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We derive a semianalytical model to describe the interaction of a single photon emitter and a collection of
arbitrarily shaped metal nanoparticles. The theory treats the metal nanoparticles classically within the electrostatic
eigenmode method, wherein the surface plasmon resonances of collections of nanoparticles are represented by
the hybridization of the plasmon modes of the noninteracting particles. The single photon emitter is represented
by a quantum mechanical two-level system that exhibits line broadening due to a finite spontaneous decay rate.
Plasmon-emitter coupling is described by solving the resulting Bloch equations. We illustrate the theory by
studying model systems consisting of a single emitter coupled to one, two, and three nanoparticles, and we also
compare the predictions of our model to published experimental data.
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I. INTRODUCTION

The use of surface plasmons (collective electron oscillations
that occur at metal/dielectric interfaces) to develop optoelec-
tronic technologies has attracted much attention due to the sub-
wavelength confinement of electromagnetic energy.1,2 Current
fabrication techniques such as lithographic methods and wet-
chemistry synthetic approaches, allow for the development of
integrated structures with novel optical properties that so far
have found applications in surface enhanced Raman scattering
spectroscopy,3,4 enhanced optical transmission5 and optical
metamaterials with negative refraction.6,7 A key problem
common to many of these applications of plasmonics arises
from the strong losses exhibited by metals. These losses mainly
arise from internal mechanisms leading to dissipation (such as
electron-phonon coupling) and radiative losses exhibited by
metallic nanostructures.

Two methodologies can be proposed to overcome these
limitations. One of these consists of designing subwavelength
metallic structures wherein the surface plasmon resonances
(SPRs) are strongly nonradiative in nature, a feat achieved by
creating structures with dark plasmon modes.8 A complication
associated with this proposal is that dark modes cannot be
directly excited in the far field and instead they require a
light source in the near field such as a dipole emitter or
complex illumination strategies. A second alternative (that has
raised much debate9,10) is to incorporate a gain medium in the
nanostructures to overcome absorptive losses in the metal.11–13

Common to these two solutions is therefore the interaction of
plasmonic structures with dipole emitters that raises the ques-
tion of how to optimize the interaction of these light sources
with surface plasmon resonances (both bright and dark).

In this paper, we present a semianalytical formalism that
accounts for the interaction of a single polarizable dipole
(such as an organic dye molecule, impurity center in diamond
or a quantum dot) and a collection of arbitrarily shaped
metallic nanoparticles (MNPs). This type of interaction
has been studied extensively in the literature (for an early
comprehensive study see Ref. 14) where most of the cases
considered involve coupling between highly symmetric
structures such as a planar film to a point dipole,14 a dielectric

sphere containing the polarizable dipole coupled to a metallic
sphere,15–20 or to an ellipsoid.21 Recently, a boundary element
method has been presented22 wherein more general metallic
structures can be considered.

The approach presented here allows for a simple and more
intuitive picture to describe the interaction of dipole emitters
and plasmonic structures. It is based on the electrostatic eigen-
mode method,23 where the collective plasmon resonances of
coupled nanoparticles of arbitrary shape are described as linear
and symmetric combinations of those of the noninteracting
particles, similar to the case of molecular orbitals.

II. THEORY

We model the polarizable dipole as a dielectric sphere with
two electronic states (ground and excited), a system that we
will refer to as a nanocrystal quantum dot (NQD). The optical
response of a NQD in the presence of a nearby set of metal
nanoparticles (MNPs) can be found by solving the optical
Bloch equations, which involve a term proportional to the
product of the electric dipole moment of the NQD and the
total electric field �E′ driving its electronic transitions (dipole
approximation). To find this electric field, we now proceed to
solve the electrostatic problem associated with the MNP-NQD
interaction. We only consider the electrostatic case where all
the relevant size scales (NQD diameter, size of MNP and
relative center-to-center distance | �R|) are much smaller than λ,
the wavelength of the applied electric field �Eo = Eon̂e cos(ωt).
Furthermore, we assume the MNPs and NQD to be embedded
in an uniform dielectric medium of permittivity εb = 2.25,
which simulates that of the experimentally relevant case of
Poly(methyl methacrylate) a widely-used material in nano
fabrication (in the visible).

Within the electrostatic eigenmode method (EEM),23 the
localized surface plasmon resonances (LSPRs) of subwave-
length sized MNPs are described in terms of both a surface
charge density σ (�r) and its (source-free) normal modes σm

p (�r):

σ (�r) =
∑
p,m

ãm
p σm

p (�r), (1)

035411-11098-0121/2012/86(3)/035411(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.035411
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where the coefficients in this expansion ãm
p are the “excitation

amplitude” of the mth normal mode of particle p in the
set. In effect, this equation describes the “hybridization”23,24

of the surface plasmon modes σm
p that occurs due to the

excitation by an external electric field and the electrostatic
interaction among the particles. For a given MNP geometry,
the EEM gives a prescription whereby the set σm

p (�r), along with
surface dipole distributions τm

p (�r), are found as a solution to
an eigenvalue equation.25–27 In general, the eigenvalue γ m

p is a
shape-dependent quantity which takes on a value of γ

x,y,z
p = 3

for spheres (for each of the three degenerate dipole modes of
this geometrical shape) and decreases as the aspect ratio of the
MNP increases.

