamiltonian of such a wire
is

HdW = −t

N−1∑
i=1

(c†i ci+1 + h.c.) +
N∑

i=1

εic
†
i ci , (14)

where εi are random numbers uniformly distributed in the
interval [−W,W ]. In one dimension, even for an arbitrary
low disorder strength, the system becomes exponentially
localized and exhibits insulating behavior.32 Conductances
of disordered wires decrease exponentially with the length
of the wire as G = G0e

−N/ξ , � = �0e
−N/ξ , where ξ is the

localization length. Also, distributions of the conductances are
log-normal parameterized solely by its mean value. However,
these conclusions are true only at T = 0 K. At any nonzero
temperature, the exponential decrease is not apparent, as the
electrons can hop from one localized state to another.33

The localization length ξ is maximum at the band center
and decreases toward the band edge.35 At each energy E, the
localization length is related to the transmission function as
ξ (E)−1 = − ln τ (E)/2N for a wire of N sites.34 We restrict
our analysis to wires with ξ � N so that the system is
insulating. For this we consider a wire of length N = 100
with disorder strength W = 5. Our calculations show that the
localization length of the wire is ξ < 1 at all energies E.
As the conductivities exhibit giant fluctuations for different
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FIG. 10. (Color online) Logarithmic average of the Lorenz
number L as a function of the electrode temperature T for a wire of
length N = 100 with disorder strength W = 5 and coupling strength
γ = 10−4. The straight line corresponds to the case of a clean wire.
Here regimes (1)–(4) correspond to cotunneling, mixing, resonant
tunneling, and sequential tunneling, respectively. Note that only in
the cotunneling regime are the results the same for both wires. Inset:
Temperature dependence of the variance

∑2 of L.

samples, we take logarithmic averages. The dependence of the
logarithm of the Lorenz number 〈lnL〉 on the temperature T

for this model is depicted in Fig. 10. The values are obtained
by taking the average over 1500 disorder realizations. The
logarithm of the Lorenz number L0 = π2/3 is equal to 1.1908
(in units where e = kB = 1). From the figure, it is clear
that the plateau of constant Lorenz number L0 is recovered
at low temperatures. This corresponds to the cotunneling
regime indicated by (1) in the figure. As the temperature is
increased, the mixing regime [region (2) in Fig. 10] is reached,
where the Lorenz number decreases with increases in tem-
perature. The decrease is apparent till the temperature where
resonant tunneling occurs [regime (3)]. Further increases in
temperature increase the Lorenz number until the sequential
tunneling regime. Finally, in the sequential tunneling regime
shown by (4) in the figure, the Lorenz number decreases
quadratically with temperature.

To better understand the differences in the variation of
Lorenz number with temperature for disordered and nondis-
ordered wires, we have plotted the variation of the logarithm
of the Lorenz number L for a clean wire as a straight line in
Fig. 10. Our findings in this regard are summarized as follows.
(a) The Lorenz number for the disordered wire is always
equal to or less than that of the clean wire at all temperatures.
(b) There is no saturation plateau of constant Lorenz number in
the sequential tunneling regime. This is in contrast to the results
in Ref. 19, where it was pointed out that the WF law is violated
in the resonant tunneling regime and is valid in the sequential
tunneling regime. We note that due to the finite size of our
wire, there is no self-averaging of the transmission peaks over
the window kBT . (c) The temperature T1 at which the Lorenz
number L0 is recovered is shifted to lower temperatures. This
follows from disorder-induced energy fluctuations, so that
there exist samples for which the spacing between the Fermi
energy and the nearest peak of τ (E) is much smaller than the
mean level spacing �E. In such instances, the Sommerfeld

FIG. 11. (Color online) Distribution of the Lorenz number L at
different temperature regimes for a wire of length N = 100 with
disorder strength W = 5. (a) T = 0.000 01 in the cotunneling regime;
(b) T = 0.001 in the mixing regime; (c) T = 0.01 in the resonant
tunneling regime; (d) T = 10 in the sequential tunneling regime. Note
that in (c) and (d), the logarithm of the Lorenz number is plotted.

expansion substantiating the WF law is valid only at lower
temperatures than in the clean case.

So far we have focused only on the mean value of the Lorenz
number. However, in a disordered system with a localization
length much smaller than the system size, i.e., ξ � N ,
fluctuations can be as large as the average value. Under these
conditions, only a statistical distribution provides meaningful
information about the system properties. It is well known that
in these highly localized systems, the conductance distribution
is log-normal, i.e., lnG (or ln�) follows a normal distribution
at T = 0 K. The finite-temperature transport properties of the
disordered wire can be understood in terms of the distribution
statistics of the transmission function τ (E). This is clear
from Eq. (7), where the Onsager coefficients are expressed
in terms of the transmission function τ (E). However, to derive
the distribution of the Lorenz number using Eqs. (7)–(10) is
beyond the scope of the current study. Hence, in the latter
part of this section, we analyze numerically, in detail, the
distribution followed by the Lorenz number in the different
tunneling regimes.

