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Polaron effects on the dc- and ac-tunneling characteristics of molecular Josephson junctions
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We study the interplay of polaronic effect and superconductivity in transport through molecular Josephson
junctions. The tunneling rates of electrons are dominated by vibronic replicas of the superconducting gap, which
show up as prominent features in the differential conductance for the dc and ac current. For relatively large
molecule-lead coupling, a features that appears when the Josephson frequency matches the vibron frequency
can be identified with an over-the-gap structure observed by Marchenkov et al. [Nat. Nanotech. 2, 481 (2007)].
However, we are more concerned with the weak-coupling limit, where resonant tunneling through the molecular
level dominates. We find that certain features involving both Andreev reflection and vibron emission show an
unusual shift of the bias voltage V at their maximum with the gate voltage Vg as V ∼ (2/3) Vg . Moreover, due
to the polaronic effect, the ac Josephson current shows a phase shift of π when the bias eV is increased by one
vibronic energy quantum h̄ωv . This distinctive even-odd effect is explained in terms of the different sign of the
coupling to vibrons of electrons and of Andreev-reflected holes.
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I. INTRODUCTION

Electron transport through quantum dots embedded in
Josephson junctions is attracting increasing interest.1,2 Rich
phenomena3–9 arise due to the competition of superconduc-
tivity and strong interactions. A crucial feature of molecular
Josephson junctions (MJJs) is the interplay of the ac Josephson
effect and molecular vibrations. Signatures in the transport
can be expected when the Josephson frequency matches a
vibration frequency. Since the Josephson frequency can be
precisely controlled by the bias voltage, such signatures could
form the basis of a precise molecular spectroscopy. This idea
has recently been explored by Marchenkov et al.,6 who have
measured the differential conductance of a Nb dimer in a
superconducting break junction. An over-the-gap structure
consisting of a series of peaks was ascribed to the excitation
of vibrational modes by the ac Josephson current,6 but no
microscopic description was provided. Theoretical treatments
of MJJs have mainly focused on the dc current either for
weak molecule-lead coupling at vanishing bias3 or for weak
electron-vibron coupling5,8 so that the microscopic under-
standing of spectroscopic signatures in transport through MJJs
is still far from complete. However, such an understanding
is the prerequisite for developing the dc and ac Josephson
currents in MJJs into spectroscopic tools.

The purpose of this paper is to investigate the transport
properties of a biased MJJ within a microscopic model. We
focus on MJJs with strong electron-vibron coupling. In this
limit, electrons dress with a vibron cloud, forming polarons.
A minimal model of a single-orbital molecule between two
s-wave superconducting leads is considered. Electrons in
the molecular orbital are coupled to a vibrational mode of
frequency ωv . We will see that signatures in transport do
not only occur when the Josephson frequency ωJ equals
the vibration frequency ωv but also when h̄ωJ , h̄ωv , and the
superconducting gap in the leads satisfy certain other simple
rational relations.

The remainder of this paper is organized as follows: In
Sec. II we present our model and discuss the theoretical
approach. In Sec. III we then present and discuss our results
for the dc and ac Josephson effects, followed by a summary in
Sec. IV.

II. MODEL AND METHOD

Our model Hamiltonian reads

H =
∑

α=L,R

Hα + Hmol + HT , (1)

where the first term describes the left (L) and right (R) BCS
superconducting leads,

Hα =
∑
kσ

εαkσ c
†
αkσ cαkσ +

∑
kσ

(�∗
α cαk↑cα,−k,↓ + H.c.), (2)

with superconducting order parameter �α . cαkσ (c†αkσ ) anni-
hilates (creates) an electron of wave vector k and spin σ in
lead α.

The molecule with vibration degree of freedom is repre-
sented by

Hmol =
∑

σ

εmd†
σ dσ + h̄ωva

†a + λ(a† + a)
∑

σ

d†
σ dσ , (3)

where εm is the molecular energy level, dσ (d†
σ ) is the

annihilation (creation) operator of a spin-σ electron in the
molecular orbital, a (a†) is the vibron annihilation (creation)
operator, and λ is the electron-vibron coupling strength. We
neglect the Coulomb interaction in the molecule, which is
justified if the charging energy is small compared to the
coupling to the leads.10 The role of the Coulomb interaction
in MJJs has recently been reviewed in Ref. 1.
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The tunneling between the molecule and the leads is
described by

HT = 1√
N

∑
αkσ

tαd exp

[
i

2

(
φα + 2eVα

h̄
t

)]
c
†
αkσ dσ + H.c.,

(4)
where φα is the initial phase of the superconducting order
parameter at time t = 0, Vα is the voltage in lead α, and tαd

is the tunneling matrix element. In the following we choose
φα = 0, VL = 0, and VR = −V , where V is the voltage drop
across the junction. For symmetric capacitances between the
molecule and the leads, as assumed here, the molecular energy
level is then given by εm = ε0 − eV/2.