The magnitude of the excitation amplitudes depends on the
total electric field applied to the MNP, which in the case of one
MNP in close proximity to a single NQD, has the following
contributions:

ãm
p = f m

p (ω)
∮

τm
p (�ri)n̂i · [�Eo + �Ex(�ri)] dSi = am

p + Cmd
px ãd

x ,

(2)

a statement of the fact that the surface plasmons on the
MNPs can be excited by the external driving field �Eo with
an excitation amplitude am

p and the field produced by the NQD
�Ex (in the notation that we adopt, the subscript x denotes the
contributions from the NQD) with an amplitude proportional
to Cmd

px , the “coupling constant” between the resonant mode
m of the particle p and the dipole d of the dielectric sphere
(NQD) (an expression for this coupling constant is given in
Appendix IV). f m

p (ω) is a frequency-dependent factor related
to the polarizability of the mth resonance mode of the particle.
The integrals are evaluated on the surface S of the nanoparticles
and n̂i is the normal at a point �ri .

ad
x is the excitation amplitude of an isolated NQD (modeled

as a dielectric sphere), which is given by28

ad
x = εb√

Vs

α(ω,Eo)x̂k · �Eo, (3)

where k = x,y,z. x̂k is a unit vector in the direction of k,
Vs is the volume of the sphere, and α(ω) its polarizability.
For a two-state system in a uniform electric field �Eo, this
polarizability is given by29

α(ω,Eo) = μ2

εbh̄

(ω̃o − ω)

(ω − ω̃o)(ω − ω̃∗
o) + (

	2
o

/
2
) , (4)

with μ the interband dipole moment of the electronic tran-
sition, ω̃o = ωo − i
o/2 is the complex resonance frequency
of the two-level system, 	o = 3εbμEo/[2h̄(εS + 2εb)] is the
Rabi frequency of the driving field, and εS the static dielectric
constant of the bulk semiconductor material. The factor
3εb/(εS + 2εb) takes into account local field corrections that
arise from dielectric confinement within the sphere. Strictly
speaking, near an exciton transition εS becomes frequency
dependent and therefore this local field factor also becomes
a function of frequency.30 In order to keep the problem
algebraically tractable, we have approximated this local field
correction factor by its low frequency limit.

ãd
x , the excitation amplitude of the interacting NQD, can be

expanded in an analogous manner to Eq. (2):

ãd
x = εb√

Vs

[α(ω,Eo)x̂k · �Eo + α(ω,E)x̂k · �E]

= ad
x + εb√

Vs

α(ω,E)x̂k · �E

= ad
x + Cdm

xp ãm
p , (5)

with an implicitly defined coupling coefficient Cdm
xp .

The electric field �E that appears in Eq. (5) is the one
produced by the LSPR and is given by Coulomb’s law:

�E(�r) = ãm
p (ω)

[
1

4πεb

∮
σm

p (�r′)
(�r − �r′)
|�r − �r ′|3 dS

]
,

= ãm
p (ω)�Em

p (�r), (6)

where the electric field per LSP mode �Em
p (�r) has been defined

as the quantity in square brackets.
Equation (5) together with Eq. (2) results in a system of

two equations for the excitation amplitudes of the interacting
MNP-NQD system. The solution of these equations is given
by (

ãm
p

ãd
x

)
=

(
1 −Cmd

px

−Cdm
xp 1

)−1 (
am

p

ad
x

)

= 1

�

(
1 Cmd

px

Cdm
xp 1

) (
am

p

ad
x

)
, (7)

where � is the determinant of the coupling matrix describing
the MNP-NQD interaction, given explicitly by � = 1 −
Cmd

px Cdm
xp . Equation (7) implies that (i) if a MNP has a dark

plasmon mode (i.e., am
p = 0) by virtue of its interaction with

the NQD, this dark mode can be indirectly excited31 and (ii)
as a result of the interaction, the NQD-MNP system may show
new resonances that occur at frequencies for which � is a
minimum.

In principle, the set of equations given in Eq. (7) describe
all the phenomena that arises from the electrostatic coupling.
However, the intricate interdependence of the electric fields
implicit in these equations needs special attention. For in-
stance, the electric field E that appears in α(ω,E) of Eq. (5)
is given by �E = ãm

p
�Em

p [see Eq. (6)], which by using the result
expressed in Eq. (7) for ãm

p gives the next equation:

�E = ãm
p

�Em
p = am

p + Cmd
px ad

x

�
�Em

p . (8)

In general, the coupling constants Cmd
px and Cdm

xp can be
written as products of a factor containing spectral information
[f m

p (ω)α(ω,�E)] and a factor describing the details of the
geometry of the interacting system [Gmd

px Gdm
xp , which arise

from the “geometrical” part of Coulomb’s law], that is,
Cmd

px Cdm
xp = f m

p (ω)α(ω,�E)Gmd
px Gdm

xp with which we rewrite our
previous result as

�E = am
p + Cmd

px ad
x

1 − f m
p (ω)α(ω,�E)Gmd

px Gdm
xp

�Em
p , (9)
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a nonlinear equation for the field �E. Furthermore, as we will
discuss later, α(ω,�E) is not just trivially found by replacing �Eo

with �E in Eq. (4).