A. Cotunneling regime

It is clear from Fig. 10 that in this regime we reproduce
the WF law. From our numerical analysis we found that
fluctuations of the conductances are almost twice that of
the average value. This has been advocated as evidence for
insulating behavior in one-dimensional systems,36 and thus
we ensure that the disordered wire is indeed localized. We find
that the fluctuations of both conductances are almost perfectly
correlated and hence a Lorenz number L0 with almost-zero
variance is obtained. This is clear from Fig. 11(a), where the
distribution at temperature T = 0.000 01 is shown. A δ peak
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around the value π2/3 = 3.2898 is obtained at all temperatures
in this regime.

B. Mixing regime

In this regime we found that the logarithm of conductances
still follows a normal-like distribution, with variance almost
twice that of the average. However, the skewness is nonzero.
Moreover, the fluctuations of both conductances are not
perfectly correlated and therefore the constant value of the
Lorenz number L0 is not recovered. Interestingly, we obtain a
bimodal distribution for the Lorenz number. This is shown in
Fig. 11(b) for temperature T = 0.001. One of the two peaks
corresponds to the value π2/3, while the other corresponds to
a value near 0. The peak around π2/3 is largely populated at
low temperatures. Upon increasing the temperature, this peak
is reduced, while the peak with a small Lorenz number is
populated. This continues till the resonant tunneling regime
is reached, where there is only one peak. Indeed, our results
suggest that the two peaks correspond to first- and second-
order tunneling processes. For disordered wires, second-order
tunneling favors the WF law with Lorenz number L0, whereas
first-order tunneling favors a small value of the Lorenz number.
Also, the variance of the Lorenz number in this regime
increases with increases in temperature until the two peaks
are equally populated and decreases thereafter.

C. Resonant tunneling regime

Here, similarly to the mixing regime case, the logarithm
of conductances has a skew normal distribution (a normal
distribution but with nonzero skewness). In contrast to the
mixing regime, the variances of the conductances decrease
more rapidly with temperature compared to their mean values
and are almost of the order of the mean values. The distribution
of the Lorenz number in this regime is always peaked near
zero value with long tails toward large values and can be
approximated to a log-normal distribution. Hence, we plotted
the distribution of the logarithm of L. A typical distribution
in this regime at temperature T = 0.01 is shown in Fig. 11(c)
and is in accordance with our expectation. Furthermore, it is
shown that the variance in this regime increases with increasing
temperature.

D. Sequential tunneling regime

Our results in this regime indicate that the logarithm of
the conductances has a distribution similar to that of the
resonant tunneling regime. However, the variance initially
decreases with increasing temperature and thereafter saturates.
The distribution of the Lorenz number is still peaked around a
very small value. Hence, similarly to the case of the resonant
tunneling regime, we have plotted the logarithmic distribution
in Fig. 11(d). Here, a skew normal distribution of increasing
variance and decreasing skewness is obtained as the temper-
ature is initially increased. However, after the initial change,
both the variance and the skewness saturate to a constant value
as the fluctuations of the conductances also saturate. Thus, a
distribution invariant with temperature emerges and is demon-
strated in Figs. 12(a) and 12(b), which correspond to tempera-
tures T = 20 and 1000, respectively. In order to better clarify

FIG. 12. (Color online) Top: Distribution of the Lorenz number
for a wire of length N = 100 with disorder strengths W = 5 in
the sequential tunneling regime at temperatures (a) T = 20 and
(b) T = 1000. (c) Variance (	2) and (d) skewness (m3/	3) of the
Lorenz number distribution at different temperatures in the sequential
tunneling regime.

the emergence of the invariant distribution, we have plotted the
variance (	2) and the skewness (m3/	3, where m3 is the third
moment about the mean) of the distributions in Figs. 12(c)
and 12(d). It is clear from the figure that the variance saturates
around the value 15, whereas the skewness fluctuates around
−0.85 at high temperatures, indicating a temperature-invariant
distribution.

