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Surface plasmons and strong light-matter coupling in metallic nanoshells
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A theory of the interaction between a radiating dipole and the plasmonic excitations of a spherical metallic
nanoshell in the quasistatic approximation is formulated. After a derivation of surface plasmon frequencies
and a comparison with the corresponding modes of metal spheres and cavities, we introduce an expression
for the effective volume for any position of the dipole inside or outside the nanoshell, describing the local
electromagnetic field enhancement in analogy to other cavity-QED systems. The modification of the dipole
decay rate is calculated as a function of frequency for various geometrical parameters, and it reflects the spectrum
of spherelike and cavity-like surface plasmon excitations. We then give a formulation of emission spectra, suitable
for describing light-matter interaction beyond perturbation theory, and study the conditions for the strong coupling
regime to occur. By suitably tuning the geometrical parameters of the nanoshell and by choosing the order of
surface plasmon modes to minimize the effective volume, a vacuum Rabi splitting can occur in emission spectra
for dipole oscillator strengths as small as a few units, which can be easily achieved with organic molecules or
quantum dots. The most favorable situation for strong coupling is when the dipole is located inside the nanoshell.
Surprisingly, this dipole couples with spherelike modes more strongly than with cavity-like ones, if the shell is
thin enough. As a conclusion, metallic nanoshells turn out to be a suitable platform in order to investigate the
strong-coupling regime of light-matter interaction by exploiting surface plasmon resonances.
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I. INTRODUCTION

The spontaneous decay of a system represents not only
a fundamental phenomenon in the study of radiation-matter
interaction, but also the starting point for a wide range
of conceptual and technological developments. As already
pointed out in the pioneering work by Purcell,1 it is possible to
control the emission rate by modifying the local environment.
A strong boost in this direction has come from the rapidly
developing field of plasmonics, i.e., metallic optics at the
nanoscale. A key advantage of plasmonic nanosystems is
their ability to keep the optical energy concentrated in a
subwavelength range in proximity to metallic surfaces;2 this
leads to a significant enhancement of the local density of states
of the electromagnetic field, producing an increase of the
spontaneous decay rate sometimes comparable with high-Q
optical cavities.3

The natural context in which to treat the spontaneous decay
is quantum electrodynamics, modeling the emitter as a generic
two-level system (a “dipole”). The peculiar optical properties
of metals require extending the traditional methods of quanti-
zation of the electromagnetic field to dispersive and absorbing
inhomogeneous media. Following the works in Refs. 4–8, this
can be performed by diagonalizing the Hamiltonian of the
unperturbed system, the free-space electromagnetic field, and
a continuous set of (spatially distributed) harmonic oscillators,
in analogy with the Hopfield model of a dielectric.9 A family
of bosonic fields of the composite system is obtained, which
are related to the actual electromagnetic field through the
dyadic Green function.10 Alternative formulations are given
in Refs. 11 and 12.

In the Markov approximation, the spontaneous decay rate
turns out to directly depend on the imaginary part of the dyadic
Green function; by expanding the latter onto an appropriate
set of wave vectors, the decay rate enhancement can be
calculated analytically when the dipole is in the vicinity of spa-

tially confined nanostructures with simple geometry, notably
spherical particles,13–16 spheroids and ellipsoids,17,18 stratified
spheres,19–21 nanowires, and nanotips.22 This method has a
well-known classical analog in an oscillating dipole interacting
with its own emitted radiation23,24 and is particularly suitable
for numerical simulations.14,25–33 The strong localization of
the electromagnetic field near the surface can be understood
in terms of the excitation of surface plasmons, electronic
collective oscillations, originated by a surface charge coupled
with the incident electromagnetic waves.3,34,35

Another fruitful approach to the study of spontaneous
decay is to identify the surface plasmons and to describe
them with the cavity quantum electrodynamics (cQED)
formalism.36,37 The identification can be developed on the
analysis of conduction electron gas deformations38–40 or within
classical electrostatic theory.41 The study can be extended
to more complex nanostructures, such as nanoshells and
particle dimers, within the so-called hybridization model.42,43

Composite systems can also be understood in terms of artificial
optical molecules44,45 or coupled mode systems.46 Periodic
arrays of metallic nanoparticles in three dimensions have been
investigated, as well.47 Within the quasistatic approximation,
which is generally valid for small enough particles, these
techniques give a clear insight into the physics of surface-
plasmon excitations and light-matter coupling.

When the interaction with radiation is significantly en-
hanced by localization effects, the dipole can reversibly
exchange excitation with the plasmonic modes, entering the
strong coupling regime. The most recognizable consequence
is the formation of a doublet of peaks in the emitted-light spec-
trum around the dipole frequency (Rabi splitting). Recently,
growing interest has arisen for the study of strong coupling
effects in proximity to metal nanoparticles, either via a mixed
boundary-element-method/cQED approach,48 a full cQED
treatment in the dipolar approximation,49 or a Green-function
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treatment.50 The last approach has also been applied to the
case of coated spheres and particle dimers.51 Another possible
platform based on graphene has been recently proposed.52

In this work, we treat a dipole in proximity to a spherical
metallic nanoshell with the goal of relating light-matter
interaction, and especially the strong coupling regime, to
surface plasmon excitations. In this sense, the present approach
combines cavity quantum electrodynamics and plasmonics. A
spherical nanoshell represents a promising system for enhanc-
ing light-matter interaction, since it supports both spherelike
and cavity-like modes whose properties can be engineered
and tuned as a function of geometrical parameters. Although
analytical methods based on the dyadic Green function—
which is known for this system53—could, in principle, be
applied, here we aim at a more transparent approach in order to
shed light on the dependence of light-matter coupling regimes
on geometrical parameters (shell radius and thickness), in view
of their optimization. As we are especially interested in small
nanoparticles, which are most favorable for achieving strong
light-matter coupling, we adopt the quasistatic approximation.

In Sec. II, we provide a full description of the plasmonic
modes of nanoshells in terms of modal frequencies, as
in Ref. 54, and also in terms of effective volumes and
decay widths, which are essential to investigate decay rate
modifications and strong coupling effects. The definition of
the effective mode volume includes in a general way the
dependence on the dipole position. The decay rate of the
dipole in the perturbative regime is then calculated as a sum of
Lorentzian-shaped resonances, each one potentially leading
to a Purcell enhancement, and is shown to agree with that
obtained from the dyadic Green function formalism in the
c → ∞ limit. In Sec. III, we derive an expression for the
spectrum of the light emitted by the dipole when the classical
decay rate is expressed as a sum of Lorentzian functions: this
is useful in itself, as it could be applied when the spectrum
is calculated by different (e.g., fully numerical) techniques
and fitted with Lorentzian resonances. Each resonance is
characterized by a Rabi frequency and a linewidth: when
the former dominates over the latter, the emitted spectrum
shows a two-peak structure that is characteristic of the strong
coupling regime. This leads to analytic formulas for the
threshold oscillator strength required for strong coupling. The
formalism is then applied to the case of nanoshells, where we
exploit the degrees of freedom provided by the geometrical
parameters and by the spectrum of spherelike and cavity-like
plasmonic modes in order to achieve the strong coupling
regime while minimizing the threshold oscillator strength.
For properly chosen parameters, the strong coupling regime
can be achieved with relatively small oscillator strengths,
which easily occur in organic molecules or quantum dots. In
particular, an appropriately chosen nanoshell with the dipole
placed inside can provide a better environment for strong
coupling phenomena than a similarly sized nanoparticle. These
results show that metal nanoshells are promising systems in
view of tailoring radiation-matter interaction and exploiting
surface plasmon resonances in the nonperturbative regime.
Section IV contains concluding remarks. The formalism for
the comparison between dyadic Green function and cQED
approaches is summarized in Appendix.