To go beyond perturbative approaches,3,5,8 we employ the
unitary Lang-Firsov transformation11–13 to diagonalize Hmol.
The transformed Hamiltonian reads

H̃ = Hα +
∑

σ

(
ε̃0 − eV

2

)
d†

σ dσ + h̄ωv a†a + H̃T , (5)

where the molecular energy level is shifted to ε̃0 = ε0 −
λ2/h̄ωv by the polaron binding energy. To simplify notation
we now take ε0 to denote the shifted level. In principle,
the electron-electron interaction is also renormalized by the
transformation but we neglect this shift together with the bare
Coulomb interaction. We do not expect the on-site interaction
to qualitatively change our results, which are concerned with
transport outside of the Coulomb-blockade regime. H̃T has the
same form as HT , except that the tunneling matrix elements
are dressed by the polaronic effect as t̃αd = tαdX, where

X = exp

[
− λ

h̄ωv

(a† − a)

]
(6)

is the polaron-shift operator.
The transport properties are obtained by the

nonequilibrium-Green-function method.12,14 In the Nambu
representation we introduce the contour-ordered Green
function G(t,t ′) = −i〈Tc ψ(t)ψ†(t ′)〉 with the contour-
ordering directive Tc and ψ = (d↑,d

†
↓)T . The particle current

through the lead α is14–16

Iα(t) = 2e

h̄
Re

∫
dt1 Tr

{
σz

[
G<(t,t1)�a

α(t1,t)

+Gr (t,t1)�<
α (t1,t)

]}
, (7)

where the trace is over Nambu space, σz is a Pauli matrix,
and �a

α and �<
α are, respectively, the advanced and lesser

self-energies due to the coupling to lead α. The advanced
self-energy is related to the retarded one through �a(t,t ′) =
[�r (t ′,t)]†.

The current measured in, say, the left lead consists of the
particle current IL(t) plus the displacement current due to
the formation of image charges. This contribution vanishes
in the stationary state but must be taken into account in
the time-dependent case to ensure gauge invariance and
current conservation. This requires proper partitioning of the
displacement current.17 Since we assume symmetric coupling,
the displacement currents are symmetric, in which case
the measured current equals the symmetrized current I =
(IL − IR)/2.17,18 Due to the ac Josephson effect, the current
can be expanded as I (t) = ∑

n Ine
inωJ t , where the Josephson

frequency is ωJ = 2 eV/h̄ and In = (IL,n − IR,n)/2. The
Fourier components Iα,n are

Iα,n = 2e

h

∫
dε Re Tr

∑
m

{
σz

[
G<

−n,m(ε) �a
α;m,0(ε)

+Gr
−n,m(ε) �<

α;m,0(ε)
]}

, (8)

where Gm,n(ε) ≡ Gn−m(ε + mωJ ) and

Gn(ε) ≡
∫ ∞

−∞
dt

1

T

∫ T

0
dt ′ eiε(t−t ′) e−inωJ t ′ G(t,t ′) (9)

and analogously for the self-energies. The current can be
decomposed into dissipative (ID

n ) and nondissipative (I S
n )

contributions,15,16

I (t) = I0 +
∑
n>0

(
ID
n cos nωJ t + I S

n sin nωJ t
)
, (10)

where ID
n = Re (I−n + In) and I S

n = Im (I−n − In).
Before turning to transport properties, we show that

the molecule-lead coupling is drastically modified by the
polaronic effect. We employ the standard decoupling ap-
proximation, which assumes that averages of products of
two polaron-shift operators can be taken out of electronic
Green functions and evaluated in equilibrium.12,19–21 This
approximation is valid if h̄ωv or λ is large compared to
the molecule-lead coupling. It is known that beyond its
range of quantitative reliability, the approximation predicts
resonant features that are too broad and too low, but that are
centered at the same energy as obtained from a more advanced
treatment.21 In contrast to previous studies for normal leads,
we encounter not only the correlation function 〈X(t − t ′)X†〉
but also 〈X(t − t ′)X〉. These functions are given by12,13,20,21

