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Anomalous growth of thermoelectric power in gapped graphene
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There exist experiments indicating that at certain conditions, such as an appropriate substrate, a gap of the
order of 10 meV can be opened at the Dirac points of a quasiparticle spectrum of graphene. We demonstrate
that the opening of such a gap can result in the appearance of a fingerprint bump of the Seebeck signal when
the chemical potential approaches the gap edge. The magnitude of the bump can be up to one order higher
than the already large value of the thermopower occurring in graphene. Such a giant effect, accompanied
by the nonmonotonous dependence on the chemical potential, is related to the emergence of a new channel
of quasiparticle scattering from impurities with the relaxation time strongly dependent on the energy. We
analyze the behavior of conductivity and thermopower in such a system, accounting for quasiparticle scattering
from impurities with the model potential in a self-consistent scheme. Reproducing the existing results for
the case of gapless graphene, we demonstrate a failure of the simple Mott formula in the case under
consideration.
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Control of heat flows and minimization of heat losses
is an important aspect of designing modern nanoelectronic
devices, in particular those based on graphene.1 Experiments
indicate2 that the thermoelectric effect in graphene accounts
for up to one-third of the contact temperature changes, and
thus it can play a significant role in cooling down such
systems. The measured thermopower S reaches the value
kB/e ∼ 100 μV/K at room temperatures, where kB is the
Boltzmann constant and −e < 0 is the electron charge. This
and other experimental results3–6 on thermoelectric transport
in graphene were understood theoretically, mostly by bas-
ing them on a simple Mott relation between thermopower
and the logarithmic derivative of the electrical conductivity
σ (μ,T ),

S(μ,T ) = −π2

3e
T

d

dμ
[ln σ (μ,T = 0)], (1)

where μ is the chemical potential and T is the temperature
(we set kB = 1).7 However, the cited experiments show that
the Mott formula (1) fails when μ approaches the vicinity of the
Dirac point at high temperatures, especially in high-mobility
graphene.6 The available theoretical analysis8–10 shows that
the failure of Eq. (1) can be attributed to breaking of
the conditions of its applicability, which read as T � |μ|
and/or T � γ [here γ is the characteristic energy scale on
which the conductivity σ (μ,T = 0) varies around the Fermi
level].

The purpose of the present paper is to show that the
already large value of the thermopower occurring in graphene
can be further increased up to one order of magnitude by
opening in different ways (see, e.g., Refs. 11 and 12) a gap
� in its quasiparticle spectrum. We will show that such an
opening is accompanied by the emergence of a new channel
of quasiparticle scattering with the relaxation time strongly

dependent on energy, and it results in the appearance of a giant
bump in thermopower when chemical potential approaches the
gap edge. The situation here turns out to be very similar to the
well known anomaly of thermopower close to the electronic
topological transition (see Refs. 13 and 14 for a review) related
to the scattering of electrons from all of the extended periphery
of the Fermi surface to the “trap,” presented by the small new
void or narrow “neck” of the latter.

It is worth mentioning that some experimental findings15,16

indicate that, indeed, a gap in the graphene quasiparticle
spectrum opens at the Dirac point, and probably it can be
attributed to the effect of the substrate. Yet, this issue still
remains an open problem of the physics of graphene.11,12 This
is why, in principle, one can apply the results obtained below
and use thermopower measurements as a sensitive probe of the
gap opening in the graphene spectrum.

The Hamiltonian for graphene can be written down in the
momentum representation as

Ĥ =
∑

σ

∫
BZ

d2p

(2π )2
ϒ†

σ (p)[Ĥ(p) − μτ̂0]ϒσ (p), (2)

where

Ĥ(p) = τ̂+φ (p) + τ̂−φ∗ (p) + �τ̂3,

τ̂0, τ̂3, and τ̂± = (̂τ1 ± iτ̂2)/2 are Pauli matrices acting in
the sublattice space on the spinors ϒσ (p) and ϒ†

σ (p) =
(a†

σ (p),b†σ (p)), with the creation (annihilation) operators of
electrons a†

σ (p), b†σ (p) (aσ (p), bσ (p)) corresponding to A and B

sublattices, respectively, and spin subscript σ . The full form of
the complex function φ(p) is provided, for example, in Ref. 11
and in present consideration it is important only that near
two independent K points the dispersion ξ ≡ |φ(p)| = h̄vF |p|,
where vF is the Fermi velocity and the the wave vector p
is measured from the corresponding K point. In the result
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of diagonalization of the operator (2) one finds that the
presence of the gap � in it breaks the equivalence between
A and B sublattices, and the spectrum of the quasiparticle
excitations close to the K points takes the form E (p) =
±

