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First-principles calculation of the Andreev conductance of carbon wires

Bin Wang,1 Yadong Wei,2 and Jian Wang1,*

1Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong,
Pokfulam Road, Hong Kong, China

2Department of Physics, School of Science Shenzhen University, Shenzhen 518060, China
(Received 14 February 2012; revised manuscript received 18 May 2012; published 11 July 2012)

We developed a first-principles approach based on nonequilibrium Green’s function (NEGF) combined with
density functional theory (DFT) to investigate quantum transport properties of normal-metal–superconductor
(N-S) hybrid systems. As an application of our theory, we investigated the Andreev conductance of atomic wires
consisting of 4–15 carbon atoms in contact with one normal Al lead and another superconducting Al lead from
first principles. Numerical results show that the Andreev conductance oscillates between an even and odd number
of carbon atoms. In the presence of the superconducting lead, the self-consistent scattering potential of the N-S
system can be very different from that of the corresponding normal system. Furthermore, a small change of
scattering potential can give rise to a significant change of Andreev conductance. For an even number of carbon
atoms, the change of scattering potential gives rise to a 4–7% difference in conductance, while when the number
of carbon atoms n is odd, a 14–30% change of conductance is observed due to the potential change. We find
that the charge transfer plays an important role in N-S systems. For the carbon wire with normal Al contacts,
there is a significant charge transfer in real space that is responsible for the even-odd oscillation in conductance.
When a superconducting lead is present, the charge is redistributed in momentum space, although it is almost
not changed in real space. For even n, a 10% change of charge density at Fermi level is found mainly in the lead
region. For odd n, however, the change of charge density at Fermi level is even more than 30% near the first,
third, etc., carbon atoms. Since less charge density is available at Fermi level, there is a decrease in conductance
for all carbon wires, especially for the wires with odd number of carbon atoms. Our results indicate that the
self-consistent calculation of the scattering potential is necessary to obtain an accurate Andreev conductance of
N-S hybrid structures.
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I. INTRODUCTION

Normal-metal–superconductor (N-S) hybrid structures
have attracted continuous attention in the past few decades
motivated by their broad application prospect in supercon-
ducting nanoelectronics, spintronics, as well as quantum logic
circuits based on superconductors.1–6 The quantum physics
associated with the coherence transport properties in N-S hy-
brid structures has been extensively investigated theoretically
and experimentally.7,8 At the N-S interface, Andreev reflection
occurs, where an electron in the normal metal is reflected
as a hole and a Cooper pair appears in the superconductor.9

Due to the Andreev reflection, the conductance quantum
of the N-S hybrid structure is twice that of the normal
conductance quantum. Recently, a superconducting single-
molecular transistor was realized in low- dimensional carbon
structures, such as graphene, nanotube, and fullerene.10–12

The transport properties were studied for the first time
in N-S single-fullerene-molecular transistor.12 By adjusting
the magnitude of gate voltage and magnetic field, it was
demonstrated that the effects of Coulomb repulsion, Kondo
correlations, and superconductivity can coexist and compete
in the C60 molecule over a broad range of coupling strengths
of the device. Although many theoretical formalisms have
been developed to describe the transport properties in various
low-dimensional hybrid mesoscopic systems, such as N-S-N,
S-S-N, N-N-S, and S-N-S,13–19 a first-principles quantum
transport theory needed to predict transport properties of
molecular devices is yet to be developed. It is the purpose
of this paper to fill this gap.

In the presence of N-S interface, Beenakker presented a
general theory to describe the phase-coherent multichannel
Andreev conductance based on the random-matrix theory.13

The Andreev conductance GNS of the N-S system is related
to the transmission coefficient of the normal system. The
electron transport through N-S system was separated into two
processes: the transport through the central scattering region
(normal region) that is characterized by a scattering matrix sN

and the Andreev reflection at N-S interface characterized by
Andreev reflection coefficient s0 that changes an electron to a
hole. The combination of these two matrices determines the
Andreev conductance of the hybrid system that is given by (at
zero temperature)13