A. Approximations

1. “Classical” coupling

When the magnitude of the incident electric field |�Eo|
is low enough such that 	o � ω, according to Eq. (4), the
polarizability of the NQD becomes independent of the electric
field:

α(ω) ≈ − μ2

εbh̄

1

(ω − ω̃∗
o)

, (10)

a condition that introduces a number of simplifications as we
now discuss.

The NQD-MNP resonance condition occurs when � = 0
in Eq. (7), which leads to

1 = Cmd
pXCdm

Xp = f m
p (ω)α(ω)Gmd

pXGdm
Xp. (11)

Close to the resonance frequency of the LSPR, f m
p (ω) can

be approximated as23

f m
p (ω) ≈ − Am

p

(4πεb)2
(
ω − ω̃m

p

) , (12)

where Am
p = 2γ m

p ε2
b (ωm

p )3/[(γ m
p − 1)2ω2

P ], ωP is the bulk
plasma frequency of the metal (within a Drude’s model), and
ωm

p depends on γ m
p .

With this in mind and using Eqs. (10) and (12), the
resonance condition 1 = Cmd

pXCdm
Xp can be cast in the following

form: (
ω − ω̃m

p

)
(ω − ω̃∗

o) = g2, (13)

where as a shorthand notation, we have introduced

g2 ≡ μ2

εbh̄

Am
p

(4πεb)2
Gmd

px Gdm
xp , (14)

as an exciton-plasmon coupling constant. This constant de-
pends on several material parameters, including the dipole
moment of the optical transition in the NQD (μ), the surface
plasmon resonance frequency of the MNP (implicit in Am

p )
the background (low frequency) dielectric constant εb, and on
the geometry of the MNP-NQD interacting system through the
factors Gmd

px Gdm
xp .

Equation (13) predicts that the NQD-MNP new resonance
frequencies are

ω± = ω̃p + ω̃o

2
±

√
g2 + (ω̃p − ω̃o)2/16. (15)

A resonance splitting is observed only when g2 >

(
p + 
o)2/16, or equivalently, when the exciton-plasmon
coupling exceeds the losses of the coupled system. This
splitting may for instance be observed experimentally in
the scattering spectrum of NQD-MNP coupled systems. The
scattering cross section of the coupled system is given by Cs =
k4/(6πEo)|�p|2, with �p = ãd

x �px + ãm
p �pp, a vector addition that

involves 1/�, in accordance with Eq. (7).

According to Eq. (14), there are two sets of parameters
that must be optimized in designing a strongly coupled
MNP-NQD system (in the classical sense here considered):
the geometrical configuration of the system and their material
(spectral) properties. Geometrically, the coupling constant g

can be increased by positioning several noninteracting NQDs
around a single MNP.

When two NQDs with excitation amplitudes ad
1 and ad

2 are
placed in the vicinity of a MNP, the excitation amplitudes of
Eq. (7) are given by28

⎛
⎜⎝

ãd
1

ãm
p

ãd
2

⎞
⎟⎠ =

⎛
⎜⎝

1 −Cdm
1p 0

−Cmd
p1 1 −Cmd

p2

0 −Cmd
2p 1

⎞
⎟⎠

−1 ⎛
⎜⎝

ad
1

am
p

ad
2

⎞
⎟⎠ , (16)

where the determinant of the coupling matrix is given by � =
1 − [Cmd

p1 Cdm
1p + Cmd

p2 Cdm
2p ].

Assuming the two NQDs to be identical, leads to the
following simplification:

� = 1 − α(ω)f m
p (ω)

[
Gmd

p1 Gdm
1p + Gmd

p2 Gdm
2p

]
. (17)

For this system of three particles, the resonance condition
� = 0 can be written with Eqs. (4) and (12) as(

ω − ω̃m
p

)
(ω − ω̃∗

o) = g̃2, (18)

with g̃2 = μ2

h̄

Am
p

(4πεb)2 [Gmd
p1 Gdm

1p + Gmd
p2 Gdm

2p ], which is the same
coupling constant derived previously with the addition of the
terms that need to be accounted for in describing the geometry
of the interacting system.

As a result of the NQD-MNP interaction, the spectrum
of the light emitted by the NQD and the decay rate of its
excited state can be modified, effects that are not accounted
for in the “classical” approximation presented in this section.
In the next section, we present a semiclassical treatment of the
coupling problem whereby we continue to treat the electric
fields classically but we describe the NQD with the aid of
quantum mechanics.