√
h̄2v2

F p2 + �2 − μ.
We will account for quasiparticle scattering from impurities

in the framework of the Abrikosov-Gorkov scheme, writing
the self-consistent equation for self-energy in the matrix
form


̂(p,εn) = ni

∫
BZ

d2q

(2π )2
V̂ (q)Ĝ(p − q,εn)V̂ (q), (3)

with ni as concentration of impurities and εn = πT (2n + 1),
the full inverse Green’s function (GF)

Ĝ−1(p,εn) = Ĝ−1
0 (p,εn) − 
̂(p,εn), (4)

and the free inverse Green’s function

Ĝ−1
0 (p,εn) = (iεn + μ)̂τ0 − Ĥ(p). (5)

The sublattices A and B are shifted by a distance of the order
of lattice constant a, hence their images in inverse space
are separated by momenta of the order of h̄/a. Hence, for
the relatively long-range potential V̂ (q) in Eq. (3) one can
ignore the quasiparticle scattering between the inequivalent
valleys. At the same time we will assume V̂ (q) as momentum
independent for the intravalley scattering, i.e.,

V̂ (q) = τ̂0

{
u(0), |q| � max{|μ|,�}

h̄vF
,

0,
max{|μ|,�}

h̄vF
� |q| � h̄

a
.

(6)

The next step in the solution of Eq. (3) is the decom-
position of the self-energy over Pauli matrices 
̂(p,εn) =∑3

i=0 σi(p,εn )̂τi . One can see that by ignoring the self-
consistence procedure in Eq. (3) with potential (6) (which
does not mix valleys), one obtains 
̂(0)(p,εn) in the diagonal
form. It is possible to show that the off-diagonal components
appear in the order n2

i only, i.e., σR
1 (p,εn) and σR

2 (p,εn) terms
can be omitted. Finally, the momentum dependence of 
̂(p,εn)
can be also ignored in view of the constancy of potential (6)
in the domain of each valley and taking into account that
the main contribution to 
̂ appears from the relatively large
momenta |q| ∼ max {|μ|,�} /h̄vF . This latter fact justifies our
use of the Abrikosov-Gorkov technique for averaging of the
quasiparticle scattering over impurity positions. As a result,
after the analytical continuation iεn → ε, the matrix Eq. (3)
reduces to the system of two equations17{

σR
0 (ε)

σR
3 (ε)

}
= 4h̄

πτ0|μ|

{
ε + μ − σR

0 (ε)

� + σR
3 (ε)

}

×
∫ W

0

ξdξ[
ε + μ− σR

0 (ε)
]2 − ξ 2 − [

�+ σR
3 (ε)

]2 ,

(7)

where we introduce the “relaxation time scale”18

1

τ0
= ni |u(0)|2|μ|

4h̄3v2
F

. (8)

The real parts Re σR
0 and Re σR

3 , which are logarithmically
dependent on the high energy cutoff W, can be included in

the renormalized μ and �, respectively. For the self-energy
imaginary parts, which determine the quasiparticle relaxation
rate, one finds{

Im σR
0 (ε)

Im σR
3 (ε)

}
= −2θ [(ε + μ)2 − �2]sgn(ε + μ)

(τ0/h̄)|μ|
{

ε + μ

�

}
.

(9)

One can note that the denominator of the full GF (4) can be
approximated as[

ε + μ − i Im σR
0 (ε)

]2 − ξ 2 − [
� + i Im σR

3 (ε)
]2

≈ [ε + μ + i
(ε)]2 − E2(p),

so that the full inverse GF can now be written as [ĜR(p,ε +
i0)]−1 ≈ [ĜR

0 (p,ε)]−1 + iτ̂0
(ε). Here the energy-dependent
scattering rate 
(ε), central for our consideration, explicitly
appears:


(ε) = −Im σR
0 (ε) − �

ε + μ
Im σR

3 (ε)

= 
0

[ |ε + μ|
|μ| + �2

|ε + μ||μ|
]
θ [(ε + μ)2 − �2], (10)

with 
0 = 2h̄/τ0. In the numerical results presented below we
use the value 
0 = 20 K, ignoring its dependence on the carrier
concentration.