II. PLASMONIC MODES IN NANOSHELLS

A. Mode frequencies

In this section, we will analyze the electromagnetic eigen-
modes of a metallic shell with inner radius a and outer radius
A, with a dipole located either inside or outside, as shown in
Figs. 1(a) and 1(b), respectively. The metal is characterized
by a dielectric function ε, while the remaining regions are
vacuum. Here, vacuum has been chosen to reduce the number
of parameters entering the model, but the theory could be easily
adapted to more realistic situations involving a dielectric core.
We will use the quasistatic approximation, which consists of
neglecting the retardation effects everywhere except in the
dielectric function dependence on the frequency. As a starting
point, we consider the solutions of the Laplace equation for
the electrostatic potential ∇2φ = 0. These can be individuated
by the angular momentum l and the azimuthal number
m = −l, . . . ,l, each frequency being 2l + 1 times degenerate
with respect to m. Here, we give the expression only for
modes with azimuthal symmetry (m = 0), which are described
by means of the Legendre polynomials Pl(cos θ ) in the
form55

φl(r,θ ) =

⎧⎪⎨
⎪⎩

β1r
−(l+1)Pl(cos θ ), r > A,

(α2r
l + β2r

−(l+1))Pl(cos θ ), a � r � A,

α3r
lPl(cos θ ), r < a.

(1)

FIG. 1. Insets (a) and (b): the geometry of the two systems
under consideration, constituted by a metallic shell with a dipole
either inside or outside it. a and A are the inner and outer radii,
respectively, whereas rd indicates the dipole distance from the center.
(c) Dispersion relation of plasmonic modes. Modal frequencies ωl±
(normalized to ωP) are plotted for some indices l as a function
of the ratio a/A. ωSP refers to the surface plasmon frequency
ωP/

√
2.
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The electrostatic field is obtained as E = −∇φ:

El(r,θ ) =

⎧⎪⎪⎨
⎪⎪⎩

β1r
−(l+2)

[
(l + 1)Pl(cos θ )r̂ − ∂Pl

∂θ
(cos θ )θ̂

]
, r > A,

[−α2lr
l−1 + β2(l + 1)r−(l+2)]Pl(cos θ )r̂ − [α2r

l−1 + β2r
−(l+2)] ∂Pl

∂θ
(cos θ )θ̂, a � r � A,

−α3r
l−1

[
lPl(cos θ )r̂ + ∂Pl

∂θ
(cos θ )θ̂

]
, r < a.

(2)

By imposing the continuity of the tangential and normal
components of the electric field and the displacement vector,
respectively, we obtain the characteristic equation

l(l + 1)(ε2 + 1)

[
1 −

(
a

A

)2l+1]

+ 2l(l + 1)ε

[
1 +

(
a

A

)2l+1]
+ ε = 0. (3)

It must be solved with respect to the frequency; its solutions are
the proper frequencies of the electrostatic modes. Notice that,
in order to satisfy the boundary conditions, only the values l �
1 can be used. We suppose that the metal dielectric function

follows a Drude model of the form ε(ω) = 1 − ω2
P

ω(ω+iγD) ; for

instance, a choice of the parameters for silver is56

h̄ωP = 5.21 eV, h̄γD = 0.044 eV. (4)

If we neglect the imaginary (dissipative) part of the dielectric
function and replace its real part in the characteristic equation
(3), we obtain the set of solutions

ω2
l± = ω2

P

2

[
1 ± 1

2l + 1

√
1 + 4l(l + 1)

(
a

A

)2l+1]
. (5)

The relation between the modal frequencies and the ratio a/A

is represented in Fig. 1(c) for some values of the index l. In
particular, when l → ∞, they tend to accumulate over the
surface plasmon frequency ωSP = 1√

2
ωP. The identification of

these modal frequencies has been already formulated in Ref.
54—see also Refs. 40 and 57—in the context of the so-called
hybridization model, based on the study of the deformations
of an electron gas filling the shell.

In the limit a/A → 0, the characteristic equation (3)
decouples in the form

[εl + l + 1][ε(l + 1) + l] = 0. (6)

The first factor cancels out in coincidence with the well-known
resonant frequencies of a solid metallic sphere,41

ω
sph
l = ωP

√
l

2l + 1
, (7)

whereas the second factor provides the resonant frequencies
of a cavity surrounded by an infinite homogeneous metal (we
will call it an “ideal cavity”),

ωcav
l = ωP

√
l + 1

2l + 1
. (8)

Notice that the modes of the cavity are always larger than the
surface plasmon frequency ωSP. As can be seen in Fig. 1(c),
they share this property with the nanoshell modes of the form
ωl+, of which they represent the limit a/A → 0. For this

reason, we call the ωl+ modes of a nanoshell cavity-like modes.
Analogously, ωl− modes of a nanoshell reduce to those of a
sphere in the same limit a/A → 0 and are always smaller
than ωSP: we refer to them as spherelike modes. An analogous
discussion has been given in Refs. 44 and 45 for the case of
coupled metallic nanoparticles.

B. Interaction with the dipole and effective volumes

For a dipole in interaction with the metal nanoshell at
a given position rd , we want to express the dipole decay
rate from Fermi golden rule in terms of coupling with the
plasmonic modes. The dipole-electromagnetic field interaction
−μ · E leads to a Purcell-like formula as a sum of Lorentzian
functions centered on the frequencies ωl±, as discussed below.
In addition to the modal frequencies, it is useful to express
the dipole interaction in terms of an effective volume. Without
lack of generality we can assume the dipole to lie along the z

axis. We focus on the case of a radially oriented dipole (μ ‖ r̂),
which can be shown to interact with the m = 0 modes only.
Then, the effective volume can be defined as follows:58

Veff,l |El(rd ) · r̂|2 = 1

2

∫
d r

∂{ω Re[ε(ω)]}
∂ω

|El(r)|2, (9)

where rd is the dipole distance from the nanoshell center
and θd its polar coordinate. The right-hand side of the
definition is the expression for the electromagnetic energy in
dispersive media.59 Then, the effective volume corresponds to
the volume of a hypothetical constant-field cavity containing
the same electromagnetic energy of the plasmonic mode (in the
quasistatic approximation the contribution from the magnetic
field is neglected). Equation (9) has the advantage of including
in a natural way the dependence on the dipole position and
orientation; in particular, the smaller the effective volume, the
larger is the field confinement (or localization) at the chosen
location. In the case of nanoshells, it leads to results that
perfectly coincide with the c → ∞ limit of the analytical ones
obtained from the dyadic Green function treatment, as shown
in Appendix.

The inverse effective volume of the lth mode can be
calculated in the form60

V −1
eff,l = 1

4π

1 − (
a
A

)2l+1

2l + 1 ± �
l(l + 1)

×
{

l a−3 (1 ± �−1)
(

rd

a

)2l−2
, rd < a,

(l + 1) A−3 (1 ∓ �−1)
(

A
rd

)2l+4
, rd > A,

(10)

where � =
√

1 + 4l(l + 1) (a/A)2l+1. The upper sign refers
to ωl+ modes, while the lower one to ωl− modes.
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FIG. 2. (Color online) Effective volume of the plasmonic modes
of a nanoshell with ratio a/A = 0.8 as a function of the mode order
l, normalized with respect to the total volume of the nanoshell 4

3 πA3.
Circles refer to ωl+ modes, squares to ωl− ones. In (a), the radially
oriented dipole is in contact with the inner surface of the shell, whereas
in (b), it is located at rd = 0.8a.