2. “Quantum” effects of coupling

Within the EEM, the induced dipole moment �p on a
dielectric sphere is given by

�p =
3∑

i=1

ak
x · pk

x =
3∑

i=1

εbα(ω,Eo)√
Vs

(x̂k · �Eo)
√

Vsx̂k

= εbα(ω,Eo)�Eo, (19)

where we have used the definition of the excitation amplitude
given by Eq. (3) and the dipole moments of a sphere:28

pk
x =

√
Vsx̂k. (20)

The magnitude of the dipole moment can also be evaluated
as the following expectation value:

〈�p〉 = Tr{p̂ρ}, (21)

where ρ is the electronic density matrix of the sphere, which
must satisfy the following equation of motion (Liouville

035411-3
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equation):

ρ̇ = −(i/h̄)[Ĥ ,ρ] − 
ρ, (22)

where Ĥ the Hamiltonian of the system and 
 is an operator
that accounts for the rates of the processes that lead to
electronic energy relaxation (in our study we only consider
spontaneous emission). The Hamiltonian Ĥ is given by

Ĥ = h̄ωo − p̂ · �E′. (23)
Here, h̄ωo is the energy of the transition between the ground

(|1〉) and excited (|2〉) states of the emitter which for the sake
of simplicity is assumed to be a two level system. Its dipole
moment operator is assumed to consist of the nondiagonal
elements: p̂ = μ(|2〉〈1| + |1〉〈2|), where μ is the transition
dipole moment of the NQD. �E′ is the total electric field that
drives the emitter, which consists of the applied field �Eo plus
the field produced by the MNP, given by Eq. (9). When the
sphere is isolated from the MNPs, this field is simply given
by �Eo and the resulting electronic polarizability is given by
Eq. (4).

However, when the emitter interacts with MNPs, the electric
field that produces electronic excitations [the nonlinear Eq. (9)]
contains a contribution from α(ω,E), the polarizability of the
NQD to this electric field, which is the function that we aim
to find by solving Eq. (22). In order to do so, we introduce in
this section a number of approximations.

To begin, we expand the denominator of Eq. (9) as a Taylor
series:

1

1 − f m
p (ω)α(ω,E)Gmd

pXGdm
Xp

≈ 1 + f m
p (ω)α(ω,E)Gmd

pXGdm
Xp + · · · , (24)

yielding to zeroth order,

�E ≈ (
am

p + Cmd
px ad

x

)�Em
p . (25)

The coupling factors Gmd
pX , Gdm

Xp originate from the Coulomb
interaction between the surface charge (surface dipole) eigen-
modes of the interacting particles. Typically, when coupling
takes place between particles of dissimilar dimensions, these
geometrical coupling constants are small and when they are
smaller than unity,28 the Taylor expansion is justifiable.

Because of our initial long-wavelength assumption, �Eo is
constant over the entire surface of the MNP which then allows
us to simplify am

p :

am
p = f m

p (ω)
∮

τm
p (�r)n̂ · �Eo dS,

= f m
p (ω) �pm

p · �Eo, (26)

a scalar product of the dipole moment �pm
p of the mth LSPR of

the particle with the incident field.
With these results,

�E′ = �Eo + [
f m

p (ω) �pm
p · �Eo + Cmd

px ad
x

]�Em
p ,

= �Gm
p |�Eo| + �Fm

p

∣∣�pd
x

∣∣, (27)

where we have defined the functions �Gm
p and �Fm

p as

�Gm
p |�Eo| = [

n̂e + f m
p (ω)

(�pm
p · n̂e

)�Em
p

]|�Eo|,
�Fm

p pd
x = (

Cmd
px âd

x

) �Em
p

∣∣�pd
x

∣∣, (28)

with �pd
x = |�pd

x |n̂x , �Eo = |�Eo|n̂e, and Cmd
px âd

x the excitation
amplitude of the LSPR mode m of particle p by a unit dipole
p̂x . Both of these functions describe the effect of the MNP on
the local electric field experienced by the NQD. |�pd

x | is given
by Eq. (21).

The dimensionless function �Gm
p contains information about

how the MNP produces an electric field in response to the
externally applied �Eo, whereas the function �Fm

p describes the
part of the electric field produced by the MNP due to excitation
of LSPRs by the radiation emitted by the NQD’s dipole.
Clearly, when the NQD is isolated �Gm

p = 1 and �Fm
p = 0, and

the polarizability α(ω,Eo) of Eq. (4) is found after solving
Eq. (22) (under steady-state conditions). Our interest is in
finding ρ (and, consequently, α) by taking into account the
self-interaction terms that arise from �Fm

p pd
x in Eq. (27).

