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We evaluate quantum corrections to conductivity in an electrically gated thin film of a three-dimensional
topological insulator. We derive approximate analytical expressions for the low-field magnetoresistance as a
function of bulk doping and bulk-surface tunneling rate. Our results reveal parameter regimes for both weak
localization and weak antilocalization, and include diffusive Weyl semimetals as a special case.
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I. INTRODUCTION AND OVERVIEW

The theoretical discovery1 of three-dimensional (3D) topo-
logical insulators (TIs) in 2006 precipitated an avalanche
of experiments aimed at detecting the signature behavior
of these unconventional solids. Since then, angle-resolved
photoemission spectra2 have given evidence for the Dirac-type
dispersion and the momentum-dependent spin texture of TI
surface states, whereas local STM probes have indicated
a characteristic suppression of backscattering off surface
imperfections.3 However, the most desired observation of a
hallmark dc conduction confined to the surface layer of a 3D
TI remains elusive.4 The main problem is conduction through
the bulk: 3D TIs are narrow-gap semiconductors, rich in bulk
carriers that are either thermally activated and/or donated
by crystalline lattice imperfections. Along with attempts to
reduce bulk charge carriers, experimentalists are developing
techniques which allow us to register a separate conduction
channel on the surface of a 3D TI.5 Chief among these are
measurements of low-field magnetoresistance combined with
electrostatic gating of thin-film samples.6–12

Low-field magnetoresistance measurements unveil the in-
terference correction δσ to the Drude conductivity σD .13

At low temperatures, σD is defined by independent acts of
scattering of electrons off the crystal’s imperfections, and
is proportional to the classical diffusion constant D. When
the phase relaxation length lφ is parametrically longer than
the scattering mean-free path, quantum interference affects
the conductivity to a measurable extent. The sign of the
interference correction depends on the strength of spin-orbit
interactions. For weak spin-orbit interactions (lso � lφ , where
lso is the spin-orbit scattering length), it follows that δσ < 0.
This is called weak localization (WL). In contrast, strong spin-
orbit interaction (lso � lφ) leads to suppression of backscat-
tering and thus δσ > 0. This is called weak antilocalization
(WAL). Being interference effects, WL and WAL are degraded
by a magnetic field H when H � Hφ ≡ �0/(8πl2

φ), where
�0 = h/e is the flux quantum. Yet, σD is nearly immune
to H at such low fields. Therefore, the low-field magne-
toconductivity reads as �σ (H ) ≡ σ (H ) − σ (0) � δσ (H ) −
δσ (0).

All experiments to date report WAL in 3D TI thin films,14

and ascribe it to the strong spin-orbit interaction in the
electronic bands of these materials. For film thickness less
than lφ , the measured �σ (H ) agrees well with the functional

form provided by 2D WAL theory, namely,

�σ (H ) � α (e2/2π2h̄)f (Hφ/H ), (1.1)

where f (z) ≡ ln z − ψ(1/2 + z), with ψ and α being the
digamma function and a number,15 respectively. In a system
with a single conduction channel, α is universal and equals
1/2. The WAL contributions add for systems which are isolated
from each other. For example, having two independent parallel
conduction channels yields α = 1, irrespective of the ratio of
Drude conductivities of the two subsystems.

The relation between α and the number of parallel channels
is at the heart of recent magnetoresistance experiments in
3D TIs.7,10,11 Overall, the coefficient α is found to depend
on the gate voltage. For some devices,7,10,11 it changes from
α = 1/2 all the way to α = 1. A plausible interpretation for
this variation is presented in Ref. 11. At zero or positive bias
applied to the top gate, electrons from the n-doped bulk reach
the surface states easily: the entire film acts as a single electron
system, and α = 1/2. At negative bias, electrons are repelled
from the top surface and, for strong enough bias, a depletion
layer is formed adjacent to it. This depletion region separates
the film into two subsystems: bulk carriers (combined with
surface carriers from the bottom surface) on one side, and
top-surface carriers on the other side. For a wide enough
depletion layer, α = 1.

In spite of the ongoing scrutiny on the experimental
front, quantum corrections to conductivity in 3D TIs have
stimulated relatively little theoretical activity. Even though the
WAL contribution from TI surface states has been calculated
explicitly,16,17 there are no calculations that incorporate con-
ducting 3D bulk states. The main reason for this omission may
be the prevailing view that quantum corrections originating
from bulk TI states ought to be conceptually identical to those
in ordinary strongly spin-orbit coupled systems, i.e., of WAL
type. Recently, an objection to this viewpoint has been raised,18

declaring that quantum-well states in ultrathin TI films may
contribute via WL rather than WAL. Although suggestive,
the calculation of Ref. 18 is limited to quasi-two-dimensional
(2D) films and disregards the coupling between bulk and
surface states, which leaves out several experiments of interest.
Besides, its extrapolation to 3D bulk states has not been carried
out properly.

In this paper, we evaluate �σ for gated 3D thin films as a
function of the bulk-carrier concentration and accounting for
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the coupling between surface and bulk states. Our calculation
applies to TI films that are thicker than the bulk mean-
free path, thinner than lφ , and not highly doped. In these
films, bulk carriers are three dimensional and are concen-
trated around the 
 point of the electronic band structure.
The resulting approximate analytical expressions for �σ

[Eqs. (2.35), (3.17), and (3.19)] are aimed at improving the
interpretation of magnetoresistance measurements in TIs, in
Weyl semimetals,19 and in some class of topologically trivial
materials. Although a few of our observations resemble those
developed for graphene20 and 2D TIs,17 there are qualitative
differences originating from the 3D Dirac nature of bulk
carriers in 3D TIs.

Altogether, the results reported here paint a richer picture
than previously anticipated. On one hand, we confirm the
conventional crossover between α = 1/2 and 1 as a function
of the gate voltage: the former corresponds to the case of
coherently coupled bulk and surface electron states, while the
latter indicates a single decoupled Dirac cone on the top surface
along with generic WAL from the rest of the film (containing
coupled bulk and bottom surface). On the other hand, less
conventional results arise when the Fermi energy is close to the
bulk band edge or when the Fermi energy is much larger than
the bulk band gap: in the former regime, the bulk exhibits WL
with α = −1, whereas in the latter regime the bulk exhibits
an anomalous WAL with α = 1. These two “unusual” bulk
regimes, combined with the surface contributions, may result
in a range of α including α < 0 and α > 1.

The rest of this work is organized as follows. In Sec. II, we
evaluate quantum corrections to bulk conductivity. Readers not
interested in technical details should read Sec. II A and quickly
scan through Secs. II B and II D in order to get acquainted
with the nomenclature; the main results of the section are
collected in Sec. II D. The well-known message from Sec. II A
is that at low energies, bulk electrons of TI films behave as
massive 3D Dirac fermions with spin and valley (or orbital)
degrees of freedom. The direction of spin is locked with that
of momentum, and valleys are coupled to one another by the
mass of the Dirac fermions. The special case in which the
Dirac mass vanishes is a time- and inversion-symmetric Weyl
semimetal.

In Sec. II D, we identify and count the number of “soft”
cooperon modes, which determine the magnitude and sign
of �σ in the bulk. Each soft cooperon obeys a classical
diffusion equation and is thus associated with a conserved
physical quantity. Since charge is conserved, there is at least
one soft cooperon in (nonmagnetic) bulk TIs. We find that
additional soft cooperons can emerge depending on the bulk
doping concentration as well as the bulk band gap. This
realization leads to the most important results in Sec. II D
[Eqs. (2.33)–(2.35)], which indicate that for bulk states α may
acquire three different universal values. On one hand, WL with
α = −1 is possible when the bulk Fermi surface is “small” (as
defined in the text) because in this case the spin-momentum
locking of bulk states becomes weak and the spin of electrons
is nearly conserved. In contrast, WAL with α = 1 can arise for
bulk TIs with particularly small band gaps because in such case
bulk electrons can be described by a 3D analog of graphene
with two nearly decoupled valleys, each contributing 1/2 to α.
For a more generic case, in which neither valley nor spin are

approximately conserved, the quantum interference is similar
to that of an ordinary film with strong spin-orbit coupling and
therefore α = 1/2. Magnetic fields perpendicular to the TI film
can be used to induce crossovers between different universal
regimes of α. The accessible values of α and the corresponding
crossover fields depend on the bulk electron density.

In Sec. III, we evaluate the full �σ in 3D TI thin films, which
comprises coupled bulk and surface contributions. Sections
III A and III B cover preliminary material that is needed to
derive the main results in Sec. III C. Section III A reviews
the well-established fact that, in absence of magnetic order,
isolated TI surface states exhibit WAL with α = 1/2 (in this
paper we assume one Dirac cone per surface). Section III B
develops a diagrammatic framework for evaluating quantum
corrections to conductivity in ordinary tunnel-coupled layers.
Readers who are not interested in technicalities can disregard
the diagrams in the figures and concentrate on the outcome of
the calculation [Eqs. (3.8)–(3.12)], as well as on the subsequent
discussion. One qualitative point made therein is that the
crossover from weak to strong coupling (which is accompanied
by a change in α from 1 to 1/2) occurs when the interlayer
resistance for a square of area l2

φ becomes smaller than the sum
of the classical intralayer resistances.

Section III C combines results from Secs. II D, III A and
III B in order to figure out quantum corrections to conductivity
in experimentally realized thin films. The most important
results in Sec. III C are Eqs. (3.17) and (3.19), which describe
how �σ depends on the bulk doping concentration, on the
phase relaxation rate, and on the bulk-surface tunneling rate.
Some special cases of these results are highlighted in Appendix
F. A salient conclusion is that the WL regime of isolated
bulk states is generally eliminated when either one of the film
surfaces is strongly coupled to bulk states, in which case the
film displays 1/2 � α � 1. However, WL can still be present
if the TI surfaces have short phase relaxation lengths.

Finally, Sec. III D characterizes the electrostatics of the
depletion layer and estimates the bulk-surface tunneling rate
in TI films. This estimate confirms experimental indications
showing that both weak and strong bulk-surface coupling are
accessible by mediation of a gate voltage.

II. QUANTUM CORRECTIONS TO BULK CONDUCTIVITY

This section is devoted to evaluating δσ for the bulk states
of a 3D TI. As a by-product, we derive δσ for a time-reversal
symmetric Weyl semimetal. The contribution from TI surface
states will be discarded until the next section.