〈X(t)X†〉 = 〈X†(t)X〉 =
∑

l

Ll e
−inωvt , (11)

〈X(t)X〉 = 〈X†(t)X†〉 =
∑

l

(−1)l Ll e
−inωvt , (12)

where

Ll ≡ e−(λ/h̄ωv )2(2Nv+1) exp

(
lh̄ωv

2kBT

)
Il(η), (13)

with the modified Bessel function Il of the argument η =
2(λ/h̄ωv)2√Nv(Nv + 1). Nv is the average vibron number at
temperature T determined by the Bose-Einstein distribution
function. The correlation functions can be evaluated analyti-
cally. While the normal one has the well-known form12,13,20,21

〈X(t)X†〉 = exp{−g2 [(1 − e−iωvt )(Nv + 1)

+Nv(1 − eiωvt )]}, (14)

the anomalous one is

〈X(t)X〉 = exp{−g2 [(1 + e−iωvt )(Nv + 1)

+Nv(1 + eiωvt )]}. (15)

The two correlation functions differ by a phase shift of half
a vibration period. This phase shift will turn out to be crucial
for the polaron effect on the Josephson current. Its origin
can be traced back to the factor of (−1)l under the sum
in Eq. (12). This factor stems from Andreev reflection: An
electron tunneling out of the molecule transmutes into a hole
before it tunnels back in, which couples to the vibron with the
opposite sign, as seen by inspecting the last term in Eq. (3).
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Under the decoupling approximation, we obtain the re-
tarded and lesser self-energies due to the coupling to super-
conducting lead α as

[
�r

α;mn

]
ij

(ε)

=
∞∑

l=−∞
(−1)l(i−j )Ll

{[
�̃r

α;mn

]
ij

(ε−
l )

+ 1

2
([�̃<

α;mn]ij (ε−
l ) − [�̃<

α;mn]ij (ε+
l ))

+ 1

2i
(H [[�̃<

α;mn]ij ](ε−
l ) − H [[�̃<

α;mn]ij ](ε+
l ))

}
(16)

and

[�<
α;mn]ij =

∞∑
l=−∞

(−1)l(i−j )Ll [�̃<
α;mn]ij (ε + lωv), (17)

respectively, where ε±
l ≡ ε ± lh̄ωv , and i,j = 1,2 are Nambu

indices. Here, �̃α is the self-energy in the absence of electron-
vibron coupling. Taking the wide-band limit and making use
of our choice of vanishing initial phases φα at time t = 0, �̃α

is given by15,16

�̃r
L;mn(ε) = − i

2
�L βL(ε̃m)

(
1 −�L

ε̃m

−�L

ε̃m
1

)
, (18)

�̃r
R;mn(ε) = − i

2
�R

⎛
⎝δmn βR(ε̃m+1/2) δm,n−1 βR(ε̃m+1/2) −�R

ε̃m+1/2

δm,n+1 βR(ε̃m−1/2) −�R

ε̃m−1/2
δmn βR(ε̃m−1/2)

⎞
⎠ , (19)

�̃<
L;mn(ε) = i �L δmnf (ε̃m) ρ̃L(ε̃m)

⎛
⎝ 1 −�L

ε̃m

−�L

ε̃m
1

⎞
⎠ , (20)

�̃<
R;mn(ε) = i �R

⎛
⎝δmn f (ε̃m+1/2) ρ̃R(ε̃m+1/2) δm,n−1 f (ε̃m+1/2) ρ̃R(ε̃m+1/2) −�R

ε̃m+1/2

δm,n+1 f (ε̃m−1/2) ρ̃R(ε̃m−1/2) −�R

ε̃m−1/2
δmn f (ε̃m−1/2) ρ̃R(ε̃m−1/2)

⎞
⎠ , (21)

where ε̃m ≡ ε + mh̄ωJ and f (ε) ≡ (eε/kBT + 1)−1 is the
Fermi-Dirac distribution function, where the chemical poten-
tial in the left lead is independent of the bias voltage due
to our assumption of VL = 0 and has been absorbed into ε.
The shifts in the arguments ε̃m±1/2 of the Fermi functions in
Eq. (21) account for the potential difference between the leads.
�α ≡ 2π |tαd |2ρN