The present expression applies to the case of an arbitrary
position of the dipole (not necessarily at the maximum of the
electric field). In particular, the nonzero distance between the
dipole and the nearest metallic surface plays an important
role. In Fig. 2(a), we display the effective volume of a
nanoshell with ratio a/A = 0.8 as a function of the mode
order l, supposing that the dipole is in contact with the
inner surface (rd = a); it corresponds to the smallest effective
volume available when the dipole is inside the nanoparticle.
It seems that the effective volume tends to reduce with the
increasing of the order, but this behavior could lead to a
deceptive interpretation. If we consider a finite distance from
the surface—as in Fig. 2(b), where we have set rd = 0.8a—we
can observe that the effective volume diverges when l → ∞,
too. So, upon fixing a certain choice of the parameters of the
system, there must be a well-defined mode that minimizes the
effective volume. It makes perfectly sense, then, to optimize
the geometry in order to tune this mode in resonance with the
dipole frequency; all the following analyses and discussions
try to develop this concept. Notice that the same phenomenon
is observable also in nanoparticles,61 but in that case modal
frequencies are not tunable [see Eq. (7)], making the shell
geometry definitely more interesting.

We now turn to the analysis of the decay rate. The decay
width includes two contributions, from both radiative and
nonradiative losses. In general, the quasistatic approximation
does not permit to compute properly the radiative decay rate
(see, for instance, Ref. 15). For the l = 1 mode, which presents
dipolar symmetry, the radiative contribution to the modal width
can be evaluated calculating the dipole moment induced by
the charge density on the surface of the nanoshell;41 higher-
order modes, on the contrary, are completely radiationless in
the quasistatic approximation. However, due to their small
effective volumes, l > 1 modes are the most likely to give rise
to strong-coupling effects, where the radiative or nonradiative
character of the interaction makes no difference, as it will be
seen in Sec. III. Since we will mainly refer to these modes,
we have decided to neglect at all the radiative contribution
to the modal widths. Notice that, in spite of being absent in
the quasistatic approximation, radiative effects can be taken in

account with more elaborate analytical models. In general, the
detection of far-field radiation is not necessarily prevented by
the mainly nonradiative character of the coupling. For instance,
in the case of metal nanospheres discussed in Ref. 50, the
radiative contribution to the decay rate, in spite of being far less
significant than the nonradiative one, is enhanced with respect
to the free-space decay. In other words, the overall radiative
signal is increased by the presence of the nanoparticle, which
acts like a “nanoantenna” in the sense of enhancing the
radiative emission of the dipole.

In the quasistatic approximation, the nonradiative contribu-
tion to the modal width can be obtained from the dissipation
rate of light in the metal as explained in Ref. 41, or solving
the characteristic equation (3) with a complex frequency. In
both cases, it can be shown to coincide exactly with the
Drude damping constant γD. In order to obtain the perturbative
total decay rate of a dipole with frequency ω, from the
effective volume of each plasmonic mode we can calcu-
late the corresponding Purcell factor (6π/k3)(Q/Veff,l) =
(3λ3Q)/(4π2Veff,l), weighted by a Lorentzian function of
width γD centered on the modal frequency. Here, k = ω/c and
the Q value can be estimated as the ratio ωl±/γD. By summing
over all modes and taking into account the free-space decay
background, we obtain the expression for the decay rate:


(ω)


0(ω)
= 1 + 6π

k3

∑
l�1

QV −1
eff,l

(
1
2γD

)2

(ω − ωl±)2 + (
1
2γD

)2 , (11)

where 
0(ω) is the free-space decay rate k3μ2/3h̄πε0. Notice
that in this result, proved in the Appendix, the dependence on
the geometry is embodied in the effective volume, while the
linewidth of each resonance is given by the Drude damping
constant γD. As an example of application, in Fig. 3(a) we
display the decay rate of a radial dipole 2 nm away from the
inner surface of a nanoshell with radii a = 8 nm and A =
12 nm as a function of the dipole frequency.

Recently, it was pointed out62 that the use of the Purcell
factor could lead to an underestimation of the correct decay
rate. This happens when using a single Purcell factor origi-
nating from the whole spectrum of modes (in the assumption
that it is dominated by a single term). In the present work, we
keep track of the contributions of each mode separately, and
the decay rate is accurately represented by the Purcell equation
summed over all resonances.

C. Beyond the quasistatic approximation

The result (11) has the advantage to present the dependence
on the geometrical parameters of the system in a simple
workable way; however, being obtained in the quasistatic
approximation, it neglects the contribution from retardation
effects. As shown in the literature,7,11,23 the exact expression
of the classical decay rate of a dipole (including retardation
effects) depends on the imaginary part of the dyadic Green
function of the system under consideration:


(ω) = 2ω2

h̄ε0c2
μ · Im

↔
G (rd,rd ,ω) · μ. (12)

The nanoshell is an example of a spherically layered medium,
for which the dyadic Green function is known.53 As we show
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FIG. 3. (Color online) (a) Classical decay rate in the quasistatic approximation [see Eq. (11)] of a radially oriented dipole in proximity to
a silver nanoshell, as a function of the dipole frequency (displayed on the y axis). The parameters of the system are a = 8 nm, A = 12 nm,
and rd = 6 nm. (b) Solid lines: the frequencies of the plasmonic modes of a silver nanoshell with inner radius of 8 nm vs the outer radius A

(for clarity, only those up to l = 4 are shown). The relation with the local maxima of the classical decay rate is underlined by the dashed red
lines. Dots: the local maxima of the exact classical decay rate including retardation effects, calculated with the dyadic Green function approach
according to Ref. 20 for the same parameters. The dielectric function follows the Drude model [see Eq. (4)].

in Appendix, our quasistatic result can be derived also from
Eq. (12) by taking the limit c → ∞.

A computer script for the numerical evaluation of the exact
decay rate has been developed by Moroz.20 We used it to
extract the local maxima of the decay rate (plotted as a function
of the dipole frequency) for several geometries; they are shown
by the dots in Fig. 3(b). When the geometrical parameters of
the system are small, so that retardation effects are negligible,
the agreement with the modal frequencies in Eq. (5) is very
good, except for a slight redshift of the exact results with
respect to the quasistatic ones, which is noticeable only for
the lowest ωl− modes. The redshift becomes more significant
with increasing system dimensions; however, being interested
in optimizing the strength of the coupling with radiation, we
will consider only small systems, where localization effects
are more likely to enhance the local density of states of the
electromagnetic modes. Then, our quasistatic approximation
is surely suitable for our aims.

D. Comparison with spheres and ideal cavities

We have previously shown that there exist two different
families of nanoshell plasmonic modes, the cavity-like (ωl+)
and the spherelike ones (ωl−). The modal frequencies of cavity-
like modes revert to those of an ideal cavity [see Eq. (8)] in the
limit a/A → 0. Correspondingly, in the same limit, the values
of the effective volume in Eq. (10) tend to the ones of an ideal
cavity:

Vcav,l = 4πa2l+1

l2r2l−2
d

. (13)

On the opposite, when a/A → 0, nanoshell spherelike
modes reduce to their solid sphere analogues. In particular,
their effective volumes [see Eq. (10)] tend to the values

Vsph,l = 4πr2l+4
d

(l + 1)2A2l+1
, (14)

which perfectly coincide with the effective volumes provided
in Ref. 61 for a metallic spherical nanoparticle.

Here, we briefly analyze similarities and differences be-
tween nanoshells and their ideal limits: cavities and solid
spheres. The natural choice is to compare the nanoshell modes
with the ideal cavity ones when the dipole is inside the shell,
and with the sphere ones when the dipole is outside. This
is corroborated by the fact that, according to Eq. (10), Veff,l

is proportional to the inner cavity volume, if the dipole is
inside the shell, or to the total volume, if the dipole is outside.
Therefore plasmonic modes in small geometries tend to couple
better with radiation, being the strength of the coupling roughly
proportional to the inverse effective volume [see Eq. (11)].