A. Model

The bulk band structure of a 3D TI near the 
 point can be
approximated by the following k · p Hamiltonian:21

H =
∑

k

�
†
kh(k)�k,

h(k) � ε(k)14 + M(k)12 τ z + h̄(vzkzσ
z + v⊥k⊥ · σ⊥)τ x,

(2.1)

where τ is an orbital pseudospin (τ z = T ,B), σ is the real
spin (σ z = ↑,↓), k = (k⊥,kz) is the momentum measured
from the 
 point of the Brillouin zone, 1N is an N × N

035422-2



WEAK LOCALIZATION AND ANTILOCALIZATION IN . . . PHYSICAL REVIEW B 86, 035422 (2012)

M

k

εF

kF
k

chemical potential

1,2

3,4

E

FIG. 1. (Color online) Bulk energy bands of an n-doped 3D TI
near the 
 point, in the spherical approximation. The momentum k

is measured from the 
 point. The energies εF and M are measured
with respect to midgap.

identity matrix, � = (�T ↑,�T ↓,�B↑,�B↓) is a four-spinor,
ε(k) = ε(−k) is the part of the Hamiltonian that is independent
of spin/pseudospin indices, vz and v⊥ are the Fermi velocities,
and M(k) = M0 − M1k

2
⊥ − M2k

2
z is the mass term (indepen-

dent of spin). M0, M1, and M2 are constants.
Equation (2.1) captures the bottom of the conduction band

and the top of the valence band in the vicinity of the 
 point
(k ≡ 0), where the band gap is smallest. It models 3D Dirac
fermions with a Dirac mass that equals half the energy gap.
For the purposes of this paper, we ignore ε(k), and assume
M(k) = M = const > 0 as well as spherical symmetry (vz =
v⊥ = v). These assumptions simplify calculations without
incurring a qualitative loss of generality. For instance, the
XXZ anisotropy can be modeled by promoting the diffusion
constant from a scalar to a matrix. Also, the k2 terms in M(k)
can be incorporated into our final results by M → |M(kF )|,
where kF is the Fermi wave vector. Note that in the absence
of spherical symmetry, the Fermi surface does not have a
constant mass; this complication will be disregarded in this
paper. Finally, ε(k) can be absorbed into the definition of the
Fermi energy.

The energy eigenvalues for h(k) in the spherical approxi-

mation are Ek± = ±
√

h̄2v2k2 + M2, each doubly degenerate
(Fig. 1). The corresponding Bloch states can be written as

|�kα〉 = (1/
√

V ) exp(ik · r)|αk〉, (2.2)

where V is the volume of the TI and α ∈ {1,2,3,4} is a
band index (1 and 2 denote conduction bands, while 3 and
4 denote valence bands). This α is obviously unrelated to that
of Eq. (1.1); from here on, it will be clear from the context
which one we are referring to. For concreteness, we set the
chemical potential in the bulk conduction band, although all
results obtained in the following will be directly applicable
to p-doped bulk TIs as well. The density of conduction band
electrons is then

n �
(
ε2
F − M2

)3/2

π2h̄3v3
, (2.3)

where εF is the Fermi energy measured from the middle of
the bulk energy gap. Adopting the basis {|T ↑〉, |T ↓〉, |B↑〉,
|B↓〉}, the two eigenspinors corresponding to the conduction

bands near the 
 point are

|1k〉 =
√

Ek + M

2Ek

(
1,0,

h̄vkz

Ek + M
,

h̄vk+
Ek + M

)
,

|2k〉 =
√

Ek + M

2Ek

(
0,1,

h̄vk−
Ek + M

,
−h̄vkz

Ek + M

)
, (2.4)

where k± = kx ± iky and Ek = Ek,+. Since all non-Hall dc
transport properties of good conductors involve states close to
the Fermi energy, we hereafter ignore valence bands.

Unlike in the k · p Hamiltonians for graphene and 2D (or
quasi-2D) TIs, Eq. (2.1) can not be decomposed into two 2 × 2
block-diagonal matrices (due to M 
= 0). In addition, the kz

band dispersion absent in 2D can not be neglected in our case.
These two features make the calculations and results of this
section quite different from those of Refs. 17, 18, and 20.

Equation (2.1) becomes inaccurate when the chemical
potential moves up in the conduction band and electron pockets
away from the 
 point begin to be populated. These additional
pockets contribute to quantum interference, and the total δσ

depends on the scattering rate between different electron
pockets. Although a realistic study of the full band structure
is beyond the scope of this paper, we expect calculations
based on Eq. (2.1) to provide a generic understanding of
quantum corrections to conductivity in 3D Dirac materials
at low-to-moderate doping concentrations.

B. Formalism

In order to quantify the conductivity of a bulk TI, we begin
by characterizing the simplest possible disorder potential:
Vdis(r) = V (r)14, which is time independent (elastic) and
independent of spin as well as orbital degrees of freedom.
For simplicity, we assume V (r) to be slowly varying at the
atomic scale, yet short ranged compared to the mean-free
path: V (r) = V0δ(r). It is due to its slow spatial variation on
atomic length scales that Vdis becomes an identity operator in
orbital space. With such disorder realization, the Fermi-surface
lifetime τ0 for the α = 1,2 eigenstates in Eq. (2.2) obeys

1

τ0
= 2πu0

h̄

∫
k′

∑
α′

|〈αkF |α′k′
F 〉|2δ(εF − Ek′α′ )

� πu0ν

h̄

(
1 + M2

ε2
F

)
, (2.5)

where
∫

k ≡ ∫ d3k/(2π )3, u0 ≡ niV
2

0 , ni is the density of
impurities, and ν is the density of states per band and per
unit volume at εF .

A related quantity is the transport scattering rate τ−1:

1

τ
≡ 2πu0

h̄

∫
k′

∑
α′

(1 − k̂F · k̂′
F )|〈αkF |α′k′

F 〉|2δ(εF − Ek′α′)

= 2

3τ0

ε2
F + 2M2

ε2
F + M2

. (2.6)

The momentum dependence of |αk〉 makes τ0 
= τ even for δ-
function impurity potentials. Throughout this work, we impose
(εF − M)τ � h̄ or equivalently kF l � 1, where l = (Dτ )1/2
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is the elastic mean-free path,

kF = (ε2
F − M2

)1/2
/(h̄v) (2.7)

is the Fermi wave vector, and

D = v2
F τ/3 = v2τ

(
1 − M2/ε2

F

)/
3 (2.8)

is the classical diffusion constant.
Next, we consider a TI with spatial dimensions L × L in

the xy plane and a thickness W along the z direction. We
take a thin-film geometry with L � lφ � l and lφ � W � l,
where lφ = (Dτφ)1/2 is the coherence length and τφ is the
phase relaxation time. The conductivity of this film is

σ = σD + δσ, (2.9)

where σD is the classical (Drude) part and δσ is the part coming
from quantum interference.

On one hand, the Drude conductivity can be approximated
as

σD � e2h̄

2π

∑
α,β

∫
k
vx

αβ(k)ṽx
βα(k)GR

α (k)GA
β (k), (2.10)

where we have assumed a spatially uniform dc electric field and
α,β ∈ {1,2}. vx

αβ = 〈αk|v · x̂|βk〉 is a matrix element for the
x component of the bare velocity operator v = vτxσ , which
obeys

vαβ(k) = h̄v2(k/Ek)δαβ (for α,β ∈ {1,2}). (2.11)

Disorder vertex corrections renormalize Eq. (2.11) to

ṽαβ = vαβ (τ/τ0) (2.12)

(see Appendix A). In addition,

GR(A)
α (k) =

[
εF − Ekα + (−)

ih̄

2τ0

]−1

(2.13)

is the zero-frequency retarded (advanced) Green’s function
in the band eigenstate basis. Using G

R(A)
1 (k) = G

R(A)
2 (k) ≡

GR(A)(k), Eq. (2.10) yields

σD = 2e2νD. (2.14)

On the other hand, the quantum correction δσ can be written
as δσ � δσ1 + δσ2, represented pictorially in Fig. 2. Following
standard approximations, the expression for δσ1 is

δσ1 � e2h̄

2π

∑
α,α′,β,β ′

∫
k
ṽx

αβ(k)ṽx
β ′α′(−k)GR

α (k)GR
α′ (−k)

×GA
β (k)GA

β ′(−k)
1

W

∫
d2Q

(2π )2
C

ββ ′
α′α (k,k,Q). (2.15)

In the second line of Eq. (2.13), we have exploited the
condition W � lφ , which allows us to set Qz = 0 everywhere.

C
ββ ′
α′α (k1,k2,Q) are the matrix elements of the cooperon matrix

Ĉ in the band eigenstate basis. Q = (Qx,Qy) is the momentum
of the cooperon, the magnitude of which ranges from 0 to
� (Dτ )−1/2. Ĉ obeys the Bethe-Salpeter equation [Fig. 2(b)]

C
ββ ′
α′α (k1,k2,Q) = 


ββ ′
α′α (k1,k2,Q) +

∫
k3



ββ ′′
α′α′′ (k1,k3,Q)

×GA
β ′′ (k3)GR

α′′ (−k3 + Q)Cβ ′′β ′
α′′α (k3,k2,Q),

(2.16)

(c)

β
β’’

α’
α’’

C
β’

α’
C

β

α

α α

ββ
C

’

’δσ1 =

δσ2 = C C

(a)

(b)

= +
β β’

αα’

β’

α

+

FIG. 2. (a) Feynman diagram for δσ1, defined in the text.
Filled squares denote velocity operators (including disorder vertex
corrections), C is the cooperon. (b) Diagrammatic representation of
the Bethe-Salpeter equation for the cooperon. Crosses correspond
to impurity scattering centers. Solid lines with arrows are disorder-
averaged Green’s functions. (c) Additional Feynman diagrams that
contribute to conductivity of 3D TIs even when impurity scattering
is isotropic.

where a sum over repeated indices is implied and



ββ ′
α′α (k1,k2,Q) ≡ u0〈βk1|β ′ − k2 + Q〉〈α′ − k1 + Q|αk2〉

is the bare disorder vertex [first term on the right-hand side of
Fig. 2(b)].

Equation (2.16) is a complicated integral equation because
C

ββ ′
α′α is a function of three momenta. This is unlike in simplest

examples, where the cooperon depends only on Q. The
difficulty originates from the momentum dependence of |αk〉,
which can not be overlooked as it crucially determines both
the magnitude and the sign of δσ . One procedure22 to solve
Eq. (2.16) starts by writing the cooperon in the two-particle
spin/orbit basis {|m,m′〉}, where m ∈ {T ↑,T ↓,B↑,B↓}:

C
ββ ′
α′α (k1,k2,Q) =

∑
m,m′,n,n′

〈α′,−k1 + Q|m′〉〈βk1|m〉

× 〈n|β ′,−k2 + Q〉〈n′|αk2〉Cmn
m′n′(Q).