V. CONCLUSIONS

Using the Landauer-Büttiker formalism, we have investi-
gated the validity of the WF law in finite-sized molecular
wires with and without disorder. For a clean system, we
found that the validity regimes of the WF law depend
on how an electron tunnels across the wire. In particular,
the Lorenz number L0 = (π2/3)(kB/e)2 is obtained in the
cotunneling and the sequential tunneling regimes as long as
the temperature in these regimes is much lower than the Fermi
energy EF . For wires of length N � 40, resonant tunneling
occurs for temperatures higher than the Fermi energy EF , and
hence the WF law is valid only in the cotunneling regime.
Following the studies of Vavilov and Stone in Ref. 19, the
violation of the law in the different tunneling regimes is
explained in terms of the energy integrals giving the electrical
and thermal conductances. We have further compared our
results with the standard Kubo formula and with the Redfield
QME and found that the two approaches diverge from the
Landauer formula at particular temperatures TK and TQ, which
decrease with an increase in the length of the wire N . The
temperatures TK and TQ are always higher than the temperature
at which cotunneling occurs and hence it follows from our
results that the Kubo formula and QME will differ from the

035433-8



VALIDITY OF THE WIEDEMANN-FRANZ LAW IN SMALL . . . PHYSICAL REVIEW B 86, 035433 (2012)

Landauer-Büttiker formalism even in the limit of infinite length
of the wire.

Furthermore, we have explored an exponentially localized
disordered wire using the Landauer-Büttiker formalism. Here,
even for wires of length N = 100, the WF law is valid only
at very low temperatures corresponding to the cotunneling
regime. Moreover, the Lorenz number shows typical distri-
butions at different temperatures corresponding to different
tunneling processes. A δ distribution peaked around the value
L0 is obtained in the cotunneling regime, while a bimodal
distribution is obtained in the regime where the mixing of first-
and second-order tunneling processes occurs. The logarithm
of the Lorenz number shows a skew normal distribution in the
resonant and sequential tunneling regimes. In particular, we
found that a distribution with constant variance and skewness
emerges in the high-temperature regime. We infer from our
results that first-order tunneling favors a small Lorenz number,
whereas second-order tunneling favors the universal value L0

in a disordered wire.
Finally, we point out that we have not addressed the

effects of interaction between the electrons in our model.
Commonly used approaches to investigating the transport
properties of interacting finite-sized systems are the standard
Kubo formalism and QME. We have discussed numerically
in detail the failure of the Kubo formalism to obtain the
WF law in finite-sized systems. Furthermore, it follows from
our numerical analysis that the standard QME approach also
fails. The standard QME is derived by taking second-order
perturbative expansion of tunneling amplitudes tkj and is only
linear in coupling strength γ . Hence, the current calculated
using this formalism is always of first order in γ . However, in
the cotunneling regime the current varies quadratically with γ .
A fourth-order perturbative expansion of tunneling amplitudes
in the QME indeed explains this regime.37 Thus, we note
that to investigate the Lorenz number in finite-sized strongly
interacting systems, the standard QME has to be extended to
include terms of t4

kj .
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APPENDIX: ANALYTICAL DERIVATION

In this section, we analytically derive the electric (Je)
and thermal (Jq) currents for a wire weakly coupled to the
electrodes (γ → 0). From the definition of the single-particle
Green’s function operator Gs , it follows that Gs is the inverse
of the matrix⎛

⎜⎜⎜⎜⎜⎝

E − i
γ

2 −1 . . .

−1 E . . .

0 . . . .

. . . E −1

. . . −1 E + i
γ

2

⎞
⎟⎟⎟⎟⎟⎠ . (A1)

Thus, 〈1|Gs |N〉 is the (1,N ) element of the inverse of the
above matrix.

Consider a wire with N = 1 coupled to both the left and
the right reservoirs. Here, 〈1|Gs |N〉 = 1/(E − iγ ) and hence

Je = eγ 2

2πh̄

∫
dE

1

E2 + γ 2
[fL(E) − fR(E)]. (A2)

Apart from the constant factor, the first integral is of the form

I =
∫

dE
1

E2 + γ 2
f (E) ≡

∫
dEg(E), (A3)

which can be evaluated using the residue theorem. The first part
of the integrand has two poles, namely, E± = ±iγ , whereas
the second part has an infinite number of poles, namely,
Mastubara frequencies at En = μ + i

β
(2n + 1)π with n ∈ Z

and β = 1/T (we set kB = 1).
To evaluate the integral, we consider two distinct contours,

one in the upper half-plane (C1) and the other in the lower
half-plane (C2). Each contour runs from −R to R on the real
axis and then comes back, following a semicircle of radius R.
Thus, the integration domain is the sum of the following two
parts: ∫

C1

=
∫ R

−R

+
∫

CR

and
∫

C2

=
∫ R

−R

+
∫

C ′
R

, (A4)

where CR (C ′
R) denotes the upper (lower) semicircle. Since the

integrand function satisfies the “big circle lemma” (Jordan’s
lemma), the contribution of the integrals on the semicircles is
0 when R → ∞ and thus only the contribution from the real
axis integration survives. Applying the residue theorem, we
get

I = 1

2
2πi

[
resg(E+) − resg(E−)

+
∞∑

n=0

resg(En) −
−∞∑

n=−1

resg(En)

]
. (A5)

