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Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions
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We suggest to excite dipole-forbidden transitions in quantum mechanical systems by using appropriately
designed optical nanoantennas. The antennas are tailored such that their near field contains sufficiently strong
contributions of higher-order multipole moments. The strengths of these moments exceed their free-space analogs
by several orders of magnitude. The impact of such excitation enhancement is exemplarily investigated by studying
the dynamics of a three-level system. It decays upon excitation by an electric quadrupole transition via two electric
dipole transitions. Since one dipole transition is assumed to be radiative, the enhancement of this emission serves
as a figure of merit. Such self-consistent treatment of excitation, emission, and internal dynamics as developed in
this contribution is the key to predict any observable quantity. The suggested scheme may represent a blueprint
for future experiments and will find many obvious spectroscopic and sensing applications.
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I. INTRODUCTION

Optical nanoantennas have changed our perception of how
light can interact with matter. If such a nanoantenna is made
from a noble metal, it supports localized surface plasmon
polaritons (LSPP) at distinct frequencies in the visible and
near-infrared spectral range. LSPPs are excited when the
electromagnetic radiation is resonantly coupled to the charge
density oscillation in the metal. LSPPs allow the focusing of
light into volumes (hot spots) inaccessible by classical optical
devices. Moreover, the hot-spot intensities may exceed the
intensity of the external illumination by orders of magnitude.
These remarkable features render optical nanoantennas as
prime candidates for controlling and improving the interaction
of far-field light with other nanoscopic building blocks such
as quantum dots, atoms, or molecules.1–8 Here, we shall treat
such nanoscopic building blocks at a quantum mechanical
level to fully grasp their internal dynamics and to appropriately
describe their properties.

Many applications have been developed that exploit light
interaction with such hybrid systems consisting of a nanoan-
tenna and a nanoscopic building block. Pivotal examples can
be found in the field of biosensing9 and photovoltaics.10,11

In studies that considered individual hybrid systems, the
most important finding consisted in showing that optical
nanoantennas can modify the radiative decay rate of emitters.12

By taking advantage of this effect, one can either enhance the
emission rate or facilitate nonradiative decays. The interaction
of light with such hybrid systems was first studied for highly
symmetric optical nanoantennas as, e.g., metallic nanospheres.
However, more complex antennas can be equally considered.13

In such cases, the emission characteristics of these hybrid
systems might be entirely governed by the optical nanoantenna
and may strongly deviate from the radiation pattern of emitters
in free space.14 These new engineering possibilities pave the
way for the development of highly directed single-photon
sources and other applications.4,15

However, in all the aforementioned studies, the interaction
of optical nanoantennas with the quantum mechanical system

FIG. 1. (Color online) Left: a plane wave (purple) scatters two
close silver nanospheres. Middle: molecules in-between undergo
a quadrupolar excitation resulting in a luminescence signal at a
lower wavelength (green). Right: excitation and emission of a single
molecule.

has been discussed by resorting to more or less appropriate ap-
proximations. To be specific, apart from a few exceptions,16–18

the effect of higher-order multipole fields in the vicinity
of the antenna has been restricted to a pure electric dipole
field; although experimental indications for the influence
of higher-order multipole fields have been reported in the
literature.19,20 The restriction to electric dipole fields seemed
to be an obvious and quite reasonable approximation since in
free space the interaction of a quantum mechanical system
with higher-order multipole fields is orders of magnitude
weaker than compared to that of an electric dipole field,
as discussed in detail in the following. Moreover, none of
the aforementioned studies considers the modification of the
dynamics of the quantum mechanical system subject to a
higher-order excitation. However, subsequent calculations will
show that this is of crucial importance.

With the self-imposed limitation to consider the field close
to an optical nanoantenna as to be electric dipolar, the potential
of optical nanoantennas is unnecessarily restricted because
there is a much larger flexibility in tailoring their near field. In
this work, the potential of optical nanoantennas to significantly
enhance higher-order multipole fields in the vicinity of the
nanoantenna is considered. The enhancement is so strong that
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it can be essential in the interaction with a quantum mechanical
system. Most notably, it enables the significant excitation of
transitions which are typically considered forbidden in free
space.

To analyze such processes, a theoretical framework neces-
sary to calculate nondipolar transitions of quantum mechanical
multilevel systems in the vicinity of optical nanoantennas is
established in this contribution. These nondipolar transitions,
often termed as forbidden ones, can be tremendously enhanced
due to large higher-order field components.16,18,21,22 In passing,
we note that these higher-order components may also be
used to excite dark modes in plasmonic systems using strong
field gradients.23 Such modes may also couple to quantum
systems.24–26 The emission in the vicinity of nanoantennas is
also strongly modified with respect to free space.27 Thus, to
understand the dynamics of a quantum system, it is essential to
also account for these modified emission characteristics. As an
example, a three-level system that is excited through an electric
quadrupole transition and relaxes via two consecutive electric
dipole transitions is investigated in detail in this contribution.