The main peculiarity of nanoshell plasmonic modes is their
additional relation to the shell thickness, or, equivalently, to the
ratio a/A. Figure 4(a) shows the ratio between the effective
volumes of a cavity [see Eq. (13)] and a nanoshell [see Eq. (10)]
as a function of the ratio a/A for a fixed inner radius a. The
dipole is situated inside the inner cavity; its distance rd from
the center is kept fixed, too, together with the order l; thus, from
the physical point of view, the curve gives a measure of the
coupling strength of nanoshell plasmonic modes relatively to
the corresponding ideal cavity ones. As can be easily expected,
in the limit of large thickness (left area of the plot), cavity-
like nanoshell modes are roughly equivalent to the ideal ones,
whereas spherelike modes are strongly inhibited. However,
when the thickness decreases, spherelike modes become the
most favorable in the nanoshell, reaching, in the case of very
small thickness, the same order of magnitude of ideal ones.

This behavior is very different from the situation where the
dipole is outside the nanoshell [see Fig. 4(b)]. In this second
case, as already pointed out, the natural analog is provided
by the plasmonic modes of a solid sphere. The ratio between
the effective volumes of an ideal sphere [see Eq. (14)] and
a nanoshell is displayed in Fig. 4(b), keeping constant the
outer radius A, the dipole position rd , and the order l. As
can be seen, in this case, spherelike modes are always the
most advantageous ones, irrespective of the shell thickness.
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FIG. 4. (a) The ratio between the effective volume of ideal cavity
plasmonic modes [see Eq. (13)] and nanoshell ones [see Eq. (10)]
versus the nanoshell a/A parameter, calculated at the same order l

and for a fixed inner radius a. The dipole is inside the cavity and the
ratio is independent of its position. The upper curve refers to the ωl+
modes, the lower one to the ωl− modes. For clarity, a thickness scale
[t/a = (A − a)/a] has been reported on the upper axis. (b) As above,
except that the dipole is outside the outer surface, the outer radius A

is kept fixed, and the comparison is with the modes of a solid metallic
sphere [see Eq. (14)]. Notice that here the upper curve refers to the
ωl− modes, the lower one to the ωl+ ones.

The phenomenon is well exemplified by the plots in Fig. 5,
displaying the normalized decay rate of a dipole inside and
outside a nanoshell for the ratios a/A = 0.5 and 0.8. They were
obtained from Eq. (11). When the dipole is inside the shell,
the coupling with spherelike modes prevails for a sufficiently
thin shell; when it is outside, the coupling with cavity-like
modes, even if partially enhanced, never becomes significant.
A comparison with the retarded solution is presented in Ref. 60
and it shows very good agreement.

With reference to the coupling strength, notice that the
value of the curves in Fig. 4 is always less than unity. It means
that nanoshell modes are always disadvantageous when we
compare them to the ideal cavity analogues, if the dipole
is inside, or to the solid sphere analogues, if it is outside.
However, the previous considerations suggest that a thin
nanoshell with the dipole inside the inner cavity could also
compete with a similarly sized solid sphere, as they share the
same plasmon frequency range. Indeed, in many cases, this
specific nanoshell arrangement facilitates a stronger coupling
with radiation, as it will be elaborated in the following sections,
with particular reference to non-Markovian effects.

FIG. 5. (Color online) The dipole total decay rate 
(ω) in the clas-
sical approximation [see Eq. (11)] for a silver nanoshell, normalized to
the free-space decay rate 
0(ω) as a function of the dipole frequency.
The parameters are (a) a = 10 nm, A = 20 nm, rd = 8 nm; (b) a =
10 nm, A = 12.5 nm, rd = 8 nm; (c) a = 5 nm, A = 10 nm, rd =
12.5 nm; (d) a = 8 nm, A = 10 nm, rd = 12.5 nm. The dielectric
function follows a Drude model with the parameters in Eq. (4). The
vertical dotted red lines indicate the surface plasmon frequency ωSP.
In (a) and (b) the dipole is inside the nanoshell, while in (c) and
(d), it is outside; moreover, to simplify the comparison with Fig. 4,
the plots in the same column share the same a/A ratio (0.5 and 0.8,
respectively).

III. STRONG LIGHT-MATTER COUPLING EFFECTS

A. General theory of the emitted-light spectrum

As shown in Refs. 7 and 8, the electric-field operator in
a system containing absorptive and dispersive media can be
expanded onto a continuous set (both in frequency and space)
of bosonic operators f(r,ω), according to the relations

E(r) = E(+)(r) + E(−)(r), (15)

E(+)(r) =
∫ ∞

0
dωE(r,ω), E(−)(r) = [E(+)(r)]†, (16)

E(r,ω) = i
ω2

c2

√
h̄

πε0

×
∫

d r ′√Im ε(r ′,ω)
↔
G (r,r ′,ω) · f(r ′,ω), (17)

where
↔
G (r,r ′,ω) is the electric dyadic Green function.

Considering a dipole with frequency ωd located at the point
rd in vacuum, its interaction with radiation is described in
terms of the Pauli operators σ (±) and the transitional dipole
moment μ, by means of the rotating-wave approximated
Hamiltonian

Hint = −[σ (−)E(+)(rd ) · μ + H.c.]. (18)

The state of the system can be expanded onto the dipole
ground and excited states—|gr〉 and |ex〉—and the unperturbed
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eigenstates |nj,r,ω〉 of the number operator f†j fj (r,ω):

|ψ(t)〉 = C(t)e−i 1
2 ωd t |ex〉 |0〉

+
∫

d r
∫ ∞

0
dω Dj,r,ω(t)e−i(ω− 1

2 ωd )t |gr〉 |1j,r,ω〉 .
(19)

The coefficients must be calculated from the Schrödinger
equation, which, in the case of C(t), assumes the form

Ċ(t) =
∫ t

0
dt ′K(t − t ′)C(t ′), (20)

with K(τ ) = −
∫ ∞

0
dω

ω2

h̄πε0c2
e−i(ω−ωd )τ

×μ · Im
↔
G (rd,rd,ω) · μ. (20)

The light intensity spectrum of the radiation spontaneously
emitted by the dipole (without external driving), registered by
an ideal detector at a point r sufficiently away from the source,
can be defined as

S(r,ω) = 2ε0c

2π

∫ ∞

0
dt2

∫ ∞

0
dt1 e−iω(t2−t1)

× 〈E(−)(r,t2) · E(+)(r,t1)〉 . (21)

Still according to Ref. 7, the previous expression becomes

S(r,ω)

= ε0c

π

∑
j

∣∣∣∣
∫ ∞

0
dt ei(ω−ωd )t

∫ t

0
dt ′ C(t ′)

×
∫ ∞

0
dω′ μn(ω′)2

πε0c2
Im

↔
Gjn (r,rd ,ω

′) e−i(ω′−ωd )(t−t ′)
∣∣∣∣
2

.