GNS = 4e2

h

N∑
m=1

T 2
m

(2 − Tm)2
, (1)

where Tm is the transmission coefficient of the mth eigenchan-
nel in the normal state. In the theory of Beenakker an implicit
assumption was made, i.e., the scattering potential is not
affected by the presence of the superconducting lead. This is a
good approximation in mesoscopic systems. In fact, this theory
has been used to analyze the experimental data in N-S point
contacts and obtained qualitatively agreement.4,20 Therefore,
if the superconducting lead does not modify the scattering
potential, one can use Eq. (1) to calculate the Andreev con-
ductance of the N-S system. However, it has been emphasized
that internal Coulomb potential in the N-S hybrid system
must be included in order to keep the gauge invariance.21
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As we will show in this paper, this Coulomb potential is very
sensitive to the presence of the superconducting lead due to
the charge transfer. There is a significant change in Andreev
conductance due to the change of effective potential when a
superconducting lead is present. Hence we should calculate
the Coulomb potential self-consistently especially for the N-S
molecular devices.

In this paper, we propose a theory that combines the
nonequilibrium Green’s function with the density functional
theory to predict transport properties of molecular N-S junc-
tions. This theory allows us to determine the Coulomb potential
self-consistently so that the gauge invariance is ensured. As
an application, we have calculated the Andreev conductance
of Al-Cn-Al hybrid N-S structures from first principles and
compared the results with those from Eq. (1). Our numerical
result shows that a change of Coulomb potential due to the
superconducting lead on an odd number of carbon wires is
more significant than that of an even number of carbon wires.
Although the charge density does not change very much in
real space when the superconducting lead is present, there is
a significant redistribution of charge density in energy or mo-
mentum space which gives rise to a large decrease of density
of states at the Fermi level. For instance, the charge density at
the Fermi level can have over 30% change for an odd number
of carbon wires. Finally, we find that the Andreev conductance
oscillates between an even and odd number of carbon atoms.

The remainder of the paper is organized as follows. In
Sec. II, our transport theory of N-S hybrid structures is
presented. In Sec. III, this theory is used to calculate the
Andreev conductance in atomic structures. We also give
a detailed analysis for numerical results. Section IV is a
summary of this work.

II. THEORETICAL FORMALISM

In this section, we present the gauge-invariant nonlinear
transport theory based on nonequilibrium Green’s function
(NEGF) for the N-S hybrid system. Since the theory is gauge
invariant, we fix vR = 0 and the bias difference is v = vL. The
Hamiltonian of a N-S hybrid system can be written as16,22,23

(e = h̄ = 1)

H =
∑
k,σ

(εL,k − vL)a†
L,kσ aL,kσ +

∑
k,σ

εR,ka
†
R,kσ aR,kσ

+
∑

k

[�∗
kaR,k↓aR,−k↑ + �ka

†
R,−k↑a

†
R,k↓]

+
∑
n,σ

(εn − Vn)d†
nσ dnσ

+
∑
kα,nσ

[tkαnσ a
†
α,kσ dnσ + t∗kαnσ d†

nσ aα,kσ ], (2)

where the first term in this equation describes the Hamiltonian
of the left normal lead; the second and third terms describe
the Hamiltonian of the right superconducting lead with �k the
superconductor pair potential in the k state; the fourth term is
the Hamiltonian of the central scattering region; and the last
term gives the coupling between the leads and the scattering
region. It should be noted that the pair potential �k =
−V0〈aR,k↓aR,−k↑〉 is real-space dependent with V0 a positive

electron-phonon interaction which leads to superconductivity,
�(r) = � inside the superconducting lead and �(r) = 0 inside
the normal lead. Near the N-S interface within the phase
coherent length, �(r) should be determined by self-consistent
calculation to keep gauge invariance.17,24 A self-consistent
calculation of pair potential has been investigated in Ref. 25
for superconducting mesoscopic weak links. However, due
to the technical difficulty of ab initio calculation, �(r) was
replaced with a step function in our calculation and only
the internal potential Vn was calculated self-consistently. The
internal potential Vn consists of Hartree potential Vh and
exchange-correlation potential Vxc where Vh is determined
by solving the Poisson equation,21

∇2Vh(r) = −4πi

∫
dE

2π
[G<

11(E,U (r))], (3)

where G<
11 is the electron lesser Green’s function. According

to Ref. 22, G<
11 can be calculated by

G<
11 = i

∫
dE

2π

[
Gr

11�LGa
11fL(E + vL)

+Gr
12�LGa

21fL(E − vL)
]