α describes the coupling of the molecule to
lead α, where ρN

α is the density of states in lead α in the
normal state. In the wide-band limit, �α is independent of
energy. Also, for symmetric coupling we have �L = �R ≡ �.
The expressions for βα and ρ̃α read

βα(ε) =
⎧⎨
⎩

ε

i
√

�2
α−ε2

for �α > |ε|,
|ε|√

ε2−�2
α

for �α < |ε|, (22)

ρ̃α(ε) = θ (|ε| − �α)
|ε|√

ε2 − �2
α

, (23)

respectively. Furthermore,

H [F ](ω) ≡ 1

π
P

∫
dε

F (ε)

ω − ε
(24)

is the Hilbert transform of the function F , where P denotes
the principal value. The above results are valid for fast vibron
relaxation so that the averages of bosonic operators can be
taken in equilibrium. Figure 1 shows −Im (�r

L)11 for various
electron-vibron coupling strengths λ. Without electron-vibron

coupling, −Im (�r
L)11 exhibits the superconducting gap of

the left lead. In the presence of electron-vibron coupling,
−Im (�r

L)11 develops vibronic replicas of the gap edges,
separated by integer multiples of h̄ωv , which open inelastic
transport channels beyond the usual Andreev reflection.15,16

They enable electrons with energies above the superconducting
gap to undergo Andreev reflection under emission or absorp-
tion of vibrons.

energy (h̄ωv)

−
Im

(Σ
r L
(

))
1
1
(a

.u
.)

λ/h̄ωv = 1.5

1.0

0.5

0.0

FIG. 1. Imaginary part of the first diagonal element of the retarded
self-energy −Im (�r

L)11, which represents scattering of electrons
between the molecule and lead L, for various electron-vibron
coupling strengths λ. We have taken h̄ωv = 8 � and � = 0.2 h̄ωv .
With increasing λ, multiple vibronic replicas of the superconducting
gap edges appear.
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III. RESULTS AND DISCUSSION

A. Differential conductance of the dc Josephson current

We now discuss the modification of the Josephson current
due to the polaronic effect. In this study we assume the two
leads to be identical superconductors and take the amplitude of
the order parameters to be � ≡ |�L| = |�R|. In Fig. 2 we first
present density plots of the dc differential conductance dI0/dV

as a function of the bias voltage V and the on-site energy ε0,
which in a break-junction setup could be controlled by a gate
voltage. Different polaronic features are observed depending
on the molecule-lead coupling �. For large �, dc transport is
dominated by coherent tunneling across the molecule without
requiring the energy of the electron to be aligned with the
molecular level. For Fig. 2(a) we have chosen � = λ = h̄ωv .
As noted above, in this regime the decoupling approximation
is expected to underestimate the polaronic effect on transport
but to show resonances at the correct voltages.21 The numerical
results thus provide a reasonable qualitative description to the

energy level ε0(h̄ωv)

(a)

bi
as

vo
lt

ag
e

eV
(h̄

ω
v
)

dI0/dV

(2e2/h)

energy level ε0(h̄ωv)

(b)

bi
as

vo
lt

ag
e

eV
(h̄

ω
v
)

dI0/dV

(2e2/h)

FIG. 2. (Color online) Density plot of the dc differential conduc-
tance dI0/dV vs on-site energy ε0 and bias voltage V for � = h̄ωv/3,
λ = h̄ωv , and (a) � = h̄ωv and (b) � = 0.05 h̄ωv . Features labeled
“1” and “2” do not involve vibron emission or absorption, whereas
those labeled “a”–“h” are due to this polaronic effect. All features are
discussed in the text.

2Δ eV
eV = 2Δ

FIG. 3. (Color online) Schematic representations of the two most
important processes in the MJJ that involve neither vibrons nor
the molecular level. Left panel: single Andreev reflection at the
right molecule-lead contact. Right panel: direct tunneling from the
lower gap edge in the left lead to the upper gap edge in the right
lead. The filled (empty) shapes represent the energy states of the
superconducting leads below (above) the Fermi energy. Energy scales
of the superconducting gap � and the bias voltage eV are indicated.
The arrows denote possible transitions of the electron or hole.

vibron-assisted tunneling features. In Fig. 2(a) we find several
features at fixed bias voltage, insensitive to ε0. The feature
labeled by “1” at eV = h̄ωv/3 = � is due to single Andreev
reflection without vibron emission or absorption. This process
is illustrated by the left panel in Fig. 3. The feature labeled by
“2” at eV = 2h̄ωv/3 = 2� is due to direct tunneling from the
lower gap edge at one side to the upper gap edge at the other,
illustrated by the right panel in Fig. 3.