By using the rotating wave approximation,29 the follow-
ing coupled differential equations for the coherence (σ12 =
ρ12e

−iωt ) and the excited state population (ρ22) of the NQD
are obtained from Eq. (22):

ih̄σ̇12 = [
h̄(ω − ω̃∗

o) − μ2Fm
p n

]
σ12 − n	e (29)

and

ih̄ρ̇22 = 2Im(	eσ21) − 2μ2Im
(
Fm

p

)
σ12σ21, − ih̄
ρ22 (30)

with the population inversion n defined as n = ρ22 − ρ11 and
the normalisation condition ρ11 + ρ22 = 1 (closed system).
The symbol ω is the frequency of the incident uniform electric
field, h̄	e = μEoG

m
p /2 is the effective Rabi frequency, ω̃o =

ωo − i
/2 is the complex electronic transition frequency of
the emitter (with ω̃∗

o its complex conjugate) and σ21 = (σ12)∗.
These equations are similar to the optical Bloch equations

of a two-level atom29 except for the modulation of the
Rabi frequency (	o = μEo/2h̄) by the function Gm

p and the
terms μ2Fm

p nσ12 and Im(Fm
p )σ12σ21. These terms involve

the function Fm
p , that arises from the NQD self-interaction due

to the induced electric fields on the plasmonic particles and
the products σ12n and σ12σ21, which account for nonlinear and
population-dependent effects. In atomic physics,32,33 similar
nonlinear terms appear in the Bloch equations for dense
media and these have been shown to give rise to an array
of phenomena including optical bistability, the nonlinear Fano
effect, linear and nonlinear spectral shifts, and lasing without
inversion.

3. Steady state

In steady state, the population of the excited state of the
NQD is given by the following equation:

ρ22 = |h̄	e|2
|h̄(ω − ω̃c)|2 + 2|h̄	e|2

= |h̄	e|2
[h̄(ω − ωc)]2 + (h̄
c/2)2 + 2|h̄	e|2 , (31)

where for shorthand notation, we have defined a frequency
ω̃c = ωc − i
c/2 with ωc = ωo + μ2Re(Fm

p )n/h̄ and 
c/2 =

/2 + μ2Im(Fm

p )n/h̄. This frequency ω̃c also depends on ρ22

(n = ρ22 − ρ11) making Eq. (31) a transcendental one.
According to this equation, Gm

p expresses the modification
(enhancement) of the Rabi frequency due to the electric fields
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from the MNP. Gm
p modifies the Rabi frequency according

to h̄	e = μE0G
m
p /2. Effectively, the MNPs can “focus”

electromagnetic energy to the NQD thus promoting more
transitions between the ground and excited states. In affecting
the excitation/relaxation dynamics of the dipole transition, the
function Fm

p plays two roles: (i) according to Eq. (31), the
real part is responsible for a spectral shift in the resonance of
the NQD transition described by ωc = ωo + μ2Re(Fm

p )n/h̄

and (ii) its imaginary part is responsible for changes in
its decay lifetime, mathematically given by 
c/2 = 
/2 +
μ2Im(Fm

p )n/h̄. The interplay of these two functions, namely
Gm

p and Fm
p will determine the response of the excitation in

the coupled system, which could result in irreversible energy
transfer to the plasmon resonance of the MNPs (fluorescence
quenching), fluorescence enhancement, etc.

In these two theory sections, we have considered the NQD-
LSPR coupling at two approximation levels. In the following
section, we consider the application of the results obtained to
a few specific MNP-NQD systems, namely, the coupling of
a single NQD to (i) a single Ag nanorod, (ii) a collection of
coupled nanorods exhibiting plasmon hybridization, and (iii)
the experiment of Anger et al.34 consisting of the controlled
coupling of a single molecule to an Au nanoparticle.

III. CASE STUDIES

A. Coupling to a single nanorod

1. “Classical” description

In Fig. 1, we show the scattering and absorption cross sec-
tions calculated for systems of coupled NQD-metal nanorod.
The nanorod was assumed to be a hemispherically capped Ag
cylinder of diameter 15 nm and length 80 nm, with a dielectric
data for Ag that was adapted from Johnson and Christy.35 Only
the longitudinal (dipolar) LSPR was considered, for which
γ m

p = 1.105 equivalent to a wavelength of ∼944 nm (1.314 eV).
The dielectric spheres were assumed to have a diameter of
10 nm and a polarizabilty described by Eq. (10) with a reso-
nance frequency that matched that of the LSPR of the nanorod
and a width of 20 meV [that is ω̃∗

o = (1.314 + i0.01)eV].
The edge to edge separation between the sphere and rod was
5 nm and the polarization of the incident (uniform) electric
field was assumed to be parallel to the long axis of the
nanorod.

For a value of μ2/(Vsεb) = 1/16 (μ = 2.4 enm ≈ 3.84 ×
10−28 Cm), the scattering spectra shown in Fig. 1 consists of
a doublet with a “dip” located at the position of the maximum
scattering intensity for the isolated nanorod. The interaction
with the NQD is said to have induced a “transparency” in
the scattering spectrum of the nanorod. When the single rod
interacts with two NQDs positioned at both ends of its tips, the
induced transparency is stronger as evidenced by an increased
depth in the spectrum at the position of the LSPR of the
noninteracting rod, a phenomenon that is consistent with our
previous discussion leading to Eq. (18).