(22)

This formula can be expressed in an equivalent form, by
observing that the term in the absolute square is the Laplace
transform, calculated at the point i(ωd − ω), of the Laplace
convolution of the two functions. Then, it can be replaced with
the product of their Laplace transforms:

S(r,ω) = ε0c

π

∑
j

|Fj (r,rd ,ω)|2 |L[C][i(ωd − ω)]|2, (23)

where the function Fj (r,rd ,ω) is introduced in Ref. 7 as

Fj (r,rd ,ω) = μn

πε0c2

∫ ∞

0
dω′ (ω′)2Im

↔
Gjn (r,rd ,ω

′)

×
[
πδ(ω − ω′) + iP 1

ω − ω′

]
. (24)

Referring to the same work, we remind that the quantity

I (r,ω) = 2ε0c
∑

j

|Fj (r,rd ,ω)|2 (25)

represents the intensity of the light emitted towards a point r by
a hypothetical dipole with energy h̄ω, calculated in the classical
(Markov) approximation. The second term in Eq. (23) can
be evaluated recalling that the Schrödinger integrodifferential
equation (20) simply reduces to an algebraic equation when

Laplace transformed:

L[C](s) = C(0)

s − L[K](s)
= 1

s − L[K](s)
. (26)

We define the quantum efficiency ηrad = 
rad/
, with 
rad

being the ratio between the far-field emitted power and the
dipole energy, and notice that the emitted power can be
expressed as the integral of Eq. (25) over the solid angle, in
the limit r → ∞. Then, the integral of Eq. (23) over the solid
angle can be identified with the radiated power spectrum:

S(ω) =
∫

d� lim
r→∞ r2S(r,ω)

= h̄ω

2π
ηrad(ω)
(ω)

∣∣∣∣ 1

i(ωd − ω) − L[K](iωd − iω)

∣∣∣∣
2

.

(27)

Equation (27) expresses the radiated power spectrum as the
product of the dipole energy, the radiative decay rate, and the
line-shape function.

If we recall the definition7 of the generalized Lamb shift

δω(ω) = 1

πh̄ε0c2
P

∫ ∞

0
dω′ (ω′)2 μ · Im

↔
G (rd ,rd ,ω

′) · μ

ω′ − ω
,

(28)

the Laplace transform of the kernel L[K](s) can be simplified
to the form [see also Eq. (12)]

L[K][i(ωd − ω)] = − 1
2
(ω) + iδω(ω). (29)

By replacing it into Eq. (27), we obtain

S(ω) = h̄ω

2π
ηrad(ω)
(ω)

∣∣∣∣ 1

i[ωd − ω − δω(ω)] + 1
2
(ω)

∣∣∣∣
2

;

(30)

this is the rotating-wave approximated version of the result
reported in Ref. 63 and allows to calculate the emitted-light
spectrum whenever analytical expressions of the classical
decay rate and Lamb shift are known. Notice that the equation
makes it possible to study nonperturbative effects, although the
decay rate 
(ω) is calculated by means of the Fermi golden
rule.

When the intensity of the coupling is weak, by approxi-
mating all the slowly-varying terms with their central value
at ωd and renormalizing the dipole frequency to include the
Lamb shift, we recover the expected Lorentzian-shaped power
spectrum:

S(ω) = 1

π
ηrad(ωd )h̄ωd

1
2
(ωd )

(ω − ωd )2 + [
1
2
(ωd )

]2 , (31)

which is correctly normalized to the overall energy radiated
by the dipole, ∫

dω S(ω) = ηrad(ωd )h̄ωd . (32)
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B. Case of a Lorentzian-shaped dipole decay rate

In this section, we apply the general theory of Sec. III A
to treat the crossover between weak and strong coupling
regimes. In particular, we consider the situation in which
the perturbative decay rate can be expanded onto a sum of
Lorentzian functions. Let us suppose, for the moment, that it
consists of a single Lorentzian function of the form


(ω) = 
(ω0)

(
1
2γ

)2

(ω − ω0)2 + (
1
2γ

)2 . (33)

Then, the kernel K(τ ), defined in Eq. (20), reduces to an
elementary Fourier transform and can be worked out to obtain

K(τ ) = − 1
4
(ω0)γ ei(ωd−ω0)τ− 1

2 γ |τ |. (34)

In the calculation, the ω integral has been extended from −∞
to ∞, on the base that within the rotating-wave approximation,
the two integrals are the same.64 Upon performing the Laplace
transform, we obtain

L[K](s) = −1

4

�2

s + 1
2γ − i(ωd − ω0)

, (35)

where we have introduced the Rabi frequency � = √

(ω0)γ .

To underline the physical meaning of the expression, let
us suppose that the dipole is resonant with the Lorentzian

function, i.e., ωd = ω0. Having defined � =
√

1
4γ 2 − �2, the

substitution of Eq. (35) in Eq. (27) leads to

S(ω) = h̄ω

2π
ηrad(ω)
(ω)

× 1

4

∣∣∣∣ 1 + γ

2�

s + 1
4γ − 1

2�
+ 1 − γ

2�

s + 1
4γ + 1

2�

∣∣∣∣
2

s=i(ωd−ω)

.

(36)

When �2 < 1
4γ 2, the spectrum is single-peaked around the

frequency ω0; in particular, if γ � �, we recover the weak
coupling result of the previous section; however, when �2 >
1
4γ 2, the term � becomes purely imaginary, and the spectrum
splits into a doublet of peaks separated by Im(�), giving rise
to the well-known phenomenon of Rabi splitting. Notice that,
if � � γ , the doublet splitting approaches �.

As a consequence, the condition for the establishment of
a Rabi splitting in the emission spectrum can be written as
γ 2 < 4�2, i.e., γ < 4
(ω0). It depends only on the dipole
total decay rate in the classical approximation and it does
not discriminate between radiative and nonradiative processes.
Thus, in many systems, the strong coupling regime could be
entered due to a contribution from the nonradiative coupling,
in spite of the radiative component alone being insufficient.

This is obviously the case of small nanoshells, where we
have seen that the huge enhancement of the classical decay
rate is mainly of nonradiative origin. As a starting point, we
suppose that the dipole is in interaction with a single plasmonic
mode and neglect the contribution from the free-space decay
and all the other modes. Equation (11) becomes


(ω) = 2μ2ωl±
h̄ε0γD

V −1
eff,l

(
1
2γD

)2

(ω − ωl±)2 + (
1
2γD

)2 . (37)

Recalling that the dipole oscillator strength is defined as
f = 2meωdμ

2/(e2h̄), when the dipole is resonant with ωl±, the
Rabi frequency � is seen to coincide with twice the coupling
constant g of the dipole-cavity interaction introduced in
Ref. 65:

� = 2g =
√

e2f

meε0Veff,l
. (38)

Analogously, the emission spectrum in Eq. (36) reduces
to a cavity-QED result obtainable with a master-equation
approach.65,66

The Rabi-splitting condition γ 2
D < 4�2 discussed above

can be recast in the form f > fth, where fth is the threshold
oscillator strength for entering the strong coupling regime:

fth = meγ
2
Dε0Veff,l

4e2
. (39)

In our model, the threshold oscillator strength is proportional
to the effective volume; since we have obtained its analytical
expression, we can easily deduce which is the most advan-
tageous plasmonic mode for every choice of the geometrical
parameters of the system. Notice that fth grows quadratically
with the metal dissipation.

The threshold oscillator strength provides guidance on the
intensity of the Rabi-splitting phenomena; however, in order
to calculate the emission spectrum, we cannot neglect the
contribution from the remaining plasmonic modes; in addition,
we are interested also in the case when the dipole is not
in resonance with any particular mode. The expression for
the spectrum can be generalized to the full decay rate in
Eq. (11) by combining the previous results (29) and (35) via
linearity:

S(ω) = h̄ω

2π
ηrad(ω)
(ω)

∣∣∣∣∣i(ωd − ω) + 1

2

0(ω)

+
∑

l

(
ωl±e2f

4ωdmeε0

)
V −1

eff,l
1
2γl − i(ω − ωl±)

∣∣∣∣∣
−2

. (40)

This result has already been obtained in the context of cavity
quantum electrodynamics.67 Equation (40) is equivalent to
Eq. (30) and contains the resonant contributions to the Lamb
shift in the last term (

∑
l . . .). This holds because the classical

decay rate 1
2
(ω) and the Lamb shift δω(ω) are related by the

Kramers–Kronig relations [compare Eqs. (12) and (28)]. In
Eq. (40), the Lamb shift is not an independent quantity, being
determined by the additional assumption on the Lorentzian
shape of the classical decay rate.