The features labeled by the letters “a”–“e” in Fig. 2(a)
involve vibrons. All these features and their replicas shifted
by integer multiples of h̄ωv can be explained by the onset
of vibron-assisted Andreev reflections or coherent-tunneling
processes sketched in Fig. 4, where the density of states (DOS)
has been modified compared to the conventional picture of
Andreev reflection16,22,23 to account for the polaronic effect.
For instance, the weak feature “a” located at ωv = ωJ arises
from the resonance of the vibron and Josephson frequencies
and has been invoked by Marchenkov et al.6 to interpret the
observed over-the-gap structure. The process is sketched in
Fig. 4(a), where an electron from a singular edge of the left
lead undergoes one Andreev reflection at the right lead and
arrives at a singular edge of the left lead. In this process, one
vibron is emitted.

On the other hand, for small �, where the decoupling ap-
proximation gives quantitatively reliable results, the tunneling
processes are sensitive to the position of the molecular energy
level. Pronounced features arise when singular edges of the
DOS are aligned with the level ε0. In Fig. 2(b) we show
dI0/dV vs V and ε0 for weak coupling, � = 0.05 h̄ωv . As
the nonresonant tunneling is strongly suppressed, the features
seen in Fig. 2(a) become much weaker or are even invisible
in Fig. 2(b). Instead we see vibron-induced features with
peak bias voltages depending not only on ωv and � but
also on ε0. Two features, labeled by “f” and “g,” satisfy
∂eV/∂ε0 = −2. They are due to the alignment of the gap
edges with the molecular level where resonant sequential
tunneling through the molecule plays a dominant role. The
corresponding processes are depicted in Figs. 4(f) and 4(g).
Note that the level positions are renormalized due to the
electron-vibron coupling. One can see that feature g displays
a sharp rise in dI0/dV followed by a narrow region of
negative differential conductance. This is due to the onset
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(a)

2Δ

h̄ωv eV

(b)

2Δ

ωv 2eV

(c)

2Δ

h̄ωv eV

(d)

2Δ

ωv

2eV

eV

(e)

2Δ

h̄ωv ε0

eV
2

(f)

2Δ

h̄ωv

ε0

eV
2

(g)

2Δ

h̄ωv ε0

3eV
2

(h)

2Δ

h̄ωv

FIG. 4. (Color online) Schematic representation of various
vibron-assisted tunneling and Andreev-reflection processes in the
MJJ. The labels are the same as in Fig. 2. The DOS of both leads
is modified due to the polaronic effect. The filled (empty) shapes
represent the energy states of the superconducting leads below (above)
the Fermi energy. The molecular level ε0 (blue/gray) is broadened due
to the coupling to the leads. Energy scales of the superconducting gap
�, the vibron energy h̄ωv , and the bias voltage eV are indicated. The
arrows denote possible transitions of the electron or hole.

of resonant tunneling at the gap edges with singular DOS.1

Feature f instead shows a broader structure without negative
differential conductance since the occupation of the final state
is different, namely nearly empty for f and nearly full for
g. Moreover, we identify another pronounced feature “h”
moving with ε0, as well as one of its replicas. The underlying
picture is shown in Fig. 4(h). An electron starting from the
molecular level emits a vibron and is Andreev reflected. One
could say that the electron traverses the bias voltage V one
and a half times. Accordingly, the feature has an unusual
slope of ∂eV/∂ε0 = −2/3. Assuming that the molecular
level is shifted by a gate voltage Vg as ε0 = ε′

0 − eVg , we
predict the distinctive slope ∂V/∂Vg = 2/3 of this feature in
a bias-voltage/gate-voltage map. Interestingly, the feature is

energy level ε0(h̄ωv)

(a)

bi
as

vo
lt

ag
e

eV
(h̄

ω
v
)

dID
1 /dV

(2e2/h)

energy level ε0(h̄ωv)

(b)

bi
as

vo
lt

ag
e

eV
(h̄

ω
v
)

dIS
1 /dV

(2e2/h)

FIG. 5. (Color online) Density plot of the ac differential con-
ductance of (a) the dissipative Josephson current ID

1 and (b) the
nondissipative Josephson current I S

1 vs the molecular energy level ε0

and the bias voltage V . The parameters are identical to those used for
Fig. 2(b).

confined to the voltage range h̄ωv � eV � h̄ωv + 2�. This is
due to the fact that for eV > h̄ωv + 2�, electrons prefer direct
tunneling, while for eV < h̄ωv , the process is blocked due to
the Pauli principle.