(2.17)

We then make the ansatz that Cmn
m′n′ depends on Q but not on

k1 and k2; the entire k1 and k2 dependence of C
ββ ′
α′α (k1,k2,Q)

originates from the overlap matrix elements of Eq. (2.17). The
internal consistency of this ansatz can be demonstrated by
substituting Eq. (2.17) in (2.16), which produces an algebraic
equation for Cmn

m′n′ that is more tractable than the original
integral equation:

Cmn
m′n′ (Q) = u0δmnδm′n′ +

∑
l,l′

Uml
m′l′(Q)Cln

l′n′ (Q), (2.18)

where

Uml
m′l′(Q) = u0

∫
d3k

(2π )3
GA

ml(k)GR
m′l′ (−k + Q) (2.19)
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and

G
R(A)
ml (k) =

∑
α

〈m|αk〉GR(A)
α (k)〈αk|l〉. (2.20)

In matrix language, Eq. (2.18) can be rewritten as

Ĉ = (116 − Û )−1Ĉ(0), (2.21)

where Ĉ(0) = u0116. Once we obtain Cmn
m′n′ , we use Eq. (2.17)

in order to recover C
ββ ′
α′α . During this operation, we neglect Q

in the overlap matrix elements, which is a good approximation
because δσ is dominated by elements of Cmn

m′n′(Q) that are
strongly peaked at Q � 0.

For εF in the conduction band, we once again limit
ourselves to α,β,α′,β ′ ∈ {1,2} in Eq. (2.15). Then, we can
approximate k � kF inside the cooperon, and an integration
over |k| yields

δσ1 � −6
e2

h̄2 νDττ0
1

W

∫
d2Q

(2π )2
C(Q), (2.22)

where

C(Q) ≡
∫

d�k

4π
k̂2

x

∑
α,α′=1,2

Cαα′
α′α (kF ,kF ,Q) (2.23)

and d�k is the differential solid angle subtended by k̂.
Note that δσ1 depends on the lifetime τ0 of Bloch states as

well as on the transport relaxation time τ . As mentioned above,
the difference between τ and τ0 comes from the momentum
dependence of |αk〉 states. At any rate, the full correction
δσ depends only on τ due to the additional contribution
from δσ2 [see Fig. 2(c) and Eq. (B1)]. Equation (B1) can be
evaluated using the same procedure as for δσ1. For instance,
in Appendix B we derive

δσ2 �
{

0 if (εF − M)/M � 1,

−(1/3)δσ1 if (εF − M)/M � 1.
(2.24)

The full form of the quantum correction, δσ1 + δσ2, depends
only on the transport mean-free path τ and has (in appropriate
limits) a universal magnitude [see Eqs. (2.33) and (2.35)].

C. Calculations

The road map to δσ starts from a calculation of Û in
Eq. (2.19). In Appendix C, we derive

Uml
m′l′ = a δmlδm′l′ +

∑
μ

bμ �
μ

m′l′δml

+
∑

μ

cμ �
μ

mlδm′l′ +
∑
μ,ν

dμν �
μ

ml�
ν
m′l′ , (2.25)

where μ,ν ∈ {1,2,3,4}, �i = σ iτ x for i ∈ {1,2,3} and �4 =
12 τ z. In addition, a, bμ, cν , and dμν are Q-dependent
coefficients, the explicit expressions of which are shown in
Appendix C. With those, Û is fully determined.

The next task is to get Cmn
m′n′(Q) from Eq. (2.21). While

[116 − Û (Q)] can be inverted numerically, it is not possible
to do so analytically for Q 
= 0. Since we are interested in
analytical expressions, we follow an approximate three-step
route.

First, we diagonalize (116 − Û ) for Q = 0, analytically.
All eigenvalues can be written in the form �gτ0, where �g

is the “intrinsic” cooperon gap or mass. We find that one
of the eigenvalues has �g = 0 for any εF and M , which is
a reflection of combined time-reversal symmetry and charge
conservation. As we elaborate in the next section, there may be
additional eigenvalues with �g � 0 when (εF − M)/M � 1
and (εF − M)/M � 1. Hereafter, we refer to eigenvectors of
�g � 0 eigenvalues as gapless (or massless, or “soft”) modes.
Because �g � 0 eigenvalues make Ĉ large, δσ is determined
mainly by soft modes.

Second, we extrapolate the Q = 0 case to Q 
= 0 pertur-
batively, with the objective of finding how the eigenvalues
of the gapless modes depend on Q. To that end, δÛ (Q) ≡
Û (0) − Û (Q) is written in the basis that diagonalizes Û (0).
The shift of Q = 0 eigenvalues under δÛ (Q) is then evaluated
through standard second-order perturbation theory. The need
to go to second order in δÛ originates from the fact that several
matrix elements of Umn

m′n′ (Q) are linear in Q (see Appendix C).
When (εF − M)/M � 1 and (εF − M)/M � 1, perturbation
theory leads to eigenvalues (DQ2 + �g)τ0. The fact that D

contains the transport time τ rather than the scattering time τ0

is generally crucial in order to arrive at the correct result for
δσ .

Third, we invert the diagonalized matrix, and transform its
outcome to the |m,m′〉 basis by using the Q = 0 eigenvector
matrix [the change of unperturbed eigenvectors under δÛ (Q)
is deemed unimportant]. This yields Cmn

m′n′(Q).
Once we have Cmn

m′n′(Q), we use Eq. (2.17) in order to extract
C

αβ

βα(k,k′,Q). This is then plugged in Eqs. (2.22) and (B1).

D. Results

The diagonalization of Eq. (2.21) at Q = 0 shows one
genuinely gapless cooperon mode [�g = 0 (cf. Sec. II A)],
with a spin-singlet and orbital-triplet eigenvector:⎡
⎣ εF + M

2
√

ε2
F + M2

|T T 〉 + εF − M

2
√

ε2
F + M2

|BB〉
⎤
⎦ (|↑↓〉 − |↓↑〉).

(2.26)

The fact that Eq. (2.26) remains gapless for any εF /M is a
physical manifestation of charge conservation. This situation
differs qualitatively from 2D TIs in HgTe quantum wells,17

where a nonzero mass term gaps all cooperons. The reason for
the difference is that in 2D TIs, the mass term acts somewhat
like a Zeeman field in a 2D electron gas with Rashba spin-orbit
interaction.

Importantly, the diagonalization of Eq. (2.21) reveals
two qualitatively distinct regimes of quantum interference,
(εF − M)/M � 1 and (εF − M)/M � 1, which potentially
host additional gapless cooperon modes. As we discuss in the
following, these additional gapless modes can change and even
reverse the contribution to δσ coming from Eq. (2.26).

When (εF − M)/M � 1, we identify a slightly gapped
(soft) cooperon mode with

�g = 2
(
M2/ε2

F

)
τ−1

0 ≡ τ−1
s � τ−1

0 , (2.27)

the eigenvector of which is a spin singlet and an orbital triplet:

1
2 (|T B〉 + |BT 〉) (|↑↓〉 − |↓↑〉) . (2.28)

035422-5



ION GARATE AND LEONID GLAZMAN PHYSICAL REVIEW B 86, 035422 (2012)

Physically, τ−1
s is the rate of “intervalley” transitions (|T 〉 +

|B〉 → |T 〉 − |B〉) induced by the “mass term” (Mτz) in
Eq. (2.1). Because both Eqs. (2.26) and (2.28) are spin singlets,
their contributions to δσ are of WAL type (this is proven in the
following).

Incidentally, M = 0 is the physically relevant regime for
time-reversal symmetric Weyl semimetals, which have two
degenerate Dirac points with linear energy dispersion along
the three momenta axes. Unlike in graphene,20 where there
are four gapless cooperon modes (in absence of atomically
sharp defects and hexagonal warping), in a Weyl semimetal we
obtain only two gapless cooperon modes. This difference stems
from the fact that the SU(2) “valley symmetry” of graphene20

gets reduced to a U(1) symmetry in Weyl semimetals, due
to the band dispersion along z. Acting somewhat like a
Zeeman field would in a free electron gas, the kz dispersion
generates a mass for orbital-singlet modes, which is why the
nearly gapless cooperons in Eqs. (2.26) and (2.28) are orbital
triplets.

When (εF − M)/M � 1, there are three soft modes with
gap

�g = (2/9)(1 − M/εF )2τ−1
0 ≡ τ−1

v � τ−1
0 . (2.29)

Physically, τ−1
v is the rate of spin-flip transitions induced by

the “spin-orbit term” (vk · σ τ x) in Eq. (2.1). The eigenvectors
for the three slightly gapped modes are

(λ1|T T 〉 + λ2|BB〉)|↓↓〉,
(λ1|T T 〉 + λ2|BB〉)|↑↑〉, (2.30)

(λ3|T T 〉 + λ4|BB〉) (|↑↓〉 + ↓↑〉) ,

where λ1, . . . ,λ4 are coefficients that depend only on εF /M ,
such that λ1 � λ3 � 1 + O[(εF /M − 1)2] and λ2 � λ4 �
O[(εF /M − 1)]. Therefore, the three soft modes in Eq. (2.30)
are all spin and orbital triplets. As will be demonstrated
momentarily, their contribution to δσ is of WL type.

Next, we determine C [cf. Eq. (2.23)] by diagonalizing
Eq. (2.18) at Q 
= 0 and doing the angular integration in
Eq. (2.23). For (εF − M)/M � 1, we obtain

C � h̄

6πντ 2

[
− 1

DQ2 + τ−1
φ

+ 3

DQ2 + τ−1
φ + τ−1

s

]
.

(2.31)

For (εF − M)/M � 1, we instead get

C � 3h̄

8πντ 2

[
− 1

DQ2 + τ−1
φ

− 1

DQ2 + τ−1
φ + τ−1

v

]
.

(2.32)

In the derivation of Eqs. (2.31) and (2.32), we have included
the phase relaxation time τφ and exploited DQ2τ0 � 1.

The first term in the square brackets of Eqs. (2.31) and (2.32)
is large at Q → 0 irrespective of εF /M , and originates from
the spin-singlet cooperon mode in Eq. (2.26). Its negative sign
means that it makes a contribution towards WAL. Equation
(2.31) displays a competition between WL and WAL, which
is no different from that found in an ordinary metal with spin-
orbit interactions. WL terms originate from the three spin-

triplet modes of Eq. (2.30). WL prevails if τ−1
φ � τ−1

s , whereas

WAL rules if τ−1
φ � τ−1

s .
Equation (2.32) unveils two different regimes of WAL.

On one hand, if τ−1
φ � τ−1

v , the spin-singlet cooperon mode
of Eq. (2.28) makes a contribution to δσ that equals that
of Eq. (2.26). In this limit, quantum interference can be
interpreted as coming from two identical and nearly decoupled
Dirac valleys. On the other hand, if τ−1

φ � τ−1
v , the contri-

bution from Eq. (2.28) becomes relatively unimportant and
the magnitude of WAL is halved. In other words, when the
intervalley transition rate induced by the mass term Mτz is
fast compared to the phase relaxation rate, the two valleys
contribute as one. This is quite different from graphene, where
strong intervalley scattering changes WAL into WL.20 The
underlying reason for such a qualitative difference is that
in graphene a gapless valley-singlet mode is responsible for
producing WL, whereas in a Weyl semimetal the valley-singlet
cooperons are strongly gapped by the kz band dispersion.