It follows from Eq. (10) that for (ε + μ)2 < �2 the
scattering is absent. Further consideration shows that, in spite
of the presence of 
(ε) in the denominators of Eq. (12), this
fact does not result in divergence of the physical observables.
Yet, one should keep in mind that some scattering processes
beyond our model along with the next-order corrections to
the solution (9) can make the scattering rate finite below the
gap edge. For our numerical work we took this into account by
adding a small residual scattering rate γ0 to 
(ε). In accordance
to the theoretical analysis the final results turn out to be
practically independent of the value γ0.

Using the Kubo relations one can derive electric con-
ductivity and thermoelectric coefficient in the explicit
form {

σ

β

}
= e2

h̄

∫ ∞

−∞

dεA(ε,
(ε),�)

2T cosh2 ε
2T

{
1

ε/(eT )

}
, (11)

where in the presence of � the function A is given by20,21

A(ε,
(ε),�) = 1

2π2

[
1 + (μ + ε)2 − �2 + 
2(ε)

2|μ + ε|
(ε)

×
(

π

2
− arctan

�2 + 
2(ε) − (μ + ε)2

2|μ + ε|
(ε)

)]
.

(12)

For � = 0 Eq. (12) reduces to the commonly used ex-
pression (see, e.g., Refs. 8 and 10). In this case, setting
also 
(ε) = 
0 = const, one obtains for |μ| 
 T ,
0 that
σ = e2|μ|/(2πh̄
0) and β = πeT sgnμ/(6h̄
0), in agreement
with Ref. 21. Then the value of the thermopower S = −β/σ

turns out to be the same as in the conventional metals,
S = −(π2/3e)T/μ, and coincides with the result obtained
directly from the Mott formula (1).
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FIG. 1. (Color online) Top panel: electrical conductivity σ in units of the value σ0 = 2e2/(π 2h̄); middle panel: thermoelectric coefficient
β in units of the value β0 = kBe/h̄; bottom panel: thermopower S in units of the value kB/e as functions of the chemical potential μ. Left side:
(a) for T = 1 K, and right side: (b) for T = 5 K. In all graphs three cases are shown: the dashed (red) curve is for the energy-independent
scattering 
 = 
0 and � = 0, the dash-dotted (black) curve is for 
 = 
0 and � = 50 K, and the solid (blue) curve is for energy-dependent

(ε) and � = 50 K. The solid curve in the bottom panel is multiplied by the factor 0.2. The thin lines in the right bottom panel are obtained
using the Mott formula.
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The dependences σ (μ), β(μ), and S(μ) are shown in the
top, middle, and bottom panels of Fig. 1, respectively. The left
side [Fig. 1 (a)] is for T = 1 K and the right side [Fig. 1 (b)] is
for T = 5 K. The dashed (red) curves in all panels correspond
to the reference case � = 0, 
(ε) = 
0, so that σ (μ) ∝ |μ|
and S(μ) ∝ 1/μ for large |μ|.

The general expressions (11) and (12) also allow one
to reproduce the gapped case with the energy-independent
scattering 
(ε) = 
0.20,21 The corresponding reference depen-
dences computed for � = 50 K are presented in all panels by
the dash-dotted (black) curves.

Our main results obtained with the energy dependent 
(ε)
given by Eq. (10) and � = 50 K are presented in all panels by
the the solid (blue) curves.

The behavior of the conductivity σ (μ) is shown in the top
panel of Figs. 1(a) and 1(b). One can see that it drastically
changes due to accounting for the energy dependence of 
(ε).
Namely, a clear kink in the dependence σ (μ) appears at the
gap edge, at |μ| = �, while below it, when |μ| < �, the value
of σ (μ) is strongly suppressed as compared to the case 
(ε) =

0, � = const. This kink is smeared out with the growth of
temperature [Fig. 1(b), T = 5 K].

Let us continue to the discussion of the Seebeck signal. In
the gapless case with the constant scattering rate 
(ε) = 
0,
the signal monotonously changes with μ passing zero without
any visible anomaly. The gap in the quasiparticle spectrum
shows up as smoothed bumps at |μ| = �, which are rapidly
smeared out by temperature (middle and bottom panels of
Fig. 1).