B. Differential conductance of the ac Josephson current

We finally turn to the ac Josephson current. In Fig. 5
we plot the differential conductances of the dissipative and
nondissipative components as functions of V and ε0 for small
�, where the decoupling approximation is valid. The features
seen in Fig. 2(b) for the dc current are found again. However,
their appearance is different: Feature f becomes blurred in the
ac case and feature h is visible in a much broader voltage
range.

More interestingly, we observe an approximate antiperiodic
behavior of both the dissipative and the nondissipative compo-
nents of the ac differential conductance as functions of the bias
voltage. The ac current itself exhibits the same antiperiodicity
(not shown). The antiperiod in eV is the vibron energy h̄ωv .

035406-5



B. H. WU, J. C. CAO, AND C. TIMM PHYSICAL REVIEW B 86, 035406 (2012)

This means that the alternating current and the ac differential
conductance change their phase by π whenever eV is increased
by h̄ωv . This antiperiodicity is a direct consequence of the
polaronic effect: The anomalous (off-diagonal) self-energies
in Eqs. (16) and (17) contain a factor (−1)l . This factor stems
from the corresponding factor in the anomalous correlation
function of the polaron-shift operators, Eq. (11). As noted
above, the factor is due to Andreev reflection since an outgoing
electron and an Andreev-reflected hole couple to the vibron
with opposite sign. For the weak molecule-lead coupling con-
sidered here, the current is dominated by processes involving
a single vibron number l determined by V . According to
Eqs. (16) and (17), there is then an effective phase difference
across the MJJ of 2eV t/h̄ + lπ . The alternating current then
contains a factor of sin(2eV t/h̄ + lπ ). As a result, the sign
of the ac Josephson current depends on the even-odd parity
of the vibron number l. The phase of the ac components
can be measured with established techniques24 or employing
the coupling to a charge qubit, as proposed recently.25 Our
results are related to the long-standing cos ϕ problem:24,25 It
was found that the measured result for the phase of the ac
Josephson current does not agree with theoretical predictions.
In the present work we have identified a mechanism by which
this phase could even change periodically as a function of the
bias voltage.

IV. SUMMARY

In summary we have studied the transport properties of
MJJs for which the electronic tunneling rates are modified by

polaron formation. Pronounced features due to its interplay
with the superconductivity in the leads have been identified in
the differential conductance of both the dc and ac Josephson
currents. We have explained these features in terms of vibron-
assisted Andreev reflection. The combination of sequential
tunneling and Andreev reflection leads to conductance peaks
that show an unusual shift of their peak bias voltage with
the molecular energy level or gate voltage, V ∼ (2/3) Vg .
Furthermore, the opposite sign of the coupling of electrons
and Andreev-reflected holes to vibrons induces periodic phase
changes of the ac components of the Josephson current—their
phase changes by π when the bias voltage eV is increased by
one vibrational energy quantum h̄ωv . We propose to search for
this clear-cut polaronic effect by measuring the ac Josephson
current through molecular junctions.
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8J. Sköldberg, T. Löfwander, V. S. Shumeiko, and M. Fogelström,
Phys. Rev. Lett. 101, 087002 (2008).

9V. V. Mkhitaryan and M. E. Raikh, Phys. Rev. B 77, 195329 (2008).
10C. Benjamin, T. Jonckheere, A. Zazunov, and T. Martin, Eur. Phys.

J. B 57, 279 (2007).
11I. G. Lang and Y. A. Firsov, Sov. Phys. JETP 16, 1301 (1963).

12G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990).
13M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens. Matter

19, 103201 (2007).
14J. Rammer, Quantum Field Theory of Non-equilibrium States

(Cambridge University Press, Cambridge, 2007).
15J. C. Cuevas, A. Martı́n-Rodero, and A. Levy Yeyati, Phys. Rev. B

54, 7366 (1996).
16Q.-F. Sun, H. Guo, and J. Wang, Phys. Rev. B 65, 075315 (2002).
17B. Wang, J. Wang, and H. Guo, Phys. Rev. Lett. 82, 398 (1999).
18Y. X. Xing, B. Wang, and J. Wang, Phys. Rev. B 82, 205112

(2010).
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