Substituting Eqs. (2.31) and (2.32) in Eq. (2.24) and doing
the Q integral, we arrive at

δG � α Gq ln(τφ/τ ),

α =

⎧⎪⎨
⎪⎩

−1 if τφ � τs,

1/2 if τφ � (τv,τs),

1 if τφ � τv,

(2.33)

where δG ≡ Wδσ is the quantum interference correction to
conductance and

Gq ≡ e2/(2π2h̄) (2.34)

is a universal conductance unit. In the derivation of Eq. (2.33),
we have used Eq. (2.24). The reason why α = 1/2 when τφ �
(τv,τs) is that in such regime there is only one gapless cooperon
mode (hence |α| = 1/2), which is a spin singlet (hence α =
|α|).

While Eq. (2.33) is valid in the absence of external magnetic
fields, the magnetoconductance �G(H ) ≡ G(H ) − G(0) �
δG(H ) − δG(0) can be easily obtained from Eq. (2.33) for H

perpendicular to the TI thin film. The replacement of
∫

d2Q

by an appropriate sum over Landau levels15 results in

�G � α Gqf (Hφ/H ),

α =

⎧⎪⎨
⎪⎩

−1 if τH � τs,

1/2 if τH � (τv,τs),

1 if τH � τv,

(2.35)

where f (z) ≡ ln z − ψ(1/2 + z) with asymptotes f (z) ∝ z−2

for z � 1 and f (z) ∝ ln(1/z) for z � 1, ψ is the digamma
function,

τ−1
H ≡ τ−1

φ + 2eDH/h̄ and Hφ ≡ h̄/(4eDτφ). (2.36)

Three conclusions of experimental relevance can be ex-
tracted from Eqs. (2.33) and (2.35), which apply when
highest-occupied electronic states are all located near the 


point. First, bulk TI bands can display α = −1 (WL) as long
as the chemical potential is sufficiently close to the bottom
of the bulk conduction band. Second, bulk TI bands can
produce α = 1 when εF /M is sufficiently large. Third, when
(εF − M)/M is neither large nor small, α = 1/2 ensues; this
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is the conventional result expected for ordinary conducting
thin films with strong spin-orbit coupling, and is the one
that has been often presumed in experiments on TI films.6–11

At τH � τs , there is a crossover between α = −1 and 1/2;
likewise, at τH � τv there is a crossover between α = 1/2
and 1.

The particular expressions for τs and τv in Eqs. (2.27)
and (2.29) rely on our assumption of Vdis ∝ 14. Spin-orbit
coupled impurities and/or atomically sharp disorder potentials
would induce additional spin- and valley-flip processes, the
rates τ−1

sf and τ−1
vf of which would have to be incorporated

via τ−1
s → τ−1

s + τ−1
sf and τ−1

v → τ−1
v + τ−1

vf . If τ−1
vf and τ−1

sf

are strong enough and insensitive to the value of εF /M , then
the only surviving regime of interference corrections is the
conventional α = 1/2.

The conventional α = 1/2 can be found in a wide range
of parameter space at low temperatures, whereas the un-
conventional α = −1 and 1 emerge in the relatively narrow
regimes τ � τH � τs and τ � τH � τv (respectively). How
accessible are these unconventional regimes? Suppose M �
150 meV, v � 5 × 105 m/s, and a bulk carrier density of n �
3 × 1018 cm−3. This situation corresponds to having a small
bulk Fermi surface. Then, it follows that α � −1 for a fairly
wide range of magnetic fields (lH /(12l) � 1, where lH ≡
(DτH )1/2). The limit α → 1 is not accessible in this regime.
Instead, α � 1 should be accessible in (i) Weyl semimetals
or in TIs with very narrow band gaps, (ii) in TIs with large
band gap but M(kF ) � 0. For the latter case, it must be kept
in mind that in the absence of spherical symmetry, M(kF ) is
not constant on the Fermi surface. Suppose M � 5 meV and
a bulk carrier density of � 2 × 1018 cm−3. Then, α � 1 in
the range of fields corresponding to lH /(10l) � 1. For typical
thin films, the requirements for α = ±1 are compatible with
kF l � 1. Materials such as BiTl(S1−δSeδ)2, where controlled
changes of δ can tune M from 0 to large values,23 appear to
be good candidates to observe crossovers between different
regimes of magnetoresistance in Eq. (2.35).

Our analysis has thus far neglected surface states of the TI,
which can also contribute to the measured magnetoresistance.
It can be argued that surface states are unimportant and
Eq. (2.35) suffices in trivial insulators described by Eq. (2.1),
as well as in time-reversal-invariant Weyl semimetals and in
TIs with very small bulk band gaps (� h̄/τ0). In contrast, when
the surface states of the TI are robust, Eq. (2.35) is incomplete
and must be generalized. Such generalization is the subject for
the rest of this paper.

III. QUANTUM CORRECTIONS TO CONDUCTIVITY
FROM COUPLED BULK AND SURFACE STATES

In this section, we consider the combined bulk-surface
contribution to δσ in 3D TIs with relatively large band gaps.
We concentrate on a particular setup that consists of a TI
thin film gated on one surface. The gate voltage can produce a
depletion layer that spatially separates bulk and surface carriers
(Fig. 9), and carriers tunnel back and forth across the depletion
layer. We assume the bulk-surface tunneling rate to be much
smaller than the elastic scattering time on either side of the
depletion layer, so that electrons scatter many times within
the bulk (surface) before tunneling to the surface (bulk). This

j

j

Cj
i

i
i

FIG. 3. Diagrammatic representation for δσij , where i and j are
layer indices. For 2D layers without spin-orbit coupling, the cooperon
matrix elements are fully characterized by layer indices. The velocity
operator is diagonal in the layer index; therefore, the cooperons C11

22

and C22
11 do not enter in the expression for δσij .

assumption is experimentally realistic, and it simplifies the
microscopic theory of this section considerably.

A. Single isolated TI surface

As a preliminary step, we recall the expression for δσ on
a single TI surface that is decoupled from the bulk. Taking
εFsτ � 1, where εFs is the Fermi energy measured from the
Dirac point of the surface states, one arrives16,17 at

�G/Gq = (1/2)f (Hφ/H ) (3.1)

for any τH . The prefactor 1/2 is consistent with having a
gapless spin-singlet cooperon (the spin-triplet cooperons have
large gaps due to the strong spin-momentum coupling on the
surface).

B. Two coupled 2D layers without spin-orbit coupling

As another preliminary step, here we compute δσ for two
ordinary metallic 2D layers separated by a tunnel barrier.
In a double-layer system, the current flowing in layer i can
be written as ji =∑j σij Ej , where Ej is the electric field
in layer j . For concreteness, we take E1 = E2 ≡ E, so that
the measured current is j = j1 + j2 = σE with σ =∑ij σij .
Consequently, the quantum corrections to conductivity are
δσ =∑ij δσij . The goal of this section is to compute δσ from
microscopic theory.

The interference correction δσij has the diagrammatic
representation shown in Fig. 3. Because the velocity operator
is diagonal in the layer index, the only cooperons that enter
in the conductivity are C

ij

ji , with i,j ∈ {1,2}. In particular,
δσii involves intralayer cooperons Cii

ii , whereas δσ12 and δσ21

involve interlayer cooperons C12
21 and C21

12 (Fig. 4). Assuming
that disorder potentials in the two layers are uncorrelated,

12 1 12

1 1 2 2 2

FIG. 4. Typical microscopic process that gives rise to δσ12. It can
be neglected when the intralayer disorder potentials in the two layers
are uncorrelated.
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−1
( (−1

(a)

(b)

= −(

(
−1

(

(−1

= −(

(

FIG. 5. Single-particle Green’s functions. (a) Dressing of Bloch
states due to intralayer impurity scattering. (b) Dressing of disorder-
averaged Green’s functions due to interlayer tunneling. The tunneling
amplitude is regarded as a random variable.

C
ij

ji = 0 for i 
= j . This is a reasonable assumption when
electrons in the two layers scatter off different sets of
impurities. Hence, we are left with δσ =∑i δσii . From here
on, we simplify the notation via Cii

ii ≡ Ci .
When evaluating δσii we will neglect spin-orbit interac-

tions; however, the main lessons learned in this section will
be transferrable to the spin-orbit coupled case studied in the
next section. In absence of interlayer coupling, a standard
calculation yields

δσ
(0)
ii � −4

e2

h̄2 νiDiτ
2
di

∫
Q

C
(0)
i (Q), (3.2)

where
∫

Q ≡ ∫ d2Q/(2π )2, an extra factor of 2 is due to spin
degeneracy, τdi is the scattering time in layer i due to elastic
impurities (we assume purely s-wave scattering, so that there
is no difference between the transport scattering time and the
quantum lifetime), νi is the density of states per unit area in
layer i, and

C
(0)
i (Q) = h̄

2πνiτ
2
di

1

DiQ2 + τ−1
φi

(3.3)

is the cooperon for an isolated layer. In presence of interlayer
tunneling, C

(0)
i in Eq. (3.2) is replaced by Ci :

δσii � −4
e2

h̄2 νiDiτ
2
di

∫
Q

Ci(Q), (3.4)

in whose prefactor we have neglected terms containing the
ratio between the tunneling rate and the elastic scattering rate.