The term ηrad(ω)
(ω) in Eq. (40) keeps track of the light
propagation from the dipolar source to the detector; in this
work, however, we are mainly interested in the conditions
for entering a strong coupling regime, which depend only
on the dipole local dynamics and are entirely included in
the absolute square term. For this reason, we will generally
concentrate only on the latter and, for clarity, call it the
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dipole spectrum:

P (ω) =
∣∣∣∣∣i(ωd − ω) + 1

2

0(ω)

+
∑

l

(
ωl±e2f

4ωdmeε0

)
V −1

eff,l
1
2γl − i(ω − ωl±)

∣∣∣∣∣
−2

. (41)

Notice that, being the quantum efficiency term calculated at
the detector frequency (not at the dipole one), it can cause
some distortion onto the detected spectrum; in particular, it
can give rise to some spurious peaks due to low-coupling
but high-radiative modes, as shown in Ref. 50 in the case of
spherical particles.

C. Optimization of nanoshell parameters towards the
Rabi-splitting regime

Equation (39) provides a threshold condition for the forma-
tion of a Rabi splitting in the emitted light spectrum of a dipole
resonant with a nanoshell plasmonic mode, when the dielectric
function follows the Drude model. The resonance frequency
depends on the choice of the mode and on the geometry.
Usually, however, we are interested in the opposite problem,
i.e., to find the parameters that maximize the coupling with
radiation for a fixed-frequency dipole. Under the condition
of a fixed dipole moment, the fact that the effective volume
scales as a3 or A3 [see Eq. (10)] suggests at first to minimize
the geometrical extension of the system; in addition, the local
coupling is enhanced with the decreasing of the distance
between the dipole and the nearest metallic surface.

The selection of the best value for the shell thickness, or,
equivalently, for the ratio a/A, requires some elaboration. By
inverting Eq. (5), we can calculate a set of pairs ( a

A
,l) satisfying

the relation(
a

A

)2l+1

= (2l + 1)2
[
2
(

ωd

ωP

)2 − 1
]2 − 1

4l(l + 1)
. (42)

Each pair corresponds to a plasmonic mode with the frequency
coinciding with the dipole one. In this set, we can identify
the optimal mode that minimizes the effective volume, char-
acterized by the parameters ( a

A
,lopt): the two quantities are

displayed in Figs. 6 and 7 by the dashed line in (a) and the
solid line in (b), respectively. The solid line in Figs. 6(a) and
7(a), instead, represents the corresponding minimal effective
volume (normalized with respect to a3, in Fig. 6, or A3,
in Fig. 7). The effective volume can be used to calculate
the threshold oscillator strength according to Eq. (39). For
instance, in the case of silver [with the Drude damping
constant in Eq. (4)], the quantity meγ

2
Dε0/(4e2) is equal to

3.51 × 10−4 nm−3.
As an example of application, we suppose to have a dipole

with a frequency of approximately 2.9 eV–as in Ref. 51—
coupled to a silver nanoshell [see Eq. (4)], which gives
ωd/ωP = 0.56. If the dipole is located inside the inner cavity
of a nanoshell, from Fig. 6(b) we deduce that the best-coupling
mode is the fifth spherelike one, while the dashed line in
Fig. 6(a), provides us with the ratio a/A 
 0.83. The dipole
spectrum for a nanoshell with inner radius of 10 nm is shown
for several values of the dipole oscillator strength in Fig. 8(a);

FIG. 6. (Color online) Selecting the parameters that optimize the
coupling with radiation for a fixed-frequency radially oriented dipole,
located inside the inner cavity of a metallic nanoshell at a distance
0.8a from the center. (a) Solid line: the effective volume (normalized
to a3) of the plasmonic mode that optimizes the coupling, as a function
of the dipole frequency (normalized to ωP). Dashed red line: the ratio
a/A necessary to make the optimal-mode frequency coincident with
the dipole one. (b) The order of the optimal mode. If the dipole
frequency is larger than ωSP, it is understood that we refer to cavity-
like modes, otherwise to spherelike ones.

notice that the splitting is compatible with the estimate of the
threshold oscillator strength provided by Fig. 6(a), which is
of the order of two. Similarly, an analysis of Fig. 7 suggests
that, when the dipole is outside the sphere, the best coupling is
achieved with the l = 3 spherelike mode of a nanoshell with
ratio a/A 
 0.75. Figure 8(b) shows an example of the dipole
spectrum for a nanoshell with A = 10 nm. In this case, the
Rabi splitting occurs at higher values of the oscillator strength,
in agreement with the threshold estimated from Fig. 7(a), of
the order of three.

In can be observed from Fig. 6 that, when the dipole
frequency happens to coincide with a bare cavity resonance
[see Eq. (8)], there is a large drop in the value of the optimal
a/A ratio; in these cases, then, the best coupling is achieved

FIG. 7. (Color online) Analogue to Fig. 6, except that in this case
the dipole is outside the outer surface at the position rd = A/0.8
and the effective volume is normalized to A3 instead of a3. This last
difference must be taken into consideration when applying Eq. (39).
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FIG. 8. (Color online) Solid curves: dipole (polarization) spec-
trum of a radial dipole in proximity to a silver nanoshell, for
several values of the dipole oscillator strength (indicated by the
numbers on curves), calculated with Eq. (41). The dielectric function
follows the Drude model [see Eq. (4)] and each curve is normalized
independently of the others. Parameters are (a) a = 10 nm, A =
12 nm, rd = 8 nm, dipole frequency of 2.91 eV (dotted vertical
line); (b) a = 7.5 nm, A = 10 nm, rd = 12.5 nm, dipole frequency
of 2.88 eV. As a comparison, in the case f = 10, the additional red
dashed curve represents the dipole spectrum including retardation
effects, calculated with Eq. (27) and the exact expression for
the dyadic Green function provided in Ref. 20. It is normalized
independently of the quasistatic one and slightly shifted for better
clarity.

when the geometry of the system approaches that of an ideal
cavity. For better clarity, we have added an arrow in the plot
indicating the frequency and the normalized effective volume
of the ideal cavity best resonance. An analogous phenomenon
is shown in Fig. 7, where the arrow indicates the best coupling
mode of a solid sphere. In agreement with our previous
considerations, we see that the minimal threshold oscillator
strength for nanoshells is of the same order of that for ideal
cavities when the dipole is inside, and of that for solid spheres
when it is outside. However, a clear advantage of the nanoshell
geometry is the possibility to tune the best-coupling frequency
over a large range of the frequency spectrum by regulating
the shell thickness, at variance from the case of particles and
cavities, which are characterized by fixed modal frequencies.