The behavior of thermoelectric coefficient β(μ) and ther-
mopower S(μ) in the case under consideration of gapped
graphene with energy-dependent relaxation time is shown in
the middle and bottom panels of Fig. 1 by the solid curves.
Let us stress that the curves corresponding to S(μ) in the
bottom panel are multiplied by the factor 0.2 to present
them conveniently on the background of the previous cases.
This means that the peaks of the Seebeck signal are at least
five times higher than those ones obtained for 
(ε) = const
case.

A strong enhancement of the Seebeck signal in the case
when 
(ε) is energy dependent could be foreseen even basing
on the Mott formula (1). However, this formula gives only
a hint of the singular behavior of the Seebeck signal and
cannot be used for any quantitative description. Indeed, the
thin lines in the bottom panel of Fig. 1(b) are computed
using the zero-temperature electrical conductivity σ (μ,T =
0) = (2e2/h̄)A(0,
(0),�) and the Mott formula (1), while the
thick lines in the middle and bottom panels of Fig. 1 are plotted
using the Kubo formulas (11) both for σ and β. One finds that
for the case of � = 0 and 
(ε) = const agreement between
the Kubo and Mott formulas is very good. We checked that
for T = 1 K it becomes perfect, so that the lines for the Mott
formula are not shown in the left bottom panel of Fig. 1. The
right bottom panel shows that for the case of finite � and

(ε) = const one can already see some discrepancies between
the Kubo and Mott formulas, especially near |μ| = �. Finally,
the Mott formula fails completely when the energy dependence
of 
(ε) is taken into account.

Two more comments on the obtained bump of the Seebeck
signal should be made. First, the shape of the bump depends on

the presence of the ∼�2 term in Eq. (10), and thus accounting
for the self-energy σ3(ε) is important for the qualitative theory.
Second, our arguments are also directly applicable to gapped
bilayer graphene, and indeed the computations done in Ref. 22
confirm this.

The applicability of the model potential (6) to the case
under consideration deserves a more detailed discussion. It
is worth stressing that we use it to solve the equation for
self-energy with further fixation of 
0 = 2h̄τ−1

0 (|μ| = �) =
ni |u(0)|2|�|/(2h̄2v2

F ) [see Eq. (8)]. This procedure gives a
consistent analytical treatment of the problem close to the gap
edge |μ − �| � �, but it does not allow one to reproduce
correctly the experimentally observed dependences of σ and S

on the carrier concentration n (∝ μ2sgnμ) beyond this region.
In order to get a better agreement with the experiment in a
wider interval of concentrations one could use the scattering
potential V̂ (q) in the form of a long-range Coulomb one (see,
for instance, Refs. 9,10,18, and 23). In such consideration one
obtains that at large n the scattering rate 
0 ∝ 1/|μ| (contrary
to our reference case, where 
0 = const), which results in
the observed linear dependence σ (n) ∝ |n| [contrary to our
σ (n) ∝

√|n|].
The specifics of thermopower consists of its sensitivity to

the derivative of the scattering rate. This is why the presence
of the step function in Eq. (10) produces a much stronger
effect on the behavior of S(μ) in the vicinity of |μ| ≈ �

than a relatively slow energy dependence of 
0, which could
appear from the screened Coulomb potential V̂ (q). Let us
again call the reader’s attention to the evident analogy between
the transport in gapped graphene and that in metal close
to the electronic topological transition. Indeed, in the vicinity
of the critical point μ = μc, when the Fermi surface connec-
tivity changes, the quasiparticle relaxation rate also acquires a
contribution depending on energy in the form of step function,
what generates the well known kinks in conductivity and peaks
in thermopower.14

One can imagine that when designing future nanoelectronic
devices it will be possible to control their temperature regime
using the Peltier cooling effect, which is also governed by
the value of the thermoelectric coefficient. As was already
demonstrated in Ref. 24, thermoelectric power can be tuned
by controlling the band gap in dual-gated bilayer graphene,
which looks promising for practical applications.

Turning this around, one can exploit the predicted giant
peak of the Seebeck signal as a signature of the gap opening. Its
existence in the quasiparticle spectrum of single layer graphene
presents an interesting problem. Although there is not so much
evidence15,16 that this gap is present in zero magnetic field,
there is a growing confidence that the ν = 0 quantum Hall state
in graphene is gapped (see Ref. 25 and references therein), so
that a generalization of the present work for a finite magnetic
field may present some interest.
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