In order to compute Ci , we recognize that the influence of
interlayer coupling occurs at two different levels. On one hand,
it modifies the single-particle Green’s function for each layer
(Fig. 5). Because the thickness of the depletion layer typically
shows microscopic variations within the same film as well as
from sample to sample, the interlayer tunneling amplitude can
be regarded as a random variable. Consequently, the change in
the ensemble-averaged Green’s function due to tunneling can
be captured via τ−1

di → τ−1
di + τ−1

t i , where

τ−1
t i = (2π/h̄)〈|t |2〉S νj (3.5)

is the tunneling rate from layer i onto layer j 
= i, 〈|t |2〉 is
the averaged square of the tunneling matrix element, and S is

(a)

(0)~Ci
(0)~Ci= +

i

i

i i

ii

=(0)Ci
(0)Ci

i

i

ii

i i

1 C (0)~C1 C2
~(0) (0)~C1= +

1

1

1

1

2

2 2

2

C1 

(c)

(b)

FIG. 6. (a) Cooperon C
(0)
i without interlayer tunneling. (b) Par-

tially dressed cooperon C̃
(0)
i , where tunneling is included solely in the

single-particle Green’s functions. C̃
(0)
i can be directly obtained from

C
(0)
i via τφi → τ̃φi . (c) Fully dressed cooperon Ci , where tunneling is

incorporated both in the single-particle Green’s function and in the
particle-particle correlations.

the layer area. Note that 〈|t |2〉 scales like S−1, so that τ−1
t i is

independent of the layer area.
On the other hand, interlayer tunneling modifies particle-

particle correlations that build up cooperons. An approximate
diagrammatic expression for these correlations is shown in
Fig. 6. The equation of Fig. 6(c) can be solved in momentum
space and it yields

Ci = h̄

2πνiτ
2
di

DjQ
2 + τ̃−1

φj(
D1Q2 + τ̃−1

φ1

)(
D2Q2 + τ̃−1

φ2

)− τ−1
t1 τ−1

t2

(3.6)

for j 
= i. In the derivation of Eq. (3.6), we have introduced

τ̃−1
φi ≡ τ−1

φi + τ−1
t i (3.7)

as an effective phase relaxation rate that incorporates tunnel-
ing, and have used

∫
k
GR

i (k)GA
i (−k + Q) � 2πνiτdi

h̄

(
1 − τdi

τ̃φi

− DiQ
2τdi

)
.

Microscopic processes depicted in Fig. 6 leave out those
in which two consecutive tunneling events occur without
any intralayer scattering in-between. Likewise, they ignore
electron trajectories in which a tunneling event precedes any
intralayer scattering (Fig. 7). These processes are relatively
unimportant if τti � τdi . Not surprisingly, Eq. (3.6) arises in
the coupled equations for the classical diffusive conductivity
as well (see Appendix D).

FIG. 7. Typical processes not included in Fig. 6, as they are
subdominant for τti � τdi .
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It is convenient to rewrite Ci in Eq. (3.6) as

Ci = h̄

2πνiDiτ
2
di

[
Ai

Q2 + q2
a

+ Bi

Q2 + q2
b

]
, (3.8)

where

2q2
a(b) = 1

l̃2
φ1

+ 1

l̃2
φ2

±

√√√√( 1

l̃2
φ1

− 1

l̃2
φ2

)2

+ 4

l2
t1l

2
t2

(3.9)

and

Ai = 1 − Bi = (l̃−2
φj − q2

a

)
/
(
q2

b − q2
a

)
for j 
= i. (3.10)

In Eq. (3.9), we have defined l̃φi ≡ (Diτ̃φi)1/2 as an effective
coherence length and lti ≡ (Diτti)1/2 as the interlayer leakage
length. Besides, q2

a (q2
b ) gets the positive (negative) sign in

front of the square root. Combining Eq. (3.4) with Eq. (3.8)
and using A1 + A2 = B1 + B2 = 1, we get

δσ =
∑

i

δσii = −2
e2

πh̄

∫
Q

[
1

Q2 + q2
a

+ 1

Q2 + q2
b

]
. (3.11)

Therefore, the low-field magnetoconductance reads as

�σ =
∑

i

�σii = −Gq

[
f

(
Ha

H

)
+ f

(
Hb

H

)]
, (3.12)

where

Ha(b) ≡ h̄ q2
a(b)/(4e). (3.13)

In the limit of very strong tunneling (τti/τφi → 0), Eq. (3.12)
becomes �σ � −Gqf (Hb/H ), as though there was a single
layer. In the limit of very weak tunneling (τti/τφi → ∞),
�σ is the sum of contributions from two independent
films.

It is helpful to understand the weak- and strong-coupling
regimes in terms of measurable quantities such as the interlayer
conductance per square

gt = (2πe2/h̄)〈|t |2〉Sν1ν2 = σDi/ l2
t i , (3.14)

where σDi is the Drude conductivity in layer i. For simplicity,
suppose that τφ1 � τφ2 ≡ τφ . In this case, the crossover from
weak to strong tunneling occurs when

1

gt l
2
φ

� 1

σD1
+ 1

σD2
(crossover condition), (3.15)

namely, when the tunneling resistance for a square of area
l2
φ becomes smaller than the sum of the classical intralayer

resistivities. Let us define

g−1
c ≡ (σ−1

D1 + σ−1
D2

)
l2
φ. (3.16)

If gt � gc, then �σ/Gq � −2 ln(H/Hφ) for H � Hφ .
If gt � gc, then �σ/Gq � − ln(H/Hφ) for Hφ � H �
Hφ(gt/gc). Thus, changing the interlayer conductance re-
sults in a factor-of-2 change for the magnitude of the WL
correction.

Limits reminiscent of the above were first discussed in
inversion layers of multivalley semiconductors such as Si,24

where the role of the layers is played by different electron
pockets in the Brillouin zone. Similarities notwithstanding,
there are clear differences between our microscopic theory

2

1  

1

2

FIG. 8. Example of an interlayer scattering process that is allowed
in multilayer systems. Its analog in multivalley semiconductors of
Ref. 24 is forbidden.

and that of multivalley semiconductors. On one hand, the
separation in momentum between valleys of Si prevents
scattering processes such as the one in Fig. 8. These processes
are not only allowed in our case, but also lead to the cooperon
dressing shown in Fig. 6(c). On the other hand, in our case,
the interlayer cooperon vanishes due to uncorrelated disorder
potentials in the two spatially separated layers. That is not
the case in multivalley semiconductors, where both valleys
scatter off the same set of real-space impurities and intervalley
cooperons contribute crucially to δσ .

Finally, it should be mentioned that Eqs. (3.9), (3.10),
and (3.12) coincide with those derived by Bergmann,25

who invoked macroscopic arguments based on the diffusion
equation. The microscopic theory of this section supports
Bergmann’s results, insofar as τti � τdi and the disorder
potentials in the two layers are uncorrelated. Incidentally,
yet another way to arrive at the same results is unveiled in
Appendix E; this later method will prove convenient in the
upcoming section.

C. 3D TI film with bulk-surface coupling

We now consider a 3D TI film (Fig. 9) with a gate electrode
placed near its top surface. At the moment, we neglect the

(bottom )

d

φs
φb

εF −εFs

0

depletion layer

bulk conduction band

bulk valence band

surface states
(top)

zW

chemical potentialDirac point

Μ

surface state s

z

FIG. 9. (Color online) Schematic energy band profile for a gated
3D TI thin film. z = 0 corresponds to the top surface of the device,
immediately under the gate. z = W corresponds to the bottom
(ungated) surface. The vertical (blue) solid lines at z = 0,W are
surface states. The curved solid (red) line is the bulk conduction
band, and the dotted-dashed (brown) curve is the bulk valence band.
The chemical potential is depicted by a horizontal dashed line. zd is
the thickness of the depletion layer, where neither bulk nor surface
carriers are present. εFs is the Fermi energy of the surface states
measured from the Dirac point (εFs < 0 in this figure). εF is the
Fermi energy of the bulk states, measured with respect to the midgap
point.
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bottom surface of the TI, which will be incorporated below.
For ease of notation, we use subscript “1” to refer to “bulk”
and subscript “2” to refer to “top surface.” As in the preceding
section, we assume bulk-surface disorder correlations to be
negligible, so that the quantum corrections to conductance
can be written as δG = δG11 + δG22 = Wδσ11 + δσ22. δG is
approximately independent of the film thickness W as long as
W � l̃φ1, where l̃φ1 was defined below Eq. (3.10).

The goal of this section is to calculate δG from microscopic
theory. Unlike in the previous section, here both “layers” are
spin-orbit coupled. We assume that tunneling events, albeit
being time-reversal invariant, conserve neither spin nor orbital
degrees of freedom. Indeed, in a TI, spin is not conserved for
non-momentum-conserving tunneling. Similarly, the orbital
degree of freedom is not conserved due to broken inversion
symmetry near the surface.

Let us begin with no tunneling. On one hand, there are four
surface cooperon modes: one gapless spin-singlet mode and
three spin-triplet modes with large (∼ τ−1

d2 ) gaps. On the other
hand, there are 16 bulk cooperons, of which a spin-singlet
mode [Eq. (2.26)] is always gapless. In addition, four of the
bulk modes [the spin singlet of Eq. (2.28) and three spin triplets
of Eq. (2.30)] can be “soft” depending on εF /M . The rest of
the bulk cooperon modes have large gaps of order τ−1

d1 .
Let us now turn on tunneling. Since τti � τdi , we can

limit ourselves to analyzing the effects of tunneling within
the low-energy subspace formed by the soft cooperons. If
there are no magnetic impurities in the depletion layer, the
total spin of the cooperon is a good quantum number even
in presence of tunneling. Accordingly, tunneling does not
mix spin-singlet modes with spin-triplet modes, and the full
(dressed) cooperons can also be classified into spin singlets
and a spin triplet.

In the regimes τφ1 � τs and τφ1 � (τs,τv), tunneling
dresses one soft spin-singlet cooperon in the bulk with another
soft spin-singlet cooperon on the surface. This dressing is
completed as explained in Sec. III B: first by renormalizing the
phase relaxation time τφi → τ̃φi , and afterwards proceeding
with the series expansion of Fig. 6(c). All “blocks” appearing
in this series expansion are spin singlets. When τφ1 � τs , the
soft spin-triplet cooperons from the bulk are dressed simply
through τφ1 → τ̃φ1: they do not get appreciably admixed with
the spin-triplet cooperon on the surface because the latter has
a large gap.

In the regime τφ1 � τv , there are two gapless singlet
cooperons in the bulk, each of which can hybridize with the
singlet gapless cooperon on the surface. For this situation,
Fig. 6(c) does not capture all possible processes and the
calculation from the previous section must be generalized;
this generalization is carried out in Appendix E.

With the above considerations in mind, we combine
Eqs. (2.35) and (3.1) in order to obtain the total contribution
to low-field magnetoconductance:

�G

Gq

� 1

2

⎧⎪⎪⎨
⎪⎪⎩

f
(

Ha

H

)+ f
(

Hb

H

)− 3f
( H̃φ1

H

)
if τ̃H � τs,

f
(

Ha

H

)+ f
(

Hb

H

)
if τ̃H � (τs,τv),

f
(

Hc

H

)+ f
(

Hd

H

)+ f
( H̃φ1

H

)
if τ̃H � τv,

(3.17)

where Hl = h̄ q2
l /(4e) for l ∈ {a,b,c,d},

H̃φ1 ≡ h̄/(4eD1τ̃φ1), and τ̃−1
H ≡ τ̃−1

φ1 + 2eD1H/h̄. (3.18)

Note that the effective phase relaxation rate increases linearly
with the bulk-to-surface tunneling rate [cf. Eq. (3.7)]. The
characteristic momenta qa(b) have been introduced earlier in
Eq. (3.9). The additional momenta qc(d) are identical to qa(b),
except for τ−1

t2 → 2 τ−1
t2 . The reason for this difference is

that the surface cooperon can decay into two gapless bulk
cooperons when τφ1 � τv .