The factor 1/2 follows from the fact that, integrating on two
contours, real axis integration is encountered twice. Now the
first two terms in Eq. (A5) are

resg(E+) = lim
E→E+

g(E)(E − E+)

= lim
E→E+

f (E)(E − E+)

(E − E+)(E − E−)

= f (E+)

(E+ − E−)
(A6)

and

res g(E−) = lim
E→E−

g(E)(E − E−)

= − f (E−)

(E+ − E−)
. (A7)

Thus, their difference is

resg(E+) − resg(E−) = 1

(E+ − E−)
[f (E+) − f (E−)]

= 2Re[f (E+)]

(E+ − E−)

= 1

iγ
Re([f (iγ )]. (A8)
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The residue corresponding to the nth Mastubara frequency En

is

resg(En) = 1

E2 + γ 2

1

( exp[β(E − μ)] + 1)′|E=En

= 1

E2 + γ 2

1

β ( exp[β(E − μ)] + 1)︸ ︷︷ ︸
=−1

= − 1

β

1

E2 + γ 2
. (A9)

Here we point out that

E−n−1 = μ + 1

β
( − 2(n + 1) + 1)iπ

= μ + 1

β
(−2n − 1)iπ = E∗

n. (A10)

Also,
−∞∑

n=−1

resg(En) =
∞∑

m=0

resg(E−m−1) (n = −m − 1)

=
∞∑

n=0

resg(E∗
n). (A11)

Therefore, the difference between the residues is

resg(En) − resg(E−n−1)

= − 1

β

[
1

E2
n + γ 2

− 1

E2
−n−1 + γ 2

]

= − i

β
2Im

[
1

E2
n + γ 2

]
. (A12)

Substituting all these results in Eq. (A2), we get

Je = eγ 2

2πh̄

{
π

γ
Re[fL(iγ )] − Re[fR(iγ )]

+ 2π

βL

∞∑
n=0

Im

(
1

E2
nL + γ 2

)

− 2π

βR

∞∑
n=0

Im

(
1

E2
nR + γ 2

) }
, (A13)

where EnL,R = μL,R + β−1
L,R(2n + 1)iπ with n ∈ Z. In the

limit of weak coupling, i.e., γ � T , the above equation
reduces to

Je � eγ

2h̄
[fL(E = 0) − fR(E = 0)]. (A14)

Note that in the last formula E = 0 should be substituted by the
dot’s energy E = ε0 in the case of the single-dot Hamiltonian
HW = ε0c

†c.
For a wire with N = 2,

〈1|Gs |N〉 = 1(
E − E1 + i

γ

2

)(
E − E2 + i

γ

2

) , (A15)

where Ej = 2 cos{[π/(N + 1)]j} (j = 1,2). Thus, the current
Je is given by

Je = eγ 2

2πh̄

∫
dE

fL(E) − fR(E)∣∣(E − E1 + i
γ

2

)(
E − E2 + i

γ

2

)∣∣2 . (A16)

Following the same steps for N = 1, we obtain

Je = γ 2

2πh̄

1

2
2πi

{
2Re

[
fL

(
E1 + i

γ

2

) − fR

(
E1 + i

γ

2

)]
iγ (E1 − E2 + iγ )(E1 − E2)

+2Re
[
fL

(
E2 + i

γ

2

) − fR

(
E2 + i

γ

2

)]
iγ (E2 − E1 + iγ )(E2 − E1)

}
. (A17)

In the limit of γ → 0, the current Je is

Je � eγ

h̄

[
fL(E1) − fR(E1)

(E1 − E2)2
+ fL(E2) − fR(E2)

(E2 − E1)2

]
. (A18)

Similarly, for a wire of length N we get

Je � eγ

h̄

N∑
k=1

fL(Ek) − fR(Ek)∏
j 
=k(Ek − Ej )2

(A19)

for the electric current and

Jq � γ

h̄

N∑
k=1

(Ek − μ)[fL(Ek) − fR(Ek)]∏
j 
=k(Ek − Ej )2

(A20)

for the thermal current, with Ej = 2 cos{[π/(N + 1)]j} (j =
1, . . . ,N). Using the Taylor expansion in Eq. (5), the difference
of the Fermi functions reads

fL(Ek) − fR(Ek)

= − eβ(Ek−μ)

(eβ(Ek−μ) + 1)2

[
(Ek − μ)

�T

T 2
+ �μ

T

]

= − 1

4 cosh2
[

β(Ek−μ)
2

][
(Ek − μ)

�T

T 2
+ �μ

T

]
. (A21)

The above expressions are used in Eqs. (8)–(10) to calculate
the conductances G and � and the Lorenz number L in Fig. 5.
It is clear from the above analytical calculations that the
conductances G ∝ 1/T and � ∝ 1/T 2 and thus the Lorenz
number L = �

GT
∝ 1/T 2.
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