2. “Quantum” mechanical description

In Fig. 2, we show the spectra of �Gm
p and �Fm

p calculated
(using the EEM) for a point located 20 nm away from a Ag
nanorod. For this nanorod, the spectrum of the z component

FIG. 1. (Color online) (Top) Spectra of the normalised scattering
(Cs) and absorption (Ca) cross sections for a coupled system
consisting of a single NQD with a single nanorod as indicated in the
inset. (Bottom) Spectra of the normalised scattering (Cs) cross section
for a system comprised of two noninteracting NQDs with a single
nanorod (shaded plot) arranged as shown in the inset. Also shown
for comparison is the spectrum of the case of a single NQD-nanorod
case (line).

of �Gm
p is composed of two resonance features (at 943 and 477

nm), both corresponding to modes that can be excited by an
incident uniform electric field. On the other hand, the spectrum
of the z component of �Fm

p shows one additional resonance at
581 nm that corresponds to the first quadrupole-like mode of
the nanorod. This mode is characterized by having �pm

p = 0 and

therefore does not contribute to �Gm
p [see Eq. (28)].

These results have also been compared to finite element
full-field simulations implemented in COMSOL MULTIPHYSICS

and the spectral position of the maxima in the total radiated
power. However, the position of the maximum in the spectrum
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FIG. 2. (Color online) Plots of z components of (top) �G and
(bottom) �F (assumed μ = 1 enm) calculated for a point located
20 nm away on the z plane from the tip of a 80 nm long, 15 nm in
diameter Ag nanorod with εb = 2.25 (z axis coincides with long axis
of the nanorod). The dielectric data of Ref. 35 for Ag was used, and
the first three LSP modes of the nanorod were taken into account
[γ m1

NR = 1.105 (477 nm), γ
m2
NR = 1.358 (582 nm), γ

m3
NR = 1.713

(943 nm)]. Also shown in the bottom are the surface charge
distributions σm

NR of each of the modes considered. The arrows on the
top panel indicate the position of the scattering spectrum calculated
with COMSOL (485, 595, and 995 nm).

(longitudinal dipole mode) is located at 995 nm (shown with
an arrow in Fig. 2) as opposed to the 943 nm predicted by the
EEM. This discrepancy arises from the inclusion of retardation
effects in the finite element calculations.

In Fig. 3, we show the calculated excited state population
of a fictitious NQD positioned 20 nm away from one of the
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FIG. 3. (Color online) ρ22 calculated for a NQD positioned 20 nm
away from the Ag nanorod as in Fig. 2. For this NQD, we have
assumed h̄ωo = 1.312 eV (945 nm) and h̄
 = 50 meV. “iso” is the
excited state density for the isolated NQD, which for clarity, has been
multiplied by 100. “int” corresponds to that of the interacting NQD.
The incident field intensity was 10 kW/cm2.

FIG. 4. (Color online) Spectra of Gz (top) and Fz (bottom)
calculated at the center of a Ag nanorod dimer. The tip to tip separation
is 20 nm, the z axis coincides with the long axis of the nanorods
and the dimensions of each nanorod are those employed in Fig. 2.
Also shown in this figure is the surface charge distribution of the
lowest-order collective surface plasmon mode of the pair.

end tips of a Ag nanorod (same dimensions and orientation
as in Fig. 2). For this calculation we have assumed the
NQD’s exciton transition to be resonant with the longitudinal
dipole-like mode of the nanorod and furthermore, we have
also assumed the NQD’s excited state dipole to be parallel
to the long axis of the nanorod. Under these conditions and
according to Fig. 2 and Eq. (31) the main effect of the surface
plasmon modes of the nanorod on the NQD is to enhance the
excitation rate via an enhancement of the local electric field
�E [see Eq. (27)] accounted for by the magnitude of �Gm

p . As
shown in this figure, the interaction leads to an enhancement
of the excited state population.

B. Coupling to a dimer

According to Eqs. (27), (28), and (31), further enhance-
ments in ρ22 can be achieved by increasing the magnitude
of the dipole moments of the surface plasmon resonances.
One way of achieving this is by exploiting collective surface
plasmon modes of coupled MNPs. In Fig. 4, we show the
spectra of Gz and Fz calculated in the center point of a nanorod
dimer, separated by 20 nm (distance tip to tip) and in Fig. 5 the
resulting spectra of ρ22 along with that of the isolated NQD.

Within the EEM, nanoparticle coupling leads to the
formation of new collective LSPRs for which the dipole
moments are linear combinations of those of the noninteracting
particles. Similar to Eq. (1), the dipole moments are given
by �p = ∑

ãm
p �pm

p , which for the case of the dimer of Fig. 4
(considering only the longitudinal dipole moment pd

p of each
nanorod) results in two combinations (�p ∝ �pd

p ± �pd
p) one of

which consists of an in-phase oscillation resulting in an
increased dipole moment (collective bright mode). This bright
mode leads to an increase in | �G| [see inset of Fig. 5 and
Eq. (28)] and, therefore, in 	e, which bearing Eq. (31) in mind,
translates in the enhanced excited state population shown in
Fig. 5. Another consequence of coupling is a spectral shift
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FIG. 5. (Color online) Spectrum of ρ22 calculated for a NQD
positioned in the middle of the coupled Ag nanorod dimer of Fig. 4.
For this NQD, we have assumed h̄ωo = 1.312 eV (945 nm) and h̄
 =
50 meV. “iso” is the excited state density for the isolated NQD, which
for clarity, has been multiplied by 100. The incident field intensity
was 10 kW/cm2. The inset shows the spectra of |Gz| for the single
nanorod and its dimer.

in the resonance frequency of the collective modes [as evident
in the inset of Fig. 5], an effect leading to a noticeable
shift in the maximum of the spectrum of ρ22 that results
from preferential excitation enhancements (described by the
spectrum of | �G|) over a particular spectral window.