The first line of Eq. (3.17) displays a competition between
WL and WAL, and suggests that it is possible to induce a WAL-
to-WL transition with a varying gate voltage. In the weak-
tunneling regime WL prevails, whereas in the strong-tunneling
regime WAL takes over. Similarly, a gate voltage can induce
transitions between three different WAL coefficients: α ∈
(1/2,1) in the second line, and α ∈ (1/2,3/2) in the third line.
The second line of Eq. (3.17) describes quantum corrections as
if they originated from two independent thin films with mixed
bulk-surface character; indeed, universal results expected for
the simplectic symmetry class are recovered when the effective
phase relaxation times become the longest time scales of
the problem. Some simple limiting cases of Eq. (3.17) are
discussed in Appendix F.

Thus far, we have considered the coupling between the bulk
and one (the top) surface of the TI film. As a consequence,
Eq. (3.17) applies to a TI film only if the phase relaxation
time of the bottom surface (adjacent to the substrate) is short
compared to other phase relaxation and tunneling times in
the problem. This condition is likely not met in some recent
experiments,7,10 which report on independent contributions
from both surfaces. Partly motivated by these experiments, we
now generalize Eq. (3.17) so as to capture two surfaces, each
coupled to bulk states.

We consider the scenario depicted in Fig. 9, where the bot-
tom surface contains bulk carriers. Since there is no depletion
layer near z = W , we assume that the bulk-surface tunneling
rate therein is strong compared to the phase relaxation rate, yet
weak compared to disorder scattering rate. Hence, we describe
the hybrid of bottom surface and bulk states via Eq. (F1),
and thereafter couple this hybrid to the top surface along the
lines of Eq. (3.17). The resulting expression for �G can be
approximated as

�G

Gq

� 1

2
f

(
H ′

a

H

)
+ 1

2
f

(
H ′

b

H

)
, (3.19)

where H ′
a(b) ≡ h̄(q ′

a(b))
2/(4e). The characteristic momenta q ′

a

and q ′
b obey Eq. (3.9), where “1” labels the top surface and

“2” labels a hybrid between the bottom surface and the bulk.
Notably, Eq. (3.19) implies that WL is no longer possible

once the bottom surface is strongly coupled to bulk states.
Instead, conventional WAL ensues with α ∈ (1/2,1). This
observation not only sheds light on why current experiments
see no indication for WL, but it also gives insight as to how
WL could be observed in TI films.

A possible strategy is to degrade the surfaces, e.g., by
depositing magnetic impurities on them, and decoupling them
from the bulk by double-sided gating. One may expect WL
even if only the top surface is decoupled, while the (degraded)
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bottom surface is in contact with the bulk. In this case,
Eq. (3.17) reduces to Eq. (2.35) derived for the sole bulk
conduction, with the replacement τ−1

φ1 → τ−1
φ1 + τ−1

t3 , where
τt3 is the tunneling rate of electrons from bulk to the bottom
surface. If the film is thick enough, then τ−1

t3 may become
sufficiently small to provide some dynamic range for observing
WL behavior. This same strategy can also facilitate the
observation of WAL with α > 1.

D. Estimates for the bulk-surface coupling

This section is devoted to an approximate electrostatic and
quantum mechanical analysis of the depletion layer in a TI film,
which will result in quantitative estimates for the bulk-surface
coupling.

For a TI with an n-doped bulk, a negative charge per unit
area (−Qg) placed at the gate repels electrons from bulk bands
at z = 0 as well as from the surface states at z = 0. This leaves
a positive net charge on the top surface, which is equivalent
to a downward shift in the local chemical potential at z = 0:
�μs = εF − εFs . Recall that εFs is the Fermi energy of the
surface states measured from the Dirac point (for simplicity,
the Dirac point is assumed to be in the middle of the band
gap at z = 0) and εF is the Fermi energy of the bulk states
measured from the middle of the band gap. Since the chemical
potential deep inside the bulk must be unaffected by the gate,
�μs 
= 0 implies a band bending of magnitude φs = �μs near
the gated surface (Fig. 9).

When �μs > (εF − M), there are no bulk carriers left at
z = 0 and a depletion layer appears at z ∈ (0,zd ), where zd is
determined below. For each value of Qg , �μs (or equivalently
εFs) can be uniquely determined from the overall neutrality
condition Qs + Qd = Qg , where Qs is the positive net charge
induced on the surface, and Qd is the positive net charge in
the depletion layer.

In the depletion approximation,26 one has Qd � nzd , where
n [cf. Eq. (2.3)] is equal to the density of charged donors in the
depleted region. The electrostatic energy profile in the depleted
region then obeys

φ(z) = φb − 1

2

e2n

κ
(z − zd )2, (3.20)

where φb ≡ φs − (εF − M) = M − εFs , κ is the static dielec-
tric constant, and

zd =
√

2κφb

e2n
. (3.21)

In the derivation of Eq. (3.20), we have assumed that the
electric field vanishes at z = zd , which is accurate within a
screening radius. As the gate voltage is made more negative,
the maximum width of the depletion layer (zmax

d ) is achieved
when φb � 2M . For φb > 2M , the bulk bands get inverted at
z = 0 and zd saturates. We estimate zmax

d � 20 nm for some
typical parameter values (M = 150 meV, n � 4 × 1018 cm−3,
κ = 50).

Once the electrostatic profile of the TI film is characterized,
we can analyze the quantum mechanical tunneling of electrons
across the depletion layer. The tunneling conductance per unit
area is roughly

gt ∼ (e2/h)λ−2
F exp(−2χ ), (3.22)

where λF is the smallest between bulk and surface Fermi
wavelengths, and

χ �
∫ zd

0
dz

φb − φ(z)

h̄v
� 1

6

e2nz3
d

κ h̄v
. (3.23)

In Eq. (3.23), we have ignored effective mass and Fermi
velocity mismatches across the depletion layer. The WKB
exponent χ can be tuned by a gate voltage: as zd varies from
0 to zmax

d , χ goes from 0 to � 6.
Drawing from the previous section [cf. Eq. (3.15)], the

crossover from weak to strong bulk-surface coupling occurs
when

1

gt l
2
φ

� 1

σD1W
+ 1

σD2
� 1

σD2
, (3.24)

where in the second equality we have assumed that σD1W �
σD2. This is a good assumption provided that (i) the bulk
mean-free path is of the same order as the surface mean-free
path, and (ii) kF W � 1. Plugging Eq. (3.22) in Eq. (3.24), the
latter becomes

lφ

λF

� (kFsl2)1/2 exp(χ ), (3.25)

where kFs = |εFs |/h̄v is the Fermi wave vector for the surface
states and we have used σD2 ∼ (e2/h)kFsl2.

When zd = zmax
d , the right-hand side of Eq. (3.25) reaches

� 1000, which exceeds the typical lφ/λF in TI thin films by
at least an order of magnitude. Therefore, when the depletion
layer has its maximum width, the top surface and the bulk of the
TI film can be regarded as weakly coupled. This state of affairs
changes rapidly when the depletion layer is made thinner by a
gate voltage. For instance, when zd = zmax

d /
√

2, the right-hand
side of Eq. (3.25) equals � 30, which is comparable to the
typical lφ/λF . Further slight reductions in zd can subsequently
drive the film into a regime of strong bulk-surface coupling.
These estimates justify the interpretation of experimental data
given in, e.g., Ref. 11.

IV. SUMMARY AND CONCLUSIONS

We have completed a theoretical study of low-field magne-
toresistance in electrostatically gated 3D TI films. The concise
analytical expressions presented here [Eqs. (2.35), (3.17), and
(3.19)] may shed light on the quantum magnetoresistance of
TIs, Weyl semimetals, as well as some topologically trivial
materials. Only magnetic fields that are perpendicular to the TI
thin film have been considered in this work; for in-plane fields
and small bulk band gaps, quantum interference contributions
might be masked by classical magnetoresistance anomalies.27

A number of predictions from this work have not been
articulated in previous studies and await experimental con-
firmation. For instance, we find that TI thin films with
low bulk doping may exhibit weak localization (WL) or
negative magnetoresistance instead of the often presumed
weak antilocalization (WAL) or positive magnetoresistance.
Admittedly, the parameter space for WL is relatively narrow,
and vanishes when either surface of the TI film is strongly
coupled to bulk states. However, WL may be experimentally
accessible in thicker films, or in thin films where the surfaces
have short phase relaxation times. Under these conditions, a
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gate can induce a crossover between WL and WAL. On a
separate note, we find that the “universal” prefactor for WAL
varies depending on the band gap of the TI, on the bulk doping
concentration, on the phase relaxation times, and on the applied
gate voltage.

The results from this work are applicable to conducting yet
lightly doped TIs, with thicknesses ranging between the bulk
transport mean-free path and the bulk phase relaxation length.
It may be useful to find out how the results derived here change
in highly doped TIs containing additional electrons pockets
away from the 
 point. Likewise, it may be helpful to extend
our results to thinner films. Other potentially interesting tasks
involve investigating universal conductance fluctuations and
determining the influence of electron-electron interactions in
the magnetoresistance of doped TI films.
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APPENDIX A: RENORMALIZED VELOCITY OPERATOR

The velocity operators appearing in the expressions for
σD and δσ (cf. Sec. II B) must be renormalized with ladder
diagrams containing impurity scattering. The Dyson equation
for the renormalized velocity operator is (Fig. 10)

ṽαβ(k) = vαβ(k) + u0

∑
α,β∈{1,2}

∫
k′
〈αk|α′k′〉〈β ′k′|βk〉GA(k′)

×GR(k′)ṽα′β ′(k′), (A1)

where vαβ(k) = δαβh̄v2k/Ek is a matrix element for the bare
velocity operator. We solve Eq. (A1) by guessing a solution of
the form

ṽαβ(k) = γkkδαβ, (A2)

where γk is a scalar that depends on |k| but not k̂. Although it
is a priori not obvious that the renormalized velocity operator
should be diagonal in the band indices, by substituting Eq. (A2)
in (A1) and using Eq. (2.4), we find that ṽαβ(k) ∝ δαβ is indeed
appropriate provided that

γk = h̄v2

Ek

τ

τ0
. (A3)

~ = +

α

β

α

β

α

β

α’

β’
v v v~

FIG. 10. Impurity vertex corrections for the velocity operator.

Here,

h̄

τ
= 2πνu0

∫
d�k′

4π

∑
α′

|〈αkF |α′k′
F 〉|2(1 − k̂F · k̂′

F ) (A4)

is the transport scattering time. Therefore, the final result for
the renormalized velocity is ṽαβ (k) = vαβ(k)(τ/τ0).