+ i

∫
dE

2π
ρR(E)fR(E)

[
Gr

11�RGa
11 + Gr

12�RGa
21

− �

|E|
(
Gr

11�RGa
21 + Gr

12�RGa
11

)]
. (4)

Here Gr
11 and Gr

12 are the matrix elements in 2 × 2 Nambu
representation that are given by Eqs. (4) and (6) in Ref. 21 The
self-energy 	r = 	r

L + 	r
R which is a 2 × 2 matrix in spin

space is given by22

	r
L(E) =

(
	r

L(E) 0

0 −	a
L(−E)

)
, (5)

where 	r
α ≡ Pα − i�α/2 is the self-energy of lead α in the

normal case. Here Pα and −�α/2 are the real and imaginary
parts of the self-energy 	r

α of the atomic lead α in the normal
state which must be calculated from the first principles. We
see that the self-energy of the left normal lead is diagonal in
spin space, while for the right superconducting lead, the off
diagonal matrix elements of self-energy are nonzero. In the
Andreev approximation where |�|,E 	 EF , we have26

	r
R =

(
PR − i �R

2 β1 i �R

2 β2

i �R

2 β2 −PR − i �R

2 β1

)
, (6)

where β1 = νE/
√

E2 − �2 and β2 = ν�/
√

E2 − �2, ν = 1
when E > −�, and ν = −1 otherwise. The dimensionless
BCS density of states (DOS) is given by ρR = θ (|E| − �)β1.
Equations (3) and (4) form the basic equations to describe
the nonlinear transport properties of N-S systems. We notice
that the self-consistent calculation has to be done in Nambu
presentation that involves the coupling between electron and
hole. This is quite different from the case when the right lead
is in the normal state.

After the self-consistent solution from Eqs. (3) and (4)
is obtained, the Green’s function and scattering potential
landscape denoted as VNS can be used to calculate the Andreev
current IL through the normal lead [see Eqs. (1)–(3) of Ref. 21].
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If the bias voltage is less than �, the Andreev conductance is
given by

GNS = 4e2

h

∫
dE(−∂EfL)Tr

[
�L(E)Gr

12(E)�L(−E)Ga
21(E)

]
.

(7)

It should be noted that if the difference of scattering potential
due to the presence of superconducting lead is ignored, i.e.,
when VNS ≈ VN where VN is the scattering potential of the
system with normal leads, Eq. (7) is the same as Eq. (1). As will
be seen in the next section, this difference cannot be neglected
in general.

III. NUMERICAL RESULTS

In this section, we apply our formalism to atomic N-S
hybrid structures to calculate the Andreev conductance. Our
numerical scheme is based on the NEGF theory for N-S hybrid
systems combined with density functional theory (DFT) which
is a generalization of our MCDCAL package27 to N-S hybrid
systems. A linear combination of the atomic orbitals (LCAO)
basis set28 was employed to solve Eqs. (3) and (4) numerically.
The exchange correlation was treated at the LSDA level29 and
a nonlocal norm conserving pseudopotential30 was used to
define the atomic core. The density matrix was constructed
in orbital space and the internal potential was solved in real
space. In our calculation, the NEGF-DFT self-consistency was
carried out until the numerical tolerance was less than 10−4 eV.

Specifically, we study the structures of one-dimensional
carbon wires in contact with a normal Al lead and a
superconducting Al lead (Al-Cn-Al) with n from 4 to 15. The
schematic structure of Al-C6-Al is shown in Fig. 1. The two
semi-infinite leads consist of a periodically repeated unit cell
(including nine atoms) along the (100) direction to x = ±∞.
In our calculation, the distance between the adjacent two
carbon atoms is 2.5 a.u. and between the Al slab and carbon
atom is fixed to 3.78 a.u.

As we have discussed in the Introduction, two scattering
potentials for Al-Cn-Al system can be calculated using the
NEGF-DFT method: VN is the potential when the right lead
is in the normal state, and VNS is the potential when the
right lead is in the superconducting state. For VN , the normal
transmission coefficient Tn can be calculated. This in turn gives
the Andreev conductance (denoted as ḠNS) from Eq. (1).
For VNS , we calculate the Andreev conductance (denoted
as GNS) from Eq. (7). Clearly, GNS is the accurate result
while ḠNS is an approximate result by assuming VNS ≈ VN .