The symmetry of the interacting MNPs plays an important
role in determining the optical properties of the collective
LSPRs,27,36 leading to selection rules for their excitation
by a uniform electric field. In Fig. 6, we consider the
interaction of a fictitious NQD located in the center of a
nanorod trimer forming an isosceles triangle (point group
D3h). For this geometrical arrangement, the two lowest-order
bright LSPRs are oriented along two perpendicular directions:
horizontal (x) and vertical (z), and can be excited by light
with electric fields polarized on each direction.27 Due to the
asymmetry of the triangle on these two axes (the condition
for an isosceles triangle), the two LSP modes have different
resonance frequencies, a condition that is evident in the spectra
of �G. If the NQD’s exciton transition spectrum encompasses
these two LSP modes as is shown in Fig. 6 (bottom), then
as the incident polarization is changed from x to z polarized,
the MNP-NQD interaction would lead to a ρ22 that exhibits a
peak amplitude on the red and blue end of the isolated NQD
spectrum. This optical effect can be achieved with NQDs due
to the isotropy of their excitation dipole moment.37

C. Effect of �F
In the structures considered so far, the magnitude of μ2 �Fn/h̄

has been considerably smaller than the linewidth of the exciton
transition, resulting in almost negligible effects from this

FIG. 6. (Color online) Response of a NQD [h̄ωo = 1.277 eV
(971 nm), h̄
o = 25 meV, μ = 1 enm] positioned in the center of
a trimer of nanorods (same dimensions as in Fig. 2). The nanorods
form an isosceles triangle and have two collective brigth LPS modes
shown in the top. (Top) Plot of the magnitude of �G for illumination
with x and z polarized light. (Middle) Plot of the real and imaginary
(dotted line) parts of μ2 �Fn/h̄. (Bottom) Plots of the resulting spectra
of the excited state population along with the one for the isolated
NQD (black line, multiplied by 1000 for clarity).

interaction pathway. The effect of �F on the excited state
population is nonlinear and intensity dependent. According
to Eq. (31), it modifies ρ22 in two ways: it can lead to spectral
shifts and it can modify the decay rate of the NQD, both effects
are described by the real and imaginary parts of μ2 �Fn/h̄, which
depend on n = 2ρ22 − 1 and therefore on the intensity of the
applied field. For a plasmonic structure supporting dark modes,
according to Eq. (28) �G = 1 and �F has a spectrum whose line
shape is given by Eq. (12) but with a magnitude dictated by
the geometry of the MNP and the MNP-NQD coupled system.

In Fig. 7, we show the effect of an artificial spectrum
of μ2 �F/h̄ that was modeled to have a Lorentzian lineshape
centered on the exciton transition energy of the NQD but whose
magnitude was varied between 2
 and 
/4. In this situation,
ρ22(ω = ωo) = |h̄	e|2/[(h̄
c/2)2 + 2|h̄	e|2], which attains a
maximum value of 1/2 when 
c = 0 or when the coupling
of the NQD to the LSPR leads to a loss compensation
(|
/2 + μ2Im(F )n/h̄|2 = 0).

As can be seen in Fig. 7, if the magnitude of μ2 �Fn/h̄ is
larger than 
, the MNP-NQD interaction leads to quenching
of the excited state population. Physically, this results from
an increased value of 
c which is interpreted as an increase in
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FIG. 7. (Color online) Effect of the peak amplitude (indicated in
the legend) of μ2 �Fn/h̄ on the spectrum of ρ22. “iso” refers to the
isolated NQD. For this calculation we have assumed μ = 10 enm,
I = 1 kW/cm2 and h̄
 = 5 meV, nx = 1.74.

energy dissipation in the NQD due to energy transfer to surface
plasmon modes in the MNP. At the other extreme, maximum
enhancement is observed at a peak amplitude of μ2 �Fn/h̄ that is
slightly larger than 
/2 (the line labeled nx
/2 on the figure).
The enhancement is accompanied with a significant decrease
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FIG. 8. (Color online) Effect of the resonance wavelength of the
function �F on the spectra of ρ22. Three cases are plotted and they
consist of (i) a blue shift of 
/2 in �F, (ii) a redshift by the same amount,
and (iii) the case of resonance considered already in Fig. 7. All
the numerical parameters remained unchanged from those employed
previously.