APPENDIX B: EVALUATION OF δσ2 IN SOME
SIMPLE CASES

The expression for δσ2 [depicted in Fig. 2(c)] reads as

δσ2 � −2
e2h̄

2π

∫
k,k′

ṽx(k)ṽx(k′)GA(k)

×GA(k′)GA(−k)GA(−k′)GR(−k′)GR(k)

×
∑

αβα′β ′

αα′

β ′β (k,−k′,0)
1

W

∫
d2Q

(2π )2
C

βα

α′β ′ (k,k′,Q),

(B1)

where the overall factor of 2 stems from the fact that the two
diagrams in Fig. 2(c) give identical contribution, and the band
indices α,β, etc., are summed over 1,2. For generic (εF −
M)/M , the calculation of δσ2 is cumbersome. Here, we focus
on two simple limits that are of interest: (εF − M)/M � 1
and (εF − M)/M � 1.

When (εF − M)/M � 1, the momentum dependence
of |αkF 〉 is negligible. Consequently, C

βα

α′β ′(kF ,k′
F ,Q) and


αα′
β ′β (kF ,−k′

F ,0) become independent of kF and k′
F . Since

the matrix elements of the velocity operator are odd under
k → −k and k′ → −k′, it is clear that

δσ2 � 0. (B2)

The limit of (εF − M)/M � 1 is less trivial. In this regime, the
Hamiltonian is approximately block diagonal both in absence
and in presence of disorder because the disorder potential we
take is spin and orbital independent. Therefore, we may focus
on a 2 × 2 Hamiltonian describing a Weyl node with positive
chirality:

h′(k) = h̄vk · σ + V0(r)12×2, (B3)

where k = k(sin θ cos φ, sin θ sin φ, cos θ ). The result
for δσ obtained from such Hamiltonian needs to be
multiplied by two at the end, as each block makes
an equal contribution. The eigenstates for h′(k) are
|+,k〉 = [cos(θ/2), exp(iφ) sin(θ/2)]T and |−,k〉 =
[sin(θ/2),− exp(iφ) cos(θ/2)]T .

One significant simplification from Eq. (B3) is that there is
only one band at the Fermi energy. This allows us to rewrite
Eq. (B1) as

δσ2 = −4
e2h̄3

2π
u0

τ 2

τ 2
0

[∫
dkk2

(2π )2

kv2

Ek

(GA)2GR

]2
1

W

∫
d2Q

(2π )2

×
∫

d�k

4π

∫
d�k′

4π
sin θ cos φ sin θ ′ cos φ′〈+,kF |+,k′

F 〉
× 〈+,−kF |+,−k′

F 〉C++
++ (kF ,k′

F ,Q), (B4)
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where the aforementioned extra factor of 2 has been accounted
for. It is illustrative to compare Eq. (B4) with its counterpart
in δσ1:

δσ1 = −2
e2h̄3

2π

τ 2

τ 2
0

∫
dkk2

(2π )2

k2v4

E2
k

(GR)2(GA)2

× 1

W

∫
d2Q

(2π )2
sin2 θ cos2 φ C++

++ (kF ,kF ,Q). (B5)

In Sec. II, we detailed the steps to follow for the evaluation
of Eq. (B5). By applying those same steps to Eq. (B4) and
using ∫

dkk2

2π2

k2

E2
k

(GR)2(GA)2 � 4πντ 3
0

h̄5v2
and

(B6)[∫
dkk2

(2π )2

k

Ek

(GA)2GR

]2

u0 � −4πντ 3
0

h̄5v2
,

we arrive at

δσ2 = −1

3
δσ1 = −1

3
Gq ln

(τφ

τ

)
. (B7)

APPENDIX C: EVALUATION OF MATRIX
ELEMENTS FOR Û

In this Appendix, we calculate the coefficients entering
in Eq. (2.25). These coefficients generally depend on the
frequency � and wave vector Q of the external perturba-
tion. Even though only � = 0 is needed for our evalua-
tion of δσ , for completeness here we allow for � 
= 0 as
well.

The calculation is facilitated by rewriting Eq. (2.1) as

h(k) =
∑

μ

ημ(k)�μ, (C1)

where μ ∈ {1,2,3,4}, ηi(k) = h̄vki , and �i = σ iτ x for
i ∈ {1,2,3}, η4(k) = M , and �4 = 12 τ z. Then, the finite-
frequency retarded and advanced Green’s functions read
as

GR(A)
mn (k,�) = εR(A)δ0

mn +∑μ ημ�
μ
mn

[εR(A)]2 − E2
k

, (C2)

where εR ≡ εF + iγ and εA ≡ εF + h̄� − iγ , with γ ≡
h̄/(2τ0) [cf. Eq. (2.5)]. Substituting Eq. (C2) in (2.19), we
get

Uml
m′l′ = a δmlδm′l′ +

∑
μ

bμ �
μ

m′l′δml +
∑

μ

cμ �
μ

mlδm′l′

+
∑
μν

dμν �
μ

ml�
ν
m′l′ , (C3)

where

a = u0

∫
d3k

(2π )3

εR(εA + h̄�)[
(εR)2 − E2

−k

][
(εA + h̄�)2 − E2

k+Q

] ,
bμ = u0

∫
d3k

(2π )3

εRdμ(k + Q)[
(εR)2 − E2

−k

][
(εA + h̄�)2 − E2

k+Q

] ,
cμ = u0

∫
d3k

(2π )3

(εA + h̄�)dμ(−k)[
(εR)2 − E2

−k

][
(εA + h̄�)2 − E2

k+Q

] ,
dμν = u0

∫
d3k

(2π )3

dμ(−k)dν(k + Q)[
(εR)2 − E2

−k

][
(εA + h̄�)2 − E2

k+Q

] ,
(C4)

and μ,ν ∈ {1,2,3,4}. In the diffusive transport regime, namely
(εF − M) � γ � (h̄vQ,h̄�), the integrals in Eq. (C4) can be
analytically performed and the outcome is

a � a(0)

[
1 − 1

12

(
1 − M2

ε2
F

)
h̄2v2Q2

γ 2
− ih̄�

2γ

]
,

b1 = −c1 � i

6
a(0)

(
1 − M2

ε2
F

)
h̄vQx

γ
, b2 = −c2 � i

6
a(0)

(
1 − M2

ε2
F

)
h̄vQy

γ
, b4 = c4 = M

εF

a,

d11 � −1

3

(
1 − M2

ε2
F

)
a(0)

[
1 − 1

20

(
1 − M2

ε2
F

)
(3Q2

x + Q2
y)h̄2v2

γ 2
− ih̄�

2γ

]
,

d22 � −1

3

(
1 − M2

ε2
F

)
a(0)

[
1 − 1

20

(
1 − M2

ε2
F

)
(3Q2

y + Q2
x)h̄2v2

γ 2
− ih̄�

2γ

]
,

d33 � −1

3

(
1 − M2

ε2
F

)
a(0)

[
1 − 1

20

(
1 − M2

ε2
F

)
h̄2v2Q2

γ 2
− ih̄�

2γ

]
,

d44 � M2

ε2
F

a, d12 = d21 � a(0) 1

30

(
1 − M2

ε2
F

)2
h̄2v2QxQy

γ 2
,

d14 = −d41 � −ia(0) M

εF

(
1 − M2

ε2
F

)
h̄vQx

γ
, d24 = −d42 � −ia(0) M

εF

(
1 − M2

ε2
F

)
h̄vQy

γ
, (C5)
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where a(0) ≡ [2(1 + M2/ε2
F )]−1, and the elements omitted

above are zero. It is worth noting that Eq. (C5) can be used to
investigate the dynamical spin-charge coupling in doped TIs.
Since this task is not directly related to the theme of this paper,
it will be pursued elsewhere.

APPENDIX D: CLASSICAL CONDUCTIVITY OF TWO
COUPLED LAYERS

In this Appendix, we analyze the classical conductivity of
two coupled layers. The current in layer i is given by ji =∑

j σij Ej . It is illustrative to write σij in terms of the diffusive
density-density response, using the continuity equation

∂ρi

∂t
+ ∇ · j + λ

∑
j

(ρj − ρi) = 0 (D1)

along with the constitutive equation ji = −Di∇ρi −
e2νiDiEi . λ is the interlayer tunneling rate. Thus, it follows
that

σij (q,ω) = − iω

q2
χij + λ

q2

∑
k

(χij − χkj ), (D2)

where χij (q,ω) = e2νjDjq
2pij (q,ω) is the density-density

response function and

pij (q,ω) =
{

p̃
(0)
i

/(
1 − λ2p

(0)
1 p

(0)
2

)
if i = j,

λp̃
(0)
1 p̃

(0)
2

/(
1 − λ2p

(0)
1 p

(0)
2

)
if i 
= j

(D3)

with p̃
(0)
i ≡ (Diq

2 − iω + λ)−1. The dressed diffusion proba-
bility pii , derived here from the continuity equation, has the
identical form as Eq. (3.6), which was derived microscopically
in Sec. III B. Here, ω and q are the frequency and momentum
associated with the applied electric field. A straightforward
calculation shows that σ12 = σ21 = 0 when Ei is spatially
uniform (q = 0).

APPENDIX E: EQUATIONS FOR COUPLED COOPERONS

In the first part of this Appendix, we present an alternative
derivation for the results of Sec. III B. In the second part of the
Appendix, we generalize the derivation to make it suitable for
TI thin films with τφ1 � τv , which contain two gapless singlet
cooperons in the bulk and one gapless singlet cooperon on the
surface. The outcome of such generalization is the third line
of Eq. (3.17).

1. Two 2D layers without spin-orbit coupling

In this section, we use “1” and “2” to label the two layers.
The relevant cooperon modes are then C11, C12, C21, and C22.
Recognizing that cooperons must obey a diffusion equation in
absence of phase relaxation, we posit the following coupled
equations:(

D1Q
2 + τ−1

φ1

)
C11 + λ(C11 − C21) = h̄/

(
2πν1τ

2
d1

)
,(

D2Q
2 + τ−1

φ2

)
C21 + λ(C21 − C11) = 0,(

D2Q
2 + τ−1

φ2

)
C22 + λ(C22 − C12) = h̄/

(
2πν2τ

2
d2

)
,(

D1Q
2 + τ−1

φ1

)
C12 + λ(C12 − C22) = 0, (E1)

where λ is the interlayer tunneling rate. Note that the source
term appears only for the diagonal terms of the 2 × 2 cooperon
matrix. The solution of Eq. (E1) reads as

C11 = h̄

2πν1τ
2
1

D2Q
2 + τ̃−1

φ2(
D1Q2 + τ̃−1

φ1

)(
D2Q2 + τ̃−1

φ2

)− λ2
,

C22 = h̄

2πν2τ
2
2

D1Q
2 + τ̃−1

φ1(
D1Q2 + τ̃−1

φ1

)(
D2Q2 + τ̃−1

φ2

)− λ2
,

C12 = C21 = λ

D2Q2 + τ̃−1
φ2

C11, (E2)

where τ̃−1
φi ≡ τ−1

φi + λ. The expressions for C11 and C22 agree
with Eq. (3.6). In addition, C12 and C21 agree with the
expressions for p12 and p21 derived in Appendix D (where we
discussed the classical diffusive conductivity). Cii of Eq. (E1)
is equivalent to Cii

ii of Fig. 3. Likewise, C12 and C21 of
Eq. (E1) correspond to C11

22 and C22
11 of Fig. 3. Although C12

and C21 are nonzero, they do not contribute to δσ because the
velocity operator is diagonal in the layer index. Therefore, we
reproduce the expression of Sec. III B for δσ .