D. Comparison of shell and single-particle geometries

In Sec. II, we have compared the behavior of a dipole in
proximity to a spherical particle with that of a dipole outside
the external surface of a metallic nanoshell. It turns out that,
for a given l and total radius, in the nanoshell geometry
the dipole couples less with radiation than in the particle
geometry, as shown particularly in Fig. 4(b). However, we
have also observed from Fig. 4(a) that, when the dipole is
inside the inner surface, nanoshells present an interesting
“inversion” phenomenon in the relative strength of spherelike
and cavity-like modes: if the shell thickness is sufficiently
low, the coupling with spherelike modes greatly overcomes
that with cavity-like modes. At the same time, the dipole
frequency range most suitable to decay rate enhancement
moves to the ω < ωSP region of the spectrum, overlapping
with the resonances of a single metallic sphere. This behavior
suggests us to compare the solid-particle geometry with the

FIG. 9. (Color online) Dashed line: threshold oscillator strength
to enter the strong coupling regime for a dipole near a silver
nanosphere with radius of 20 nm as a function of the distance d

from the metal surface (see upper left inset). The dipole is resonant

with the second plasmonic mode, at the frequency ωsph =
√

2
5 ωP

[see Eq. (7)]. Solid lines: threshold oscillator strengths for a dipole
located in vacuum inside a silver nanoshell with the same outer radius
A = 20 nm, as a function of the distance from the inner metallic
surface (see lower right inset). The dipole is in resonance with a
nanoshell spherelike mode of the order l indicated on the curves;
the thickness is chosen according to Eq. (42) to make the modal
frequency ωl− coincident with ωd .

case of a dipole inside the inner cavity of a nanoshell. If the
shell thickness is low enough, the latter choice could provide
an easier way to reach the strong coupling regime.

In order to be meaningful, the comparison must be drawn
for the same dipole frequency. Let us suppose, for instance,
that the dipole is in resonance with the second surface plasmon

of a particle, at the frequency ωd =
√

2
5ωP [see Eq. (7)].

From Eq. (42), we deduce that, for every integer l > 2, there
exists a value of the ratio a/A that makes the lth plasmon
frequency ωl− coincident with ωd . In general, this ratio implies
a progressively smaller thickness of the shell on the increase of
the modal order l. We clearly refer to the spherelike plasmonic
modes, whose frequencies ωl− are always below the surface
plasmon threshold ωSP and share the same range with particle
resonances. The corresponding threshold oscillator strength
can be obtained from Eq. (39) and is plotted in Fig. 9 as a
function of the distance from the metal surface. As can be seen,
when the distance is sufficiently small, this particular nanoshell
arrangement can provide a more advantageous threshold to the
strong coupling regime than a particle with radius equal to A.

Figure 10 provides an example of such behavior. In
Figs. 10(a) and 10(b), we plot the semiclassical decay rate
for a dipole inside a silver nanoshell (a) and outside a
silver particle (b), as a function of the dipole frequency.
The nanoshell has parameters A = 20 nm and a = 16.46 nm,
which, according to Eq. (5), set the frequency of the l = 8
ωl− mode perfectly coincident with the l = 2 particle mode,

at ωsph =
√

2
5ωP = 3.29 eV (indicated by the vertical dotted

lines). We are interested in dipole frequencies in proximity
to ωsph. In the case of the particle (b), there is a small peak
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FIG. 10. (Color online) The semiclassical decay rate of a radial
dipole in proximity (a) to a silver nanoshell with parameters A =
20 nm, a = 16.46 nm, rd = 14.46 nm; (b) to a silver nanosphere
with parameters A = 20 nm, rd = 22 nm, calculated with the Purcell
equation (11). The dipole is 2 nm away from the inner surface [in
(a)], or the sphere surface [in (b)]; it is characterized by an oscillator
strength of 20. Frame (c) for the nanoshell and frame (d) for the
sphere show the dipole (polarization) spectra obtained with Eq. (41)
for several values of the dipole frequency, which are indicated by
the superimposed red dots; they include the contributions from all
the plasmonic modes of the system and each curve is normalized
independently of the others. The frequency 3.29 eV (indicated by
vertical dotted lines) characterizes both the l = 8 spherelike ωl−
mode of the nanoshell and the l = 2 mode of the sphere: as a typical
consequence of the strong coupling regime, there is a Rabi splitting
phenomenon when the dipole frequency is in its proximity.

centered on ωsph in the semiclassical decay rate: consequently,
the dipole spectrum presents a slightly noticeable Rabi splitting
phenomenon when the dipole frequency ωd approaches ωsph.
On the other hand, in the case of the nanoshell (a), the peak
centered on ωsph is far higher, giving rise to an easily observable
and well defined Rabi splitting for ωd 
 ωsph. This is shown in
Figs. 10(c) and 10(d), representing the dipole spectra for the
nanoshell and particle geometries, respectively. Each curve
has been calculated through Eq. (41) for a different dipole
frequency ωd (indicated by the red dot). Calculated spectra
show that when the dipole is inside a nanoshell, the coupling
with the spherelike modes is more convenient to the Rabi
splitting than when the dipole is outside a solid sphere. Notice
that the position of the peaks in the spectra is redshifted with
respect to the dipole frequency due to the presence of a large
anticrossing centered around the surface plasmon frequency
at about 3.7 eV [not shown in Figs. 10(c) and 10(d)], as can
be inferred from the presence of a very high peak in both
Figs. 10(a) and 10(b).

The presence of Rabi splitting phenomena in the spectrum
emitted by a dipole near a spherical particle in particular
conditions has been extensively treated in Ref. 50. Here, we
additionally state that such behavior can be notably highlighted
with a suitable nanoshell arrangement, especially when the
dipole is meant to couple with low-frequency and highly
radiative particle modes. On the other hand, as a counterpart
for the enhanced coupling strength, since in the nanoshell
case higher-order modes are involved, a quenching of radiative
phenomena is to be expected. This is in agreement with our
considerations after Eq. (36), regarding the equivalence of
radiative and nonradiative processes in entering the strong
coupling regime. In this case, the gain in strength comes mostly
from the nonradiative ones.

IV. DISCUSSION AND CONCLUSIONS

We have given a formulation of the interaction between an
oscillating dipole and a metal nanoshell, which emphasizes
the role of localized surface plasmon resonances for radiation-
matter coupling. By adopting the quasistatic approximation
(suitable for small nanoshells, which are the most promising
ones for control of decay rates and for strong coupling),
we have obtained analytical expressions for surface plasmon
frequencies and effective volumes, the latter being defined for
any position of the dipole inside or outside the nanoshell. The
dipole decay rate reflects the full spectrum of modes, which can
be classified as spherelike or cavity-like. The effective volume
depends strongly on mode order l and on inner and outer
radii. In particular, when the dipole is inside the nanoshell,
a surprising “inversion” phenomenon occurs: while coupling
to cavity-like modes dominates for thick shells, dominant
coupling switches to spherelike modes when the shell is thin
enough. This has important consequences for the regimes of
light-matter interaction.

In the second part of the paper, we have presented a
theory of emission spectra beyond the perturbative regime
and have studied the conditions for the occurrence of strong,
nonperturbative light-matter coupling. The Rabi frequency
depends on the total decay rate, thus being unaffected by the
radiative efficiency. It depends on the dipole oscillator strength
and on the mode effective volume with the same kind of
expression that holds for other cavity-QED systems (e.g., for a
quantum dot in a photonic cavity).65 This leads to an expression
for the threshold oscillator strength as a function of effective
volume and metal dissipation. By optimizing the geometrical
parameters of the nanoshell to minimize the effective volume
we can determine the optimal conditions for strong coupling,
which yield oscillator strengths as low as a few units that
can be easily obtained with typical emitters (quantum dots or
organic molecules). Furthermore, the “inversion” phenomenon
just mentioned implies that a dipole inside a nanoshell and
coupled to spherelike modes is more favorable for strong
coupling than the same dipole interacting with a full metal
sphere of the same total radius, provided that the shell is thin
enough to allow the excitation of the dipole and the detection
of the emitted radiation.