FIG. 9. (Color online) Relative emission intensity vs distance for
a single emitter coupled to a Au nanosphere of 80 nm in diameter. For
this calculation, we have employed the following set of parameters:
h̄ωo = 2.39 eV (518 nm) h̄
o = 50 meV, εb = 2.25. μ = 48.5 D.
For these calculations, we have considered the first three LSP modes
(γ l

p = 3, 5, 7) of a sphere, each mode is 2l + 1 degenerate.

in the spectral linewidth but the maximum value of ρ22 attained
is still well below the 1/2 limit. This effect is independent of the
linewidth of the function �F but depends strongly on the position
of its resonance as demonstrated by the results of Fig. 8."

D. Comparison with experimental results

Anger et al.34 have measured the emission intensity of
single molecules as a function of separation distance z from a
80 nm in diameter Au sphere. In this study, a continuous in-
crease in the measured fluorescence count rate was observed as
z decreased up to an optimum value (maximum enhancement
when z = 5 nm) after which it started to decrease sharply. In
order to simulate the experimental conditions of Ref. 34, we
considered a spherical Au nanoparticle of 80 nm in diameter
and calculated, using Eq. (31), the excited state population and
emission intensity I as a function of separation distance (I was
calculated as

∫
ρ22(ω) dω and is shown in the plot normalized

to that of the isolated emitter). The results are shown in
Fig. 9. Our results closely follow the experimental trends [see
Fig. 4(a) of Ref. 34] albeit with an optimum distance that is
about 50% smaller. Failure to reproduce the experimental data
may arise from our complete neglect of substrate effects, which
are known to modify the LSP resonances of nanoparticles,38

retardation, and radiative damping, which are implicitly
ignored in the EEM and furthermore, the inclusion of only
the first three eigenmodes of the Au nanoparticle in describing
the interaction. Additionally, we have assumed a value for μ
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that may not coincide with the appropriate experimental value.
At shorter molecule-MNP distances a full quantum mechanical
treatment of the coupling is required in order to better describe
the experimental results.39

IV. CONCLUSIONS

In summary, we have derived a semianalytical model
to describe the coupling of an electronic excitation in a
dipole emitter to the localized surface plasmon resonances
of collection of metal nanoparticles. This interaction can lead
to resonance splittings in the scattering spectrum of metallic
nanostructures and also to enhancement or quenching of the
excited state population of the emitter, effects that arise from
a balance between the relative contributions from a pair of
functions �G and �F. Model calculations were presented to
illustrate the applicability of our formalism, including an
experimentally relevant case where we were able to reproduce
the qualitative features of the interaction of a single molecule
and a single Au nanoparticle. Due to its simple interpretation,
the theory presented here can be used to design plasmonic-
excitonic coupled structures, which are the building blocks of
novel electro-optic technologies at the nanoscale.
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APPENDIX: THE EEM, THE ELECTRIC FIELD RADIATED
BY THE NQD, AND THE EXCITATION OF LSPRs

The surface plasmon eigenmodes of the MNPs were
calculated by numerically solving the eigenproblem:

σm
p (�r) = γ m

p

2π

∮
σm

p (�rq)
(�r − �rq)

|r − rq |3 · n̂ dSq, (A1)

where γ m
p are the eigenvalues that are related to the resonance

wavelength of the surface plasmon modes by

εM

(
λm

p

) = εb

1 + γ m
p

1 − γ m
p

, (A2)

with λm
p given by the real part of this equation. Here,

λm
p is the wavelength of the surface plasmon resonance,

εM (λ) is the (wavelength-dependent) permittivity of the metal
and εb that of the (uniform) background medium. For a
single spherical nanoparticle, γ m=1

p = 3 (dipolar mode, triply
degenerate. γ m=2

p = 5 corresponds to a qudrupolar mode with
fivefold degeneracy) and this equation reduces to the familiar
resonance condition εM (λ) = −2εb (The Frölich mode). A
similar eigenvalue equation also exists for the surface dipole
distributions τm

p (�r).23,26 Once the set of σm
p (�r) and τm

p (�r) are
known, the excitation amplitudes am

p are calculated for a given

polarization of the applied electric field �Eo.
In the near-field approximation (i.e., when the wavelength

of the driving field is larger than any other relevant size scale),
the electric field radiated by the NQD’s dipole moment �px is
given by

�Ed
x (�r) = 3(�px · n̂)n̂ − �px

4πεb | �R − �r|3 , (A3)

with n̂ a normal vector pointing on the direction of the
separation distance between the location of the NQD ( �R) and
the point of observation (�r). This expression can be inserted
into Eq. (2) resulting in

f m
p (ω)

∮
τm
p (�ri)

[
3(�px · n̂)n̂i · n̂ − n̂i · �px

4πεb | �R − �r|3
]

dS = Cmd
px ãd

x ,

(A4)

where we have written �px = ãs
x �pd

x in accordance with
Sec. II A2.

From this last result, one can infer by inspection that the
coupling coefficient can be factored out as a product of a
frequency-dependent component and a geometrical compo-
nent:

Cmd
px = f m

p (ω)

4πεb

Gmd
px

= f m
p (ω)

4πεb

∮
τm
p (�ri)[

3
(�pd

x · n̂
)
n̂i · n̂ − n̂i · �pd

x

| �R − �r|3 ]dS. (A5)
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