FIG. 1. (Color online) Al-C6-Al structure where an atomic wire
with six carbon atoms is sandwiched between a normal Al lead and a
superconducting Al lead. The frame is the simulation box.
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FIG. 2. (Color online) (a) Conductance oscillation with the num-
ber of carbon atoms n of Al-Cn-Al systems, where n = 4,5,6, . . . ,15.
The red triangles, black squares, and blue circles correspond to GN ,
ḠNS , and GNS , respectively. (b) κ = GNS/ḠNS versus n for Al-Cn-Al
systems.

In this paper, the Andreev conductance of Al-Cn-Al hybrid
structures with n = 4 to 15 were calculated using Eqs. (1)
and (7). The conductance of normal system can be obtained
by GN = 2e2/h

∑
n Tn.

In Fig. 2(a) we plot GN , ḠNS , and GNS versus the number of
carbon atoms n so that the effect of the superconducting lead
to the scattering potential can be examined. The following
observations are in order: (1) For the normal system, the
conductance GN shows oscillatory behavior for an even and
odd number of carbon atoms. This feature has been observed
in mesoscopic systems for normal and NS systems before.31

From the first-principles calculation32 it is attributed to charge
transfer from Al lead to the carbon atoms. (2) When the right
lead becomes superconducting, ḠNS and GNS also oscillate
with an even and odd number of carbon atoms. (3) For the
carbon wires with an even number of atoms the Andreev
conductance ḠNS and GNS are very close for each n and
dropped by about 0.5 × 2e2/h compared with the conductance
GN . This means that VNS = VN is not a bad approximation for
even n. (4) For an odd number of carbon atoms, the situation
is different. The Andreev conductance ḠNS has a big increase
over GN for the wire with five carbon atoms C5. The difference
ḠNS − GN decreases for longer wires. The longer the wire,
the more is the decrease. When n = 15, we have ḠNS ≈ GN .
On the other hand, the Andreev conductance GNS is smaller
than but close to GN for n = 5. The difference GNS − GN

increases for larger n. To see the difference between GNS

and ḠNS clearly, the ratio κ = GNS/ḠNS versus the number
of atoms n is shown in Fig. 2(b). We see that κ is close
to 0.9 for carbon wires with an even number of atoms and
decreases for an odd number of atoms from 0.7 to 0.35.
From Fig. 2 we conclude that Eq. (1) overestimates Andreev
conductance for the odd n by a large amount. Obviously,
this is due to the change of scattering potential when the
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FIG. 3. (Color online) (a),(b) Scattering potentials VN and VNS

and (c),(d) charge distribution ρ tot
N and ρ tot

NS along the transport
direction for Al-C14-Al and Al-C15-Al, respectively. In each panel, the
scattering potential or charge distribution is summed up perpendicular
to the transport direction. The filled circles in each panel indicate the
coordinates of atoms in the device along the transport direction.

superconducting lead is present. To see this point more clearly,
we calculated the normal conductance ḠN for all Al-Cn-Al
structures. ḠN is calculated by ḠN = 2e2/h

∑
n T̄n where

T̄n is the transmission coefficient due to the superconducting
scattering potential VNS . We found that ḠN is always smaller
than the corresponding GN for all the atomic wires. In addition,
the conductance difference is larger for the structures with an
odd number of carbon atoms. As a result, it is necessary to
recalculate the scattering potential self-consistently when a
normal lead is replaced by a superconducting lead.

To understand the large difference between ḠNS and GNS ,
we try to compare the scattering potential VN for normal
systems and VNS for N-S systems of all the atomic wires in the
real space. We found that there is a slight difference between
VN and VNS for all the carbon wires with the number of atoms
from 4 to 15. To show that VN and VNS of Al-C14-Al and
Al-C15-Al structures are plotted along the device direction in
Figs. 3(a) and 3(b), respectively, where the scattering potential
is summed up on each slice perpendicular to the transport
direction. We see that the potential difference dV for even n is
very small, while for odd n, dV is relatively larger. It is a little
surprising that such a small dV can induce a large difference
between ḠNS and GNS .