2. TI film with two gapless bulk cooperons and one gapless
surface cooperon

In this section, we use “1” and “3” to label the two
bulk cooperons, and “2” to label the surface cooperon. The
generalization of Eq. (E1) is(

D1Q
2 + τ−1

φ1

)
C11 + λ(C11 − C21) = h̄/

(
2πν1τ

2
d1

)
,(

D2Q
2 + τ−1

φ2

)
C21 + λ(2C21 − C11 − C31) = 0,(

D1Q
2 + τ−1

φ1

)
C31 + λ(C31 − C21) = 0, (E3)

(
D1Q

2 + τ−1
φ1

)
C12 + λ(C12 − C22) = 0,(

D2Q
2 + τ−1

φ2

)
C22 + λ(2C22 − C12 − C32) = h̄/

(
2πν2τ

2
d2

)
,(

D1Q
2 + τ−1

φ1

)
C32 + λ(C32 − C22) = 0, (E4)

and (
D1Q

2 + τ−1
φ1

)
C13 + λ(C13 − C23) = 0,(

D2Q
2 + τ−1

φ2

)
C23 + λ(2C23 − C13 − C33) = 0,(

D1Q
2 + τ−1

φ1

)
C33 + λ(C33 − C23) = h̄/

(
2πν1τ

2
d1

)
.

(E5)

Once again, in Eqs. (E3)–(E5) the source term appears for
the diagonal components of the 3 × 3 cooperon matrix. In
addition, a factor of 2 has been multiplied in front of some
tunneling rates associated to surface cooperons. The rationale
behind this is that the cooperon on the surface can decay into
two bulk modes, i.e., the effective decay rate becomes τ−1

φ2 +
2λ. Aside from this, we have assumed a unique tunneling rate
λ between all pairs of cooperons.

The quantum correction to conductance can be written as

δG = 2
e2

h̄2 ν1D1τ
2
d1

∫
Q

(C11 + C33) + 2
e2

h̄2 ν2D2τ
2
d2

∫
Q

C22.

(E6)
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Solving Eqs. (E3)–(E5) requires some algebra. The results for the cooperons of interest are

C11 = C33 = h̄

2πν1τ
2
d1

(
D1Q

2 + τ̃−1
φ1

)(
D2Q

2 + τ̃−1
φ2 + λ

)− λ2(
D1Q2 + τ̃−1

φ1

)[(
D1Q2 + τ̃−1

φ1

)(
D2Q2 + τ̃−1

φ2 + λ
)− 2λ2

] ,
C22 = h̄

2πν2τ
2
d2

D1Q
2 + τ̃−1

φ1(
D1Q2 + τ̃−1

φ1

)(
D2Q2 + τ̃−1

φ2 + λ
)− 2λ2

, (E7)

which are not illuminating expressions. It is better to rewrite them as

C11 = C33 = h̄

2πν1τ
2
d1

1

D1

[
X

Q2+q2
x

+ Y

Q2 + q2
y

+ Z

Q2 + q2
z

]
,

C22 = h̄

2πν2τ
2
d2

1

D2

[
A

Q2 + q2
a

+ B

Q2 + qb

]
, (E8)

so that Eq. (E6) transforms into

δG = e2

πh̄

∫
Q

[
2

X

Q2 + q2
x

+ 2
Y

Q2 + q2
y

+ 2
Z

Q2 + q2
z

+ A

Q2 + q2
a

+ B

Q2 + q2
b

]
. (E9)

Comparing Eqs. (E7) and (E8), we arrive at

A =
1

D1 τ̃φ1
− q2

a

q2
b − q2

a

, B = 1 − A, X =
(
D1q

2
x − τ̃−1

φ1

)(
D2q

2
x − τ̃−1

φ2 − λ
)− λ2

D1D2
(
q2

x − q2
y

)(
q2

x − q2
z

) ,

Y = D2q
2
y τ̃

−1
φ1 − τ̃−1

φ1

(
τ̃−1
φ2 + λ

)+ D1q
2
y

(− D2q
2
y + τ̃−1

φ2 + λ
)+ λ2

D1D2
(
q2

x − q2
y

)(
q2

y − q2
z

) ,

Z = D2q
2
z τ̃

−1
φ1 − τ̃−1

φ1

(
τ̃−1
φ2 + λ

)+ D1q
2
z

(− D2q
2
z + τ̃−1

φ2 + λ
)+ λ2

D1D2
(
q2

x − q2
z

)(
q2

z − q2
y

) , (E10)

and

2q2
a(b) = 1

D1τ̃φ1
+ 1

D2τ̃φ2
+ λ

D2
±
√(

1

D1τ̃φ1
− 1

D2τ̃φ2
− λ

D2

)2

+ 8λ2

D1D2
, q2

x(y) = q2
a(b), q2

z = 1/(D1τ̃φ1). (E11)

Note that qa(b) = qx(y), which will be important below. Also
note that the expressions for A, B, and qa(b) are identical to
the ones in Sec. III B, except for the following difference: the
effective inelastic scattering rate for layer 2 is now τ−1

φ2 + 2λ

instead of τ−1
φ2 + λ, for the reason explained above.

Although Eqs. (E10) and (E11) look cumbersome, after
substituting Eq. (E11) back in (E10), we find some remarkable
simplifications. In particular,

Z = 1/2 , 2X + A = 1, and 2Y + B = 1. (E12)

Replacing these in Eq. (E9) immediately leads to

δG = e2

πh̄

∫
Q

[
1

Q2 + q2
a

+ 1

Q2 + q2
b

+ 1

Q2 + q2
z

]
. (E13)

In consequence, we recover the third line of Eq. (3.17) for the
low-field magnetoconductance:

�G

Gq

= 1

2

[
f

(
Ha

H

)
+ f

(
Hb

H

)
+ f

(
Hz

H

)]
, (E14)

where Ha = h̄q2
a/(4e), etc. As a reality check, let us take

some simple limits. First, consider the case of no bulk-surface
coupling λ → 0. In this case, Ha = Hz = h̄/(4eD1τφ1) and

Hb = h̄/(4eD2τφ2), which produces

�G

Gq

= 1

2

[
2f

(
Ha

H

)
+ f

(
Hb

H

)]
. (E15)

This is indeed the result one would have expected when bulk
and surface are decoupled.

Second, suppose both τφ1 and τφ2 are infinitely large, for
arbitrary tunneling rate. Then, it follows that Hb = 0,

Ha = h̄

4e
λ

(
1

D1
+ 2

D2

)
, and Hz = h̄

4e

λ

D1
. (E16)

Then,

�G

Gq

= 1

2

[
f

(
Ha

H

)
+ f

(
Hz

H

)]
. (E17)

The fact that Hb = 0 means that we recover the conventional
WAL case (as we should when the phase relaxation times are
infinitely long).

Finally, consider the case of very strong tunneling between
bulk and surface states. In this case, Ha and Hz become
very large (∝ λ), whereas Hb becomes independent of λ.
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Consequently,

�G

Gq

= 1

2
f

(
Hb

H

)
, (E18)

as if we had a single channel contributing to WAL. This seems
to make sense too because when tunneling is strong, Cii are
strongly coupled to one another (i = 1,2,3).

APPENDIX F: SOME SPECIAL CASES OF EQ. (3.17)

In this Appendix, we analyze some simple limiting cases
of Eq. (3.17), which considers a single TI surface coupled to
bulk states. First, suppose that surface-bulk tunneling is strong,
so that τti � τφi for i = 1,2. In this case, (Ha,Hc,H̃1) �
(Hb,Hd ) and thus Eq. (3.17) turns into

�G

Gq

= 1

2

⎧⎪⎨
⎪⎩

f (Hb/H ) if τ̃H � τs,

f (Hb/H ) if τ̃H � (τv,τs),

f (Hd/H ) if τ̃H � τv,

(F1)

where Hb � h̄/(4e)(1/τφ1 + 1/τφ2)/(D1 + D2) and Hd �
h̄/(4e)(2/τφ1 + 1/τφ2)/(2D1 + D2). For simplicity, we have
taken τt1 = τt2, but this assumption can be easily relaxed. In
sum, WL is not possible when the bulk-surface coupling is
strong, and the film exhibits conventional WAL (α = 1/2)
regardless of the bulk carrier concentration.

Next, we consider a weak surface-bulk tunneling, so that
τti � τφi for i = 1,2. In this case, the outcome depends on
whether D1τφ1 > D2τφ2 or D1τφ1 < D2τφ2. Without loss of
generality, suppose that D1τφ1 > D2τφ2. Then, Eq. (3.17)
yields

�G

Gq

� 1

2

⎧⎪⎨
⎪⎩

f (Hφ2/H ) − 2f (Hφ1/H ) if τ̃H � τs,

f (Hφ2/H ) + f (Hφ1/H ) if τ̃H � (τv,τs),

f (Hφ2/H ) + 2f (Hφ1/H ) if τ̃H � τv,

(F2)

where Hφi = h̄/(4eDiτφi) for i = 1,2. When Hφ1 and Hφ2 are
of the same order, the first line of Eq. (F2) displays WL with
α = −1/2 and the third line exhibits WAL with α = 3/2. If
instead Hφ1 � Hφ2, �G is the same as if there were no surface
states. This latter regime can be experimentally accessible by,
e.g., depositing magnetic impurities on the surface of the TI.

Last, we consider the case τt1 � τφi � τt2 for i = 1,2.
This situation may be relevant for some thicker TI films where
τt1/τt2 = Wν1/ν2 � 1 (for thicker films, surface states have
more bulk states to decay onto). The resulting magnetocon-
ductance is once again as though there were no surface states:

�G

Gq

=

⎧⎪⎨
⎪⎩

−f (Hφ1/H ) if τ̃H � τs,

1
2f (Hφ1/H ) if τ̃H � (τv,τs),

f (Hφ1/H ) if τ̃H � τv.

(F3)
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