The present approach based on a decay rate expressed as a
sum over surface plasmon resonances could be applied to more
complicated geometries requiring numerical determination
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of the spectra, provided they can be fitted with Lorentzian
functions. When applying the results of this work to specific
metallic systems, care should be taken in quantifying the
crucial parameter of dissipation, which in the present work
is simply modeled by a Drude term: effects related to
interband transitions—possibly modifying the spectrum of
plasmonic resonances, and/or increasing dissipation—should
be taken into account. Moreover, when the dimensions of
the system become much smaller than the mean-free path
of the electrons, a spatially nonlocal dielectric function
could be required.68–72 Even with these words of caution,
metallic nanoshells are promising systems to tailor light-matter
interaction with plasmonic resonances, also for demonstrating
the strong-coupling regime. The main point is that the degrees
of freedom provided by the inner and outer radii can be usefully
exploited to tune the frequencies and effective volumes of
plasmonic resonances. While we have given examples of
“optimal” designs from a theoretical point of view, in a real
experiment, the conditions for strong coupling might be met
by probing different nanoshells, taking advantage of size
distribution. Other mechanisms of in situ tuning could be
devised, e.g., filling the core of the shell with an easily tunable
material.73 It could also be useful to probe the effective mode
volume, or local field enhancement, in the proximity of metal

nanostructures by means of near-field optical microscopy.74–76

Once surface plasmon frequencies, effective volumes, and
metal dissipation are known, the threshold oscillator strength
for strong coupling can be simply evaluated. This conclusion,
which is independent of nanoparticle geometry, should be of
help in guiding the search for the nonperturbative regime of
light-matter coupling.

ACKNOWLEDGMENTS

The authors are grateful to Dario Gerace for a critical
reading of the manuscript. This work was supported by
Fondazione Cariplo through project 2010-0523.

APPENDIX: QUASISTATIC APPROXIMATION OF
THE EXACT DECAY RATE

The dyadic Green function for an inhomogeneous medium
can be split into a free-space term and a scattering term, in the

form
↔
G (r,r ′,ω) =

↔
G0 (r,r ′,ω)+

↔
Gs (r,r ′,ω). Here, we will

follow closely the notation used in Ref. 53. In the case of a
nanoshell, if the dipole is inside the inner cavity, the scattering
part of the dyadic Green function takes the form

↔
Gs(33) (r,r ′,ω) = ik

4π

+∞∑
l=0

l∑
m=0

(2 − δm0)
2l + 1

l(l + 1)

(l − m)!

(l + m)!

[
C(33)

M (ω)M e
olm

(k,r)M e
olm

(k,r ′) + C(33)
N (ω)N e

olm
(k,r)N e

olm
(k,r ′)

]
, (A1)

on the other hand, if the dipole is beyond the outer surface, it reads

↔
Gs(11) (r,r ′,ω) = ik

4π

+∞∑
l=0

l∑
m=0

(2 − δm0)
2l + 1

l(l + 1)

(l − m)!

(l + m)!

[
B(11)

M (ω)M (1)
e
olm

(k,r)M (1)
e
olm

(k,r ′) + B(11)
N (ω)N (1)

e
olm

(k,r)N (1)
e
olm

(k,r ′)
]
,

(A2)

where we indicate with the superscript “(1)” the substitution of the spherical Bessel functions with the corresponding Hankel
functions of the first kind. The definitions of the wave vectors and the coefficients are provided in Ref. 53 and we will not report
them here. The dipole total decay rate 
(ω) is related to the imaginary part of the dyadic Green function by Eq. (12).

The quasistatic approximation consists of taking the limit c → ∞ of the total decay rate. This can be accomplished by
considering the first term of the power series expansion of the Bessel and Hankel functions in Eqs. (A1) and (A2). If the metal
dielectric function follows a Drude model, we obtain


(ω)


0(ω)

 1 +

∑
l�1

Gl(ω), (A3)

where, in the case of a radially oriented dipole inside the inner cavity,

Gl(ω) = 3
l2(l + 1)

2l + 1

r2l−2
d

k3

γD ω ω2
P

(
ω2 − l

2l+1ω2
P

)(
ω2 − 1

2ω2
P

)
(
ω2 − ω2

l+
)2 (

ω2 − ω2
l−

)2 + γ 2
Dω2

(
2ω2 − ω2

P

)2

(
1

a2l+1
− 1

A2l+1

)
, (A4)

otherwise, if the dipole is outside the shell,

Gl(ω) = 3
l(l + 1)2

2l + 1

1

r2l+4
d k3

γD ω ω2
P

(
ω2 − l+1

2l+1ω2
P

)(
ω2 − 1

2ω2
P

)
(
ω2 − ω2

l+
)2 (

ω2 − ω2
l−

)2 + γ 2
Dω2

(
2ω2 − ω2

P

)2 (A2l+1 − a2l+1). (A5)

If we deconvolute each peak by expanding the term (ω2 − ω2
l±)2 into the form (ω − ωl±)2 (ω + ωl±)2 and set ω = ωl± everywhere

but in the factor (ω − ωl±)2, we recover Eq. (11), with its characteristic Lorentzian-shaped character. All terms, including effective
volumes, coincide exactly in the two cases.
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13H. T. Dung, L. Knöll, and D. G. Welsch, Phys. Rev. A 64, 013804

(2001).
14G. Burlak, The Classical And Quantum Dynamics Of The Multi-

spherical Nanostructures (Imperial College Press, London, 2004).
15R. Carminati, J. Greffet, C. Henkel, and J. Vigoureux, Opt.

Commun. 261, 368 (2006).
16H. Mertens, A. F. Koenderink, and A. Polman, Phys. Rev. B 76,

115123 (2007).
17 L.-W. Li, M.-S. Leong, P.-S. Kooi, and T.-S. Yeo, IEEE Trans.

Antennas Propag. 49, 645 (2001).
18D. Guzatov and V. Klimov, Chem. Phys. Lett. 412, 341 (2005).
19T. V. Teperik, V. V. Popov, and F. J. Garcı́a de Abajo, Phys. Rev. B

69, 155402 (2004).
20A. Moroz, Ann. Phys. 315, 352 (2005).
21A. Moroz, Chem. Phys. 317, 1 (2005).
22D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys.

Rev. B 76, 035420 (2007).
23R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
24Y. S. Kim, P. Leung, and T. F. George, Surf. Sci. 195, 1

(1988).
25R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, Phys. Rev. Lett.

75, 4772 (1995).
26L. Novotny, Appl. Phys. Lett. 69, 3806 (1996).
27A. Rahmani, P. C. Chaumet, F. de Fornel, and C. Girard, Phys. Rev.

A 56, 3245 (1997).
28A. Rahmani, P. C. Chaumet, and F. de Fornel, Phys. Rev. A 63,

023819 (2001).
29C. Hermann and O. Hess, J. Opt. Soc. Am. B 19, 3013 (2002).
30M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez,

Appl. Phys. Lett. 85, 3863 (2004).
31S. D’Agostino, P. P. Pompa, R. Chiuri, R. J. Phaneuf, D. G. Britti,

R. Rinaldi, R. Cingolani, and F. D. Sala, Opt. Lett. 34, 2381
(2009).

32A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, Int. J.
Nanotechnology 6, 902 (2009).
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Phys. Rev. B 81, 085444 (2010).

44V. Klimov and D. Guzatov, Appl. Phys. A 89, 305 (2007).
45V. Klimov and A. Lambrecht, Plasmonics 4, 31 (2009).
46G. Sun and J. B. Khurgin, Appl. Phys. Lett. 97, 263110 (2010).
47V. Yannopapas, A. Modinos, and N. Stefanou, Phys. Rev. B 60,

5359 (1999).
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