Physically, the change of scattering potential due to the
presence of superconducting lead will affect the distribution of
charge density. We have calculated the real-space distribution
of total charge ρ tot

N (r) from VN and ρ tot
NS(r) from VNS of all

the atomic structures. ρ tot
N (r) and ρ tot

NS(r) can be calculated as
follows:

ρ tot
α (r) =

∫
dEf (E)ρE

α (r) =
∫

dEf (E)[DOS(E)]r,r, (8)

where the subscript α = N or NS. ρE
α (r) is the charge dis-

tribution at a particular energy and DOS is the corresponding
local density of states. The numerical result shows that the
difference between ρ tot

N and ρ tot
NS is very small at each real-space

grid for all structures. In Figs. 3(c) and 3(d), both ρ tot
N and

FIG. 4. (Color online) (a),(b) Real-space charge distribution at
Fermi level ρ

Ef

N and ρ
Ef

NS for Al-C14-Al and Al-C15-Al structures,
respectively. (c),(d) �ρEf = ρ

Ef

N − ρ
Ef

NS along the transport direction
for Al-C14-Al and Al-C15-Al structures, respectively. For each panel,
ρ

Ef

N and ρ
Ef

NS are summed up perpendicular to the transport direction.
The filled circles in each panel indicate the coordinates of atoms in
the device along the transport direction.

ρ tot
NS of Al-C14-Al and Al-C15-Al structures are plotted in the

scattering region, where ρ tot is the total charge calculated on
each plane perpendicular to the transport direction. Although
ρ tot

NS is very close to ρ tot
N in the real space, we found that

DOS at momentum space is redistributed when a normal
lead is replaced by a superconducting lead. Note that for the
Al-Cn-Al structure, conductance is mostly contributed by the
lowest unoccupied molecular orbital (LUMO) state coupled
with the highest occupied molecular orbital (HOMO) state and
the equilibrium transport properties are mostly determined
by the DOS at the Fermi level.33 Therefore, we investigated
the real-space distribution of DOS at the Fermi level: ρ

Ef

N for
structures with a normal right lead and ρ

Ef

NS for structures with
a superconducting right lead. As an example, we plotted ρ

Ef

N

and ρ
Ef

NS for Al-C14-Al and Al-C15-Al structures in Figs. 4(a)
and 4(b), respectively. For Al-C14-Al, the difference between
ρ

Ef

NS and ρ
Ef

N mostly occurs in the lead region (about 10%),
while they are almost the same in the region of carbon wires.
However, the behavior is very different for Al-C15-Al. Except
in the lead region where about a 10% change occurs between
ρ

Ef

N and ρ
Ef

NS , there is also a large difference in the region
of carbon wires, especially for the first, third,. . ., fifteenth
carbon atoms, and the difference is as large as 30%. From the
above discussion, we can conclude that it is this significant
redistribution of charge in energy or momentum space that
induces the large difference of Andreev conductance for an odd
number of carbon wires, although the total charge distribution
in real space is not influenced very much by the presence of
the superconducting lead. This behavior has been confirmed
to be a general behavior for all the carbon wires with n

from 4 to 15.
Before closing, we note that we have made a number

of approximations in this work that can affect the accuracy
of the numerical results. On the DFT level, we have used
pseudopotential approximation to replace ionic potentials
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and the influence of the core electrons in the core region.
The local-density approximation has been used for exchange
and correlation functional. To speed up the calculation, the
Green’s function has been expanded in terms of the local
orbital (LCAO approach). Finally, the pair potential has been
treated non-self-consistently. It would be interesting to test the
accuracy of these approximations in the future.

IV. SUMMARY

In summary, we developed a first-principles method within
the framework of Keldysh NEGF to investigate the quantum
transport properties of N-S hybrid systems. Using our method,
we have calculated the Andreev conductance of Al-Cn-Al
structures. In the calculation, the scattering potential can be
treated at two levels. One can either use the scattering potential
when both leads are in normal states or include the effect of su-
perconducting leads on the scattering potential. We found that
the Andreev conductance can be very different for these two
cases. In particular, this difference in the Andreev conductance
is more obvious for carbon wires with an odd number of atoms

than those with an even number of atoms. As a consequence,
the scattering potential of N-S systems must be determined
self-consistently to include the effect of the superconducting
lead. In addition, we found that although the charge distribution
in real space is very close in these two cases, the charge density
in momentum space is redistributed which is responsible for
the large change in Andreev conductance of carbon wires,
especially for those with an odd number of atoms.
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