The paper is organized as follows. At first, a mathematical
framework to discuss the enhancement of higher-order multi-
pole fields in the vicinity of optical nanoantennas is introduced.
For the sake of definiteness, the discussion is exemplified
at a suitably chosen nanoantenna, i.e., a nanoantenna which
strongly enhances the quadrupole field. Next, the modification
of excitation rates in quantum mechanical systems due to
this quadrupolar enhancement will be investigated. Finally,
the hybrid system consisting of an optical nanoantenna and
a quantum mechanical three-level system will be studied in
detail. A detailed appendix provides further explanations and
explicit derivations of formulas used in the main body of the
paper.

It is the purpose of this paper to show that a properly
designed nanoantenna can excite dipole-forbidden transitions
in three-level systems due to the enhanced higher-order
multipole fields. It will be shown that the dynamics of the
system is strongly altered by the presence of the nanoantenna
and can not be understood by the quadrupolar enhancement
alone. Although, only shown here at the example of a three-
level system, more complicated quantum systems can equally
be considered and the framework presented herein can be
adjusted to different possible experimental configurations.

II. ENHANCEMENT OF HIGHER-ORDER
MULTIPOLE FIELDS

Previously, higher-order multipole transitions in hydrogen-
like atoms have usually been assumed to be forbidden (except
for extreme situations28) since the corresponding contributions
as provided by an excitation field usually used in most cases,
i.e., a plane wave, are much weaker than the dipolar ones. This
can be estimated from a back-of-the-envelope calculation that
assumes some characteristic values. A stricter derivation can
be found in, e.g., Ref. 29. The electric field of a plane wave
varies spatially as exp[i(k · x)] ≈ 1 + i(k · x) in the limit of
k · x → 0. Here, k is the wave vector that can be assumed as
|k| ≈ 107 m−1 for visible light and the characteristic spatial
extent of the atomic system being 〈|x|〉 ≈ Za0 ≈ 10−10 m for
hydrogenlike atoms. Only the first term in the expansion has

been retained, corresponding to the electric dipole component.
In most cases, this approximation is reasonable since the
first-order term in the Taylor expansion is three orders of
magnitude larger than the second term, which is attributed to
both the electric quadrupole and magnetic dipole fields. Hence,
for the given spectral domain and the usually considered spatial
extent of the atomic system, the excitation rates induced by the
local quadrupole field of a plane wave are orders of magnitude
smaller than those transitions induced by the electric dipole
field. For this reason, quadrupole transitions are usually said
to be inaccessible, i.e., they are forbidden. Clearly, components
of octupolar or higher order are even weaker.

In the presence of an optical nanoantenna, the situation
changes dramatically. Such plasmonic structures support
highly localized near fields that are characterized by huge gra-
dients. Using a multipole expansion in spherical coordinates,
the electric field in a coordinate system with origin r0 can be
expressed as

E(x,ω) =
∑
m,n

[pmn(ω; r0)Nmn(x − r0,ω)

+ qmn(ω; r0)Mmn(x − r0,ω)] (1)

with vector spherical harmonics Nmn and Mmn following
the notation of Ref. 30. Equation (1) is identical to a
multipole expansion in spherical coordinates (except some
prefactors) with pmn and qmn being the complex electric
and magnetic multipole coefficients, respectively.31 The order
n = 1 corresponds to electric and magnetic dipoles, whereas
n = 2 corresponds to quadrupoles and so on.

For illustration purposes, in what follows the focus shall
lie on the electric quadrupole. Moreover, to simplify the
subsequent discussion, the more familiar Cartesian quadrupole
components Qij will be used. They can be obtained
from the electric quadrupole coefficients pm2 using linear
transformations.32

As a referential optical nanoantenna that supports strong
local electric quadrupole fields, an optical nanoantenna con-
sisting of two strongly coupled silver nanospheres, sometimes
termed as dimer, is investigated (see Fig. 1). The two silver
nanospheres have a radius of 30 nm and are separated
by either 3 or 10 nm. With such a separation, quantum
effects and/or possible nonlocal material properties of the
silver nanosphere may only constitute a minor contribution,
which we do not consider here33,34 (material parameters were
taken from Ref. 35). The assumed geometry is in reach of
state-of-the-art fabrication techniques and can even be scaled
to large arrays of strongly coupled nanospheres.36 It is well
established that the scattering cross section of such a dimer
structure exhibits a strong quadrupole contribution for a plane-
wave illumination direction parallel to the connecting line of
the nanospheres.32 However, the enhancement of local
quadrupole fields, as probed by the quantum mechanical
system, was found to be strongest if the two nanospheres are
illuminated perpendicular to the connecting line (chosen to be
the x axis) with a polarization of the electric field parallel to
it (see Fig. 2). However, the quadrupole contribution to the far
field is negligible for this illumination scenario.

Considering plane-wave illumination in the given co-
ordinate system, the only nonvanishing component of the
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FIG. 2. (Color online) (a) Integrated enhancement factor ηxz as
a function of excitation wavelength for two separations of the dimer
nanospheres under plane-wave illumination as sketched in (b). The
area � pertinent for integration was chosen to be �z = 30 nm and
�x = 13 nm and fixed at y = 0 [white box in (b)]. A broadband
enhancement of about six orders of magnitude for a separation of d =
3 nm can be observed which peaks at 370 and 437 nm. (b) The local
quadrupole enhancement ηloc

xz (r0) in the x-z plane for d = 3 nm and at
λ = 437 nm. (c) Zoomed view of (b) (color bar is maintained) where
two symmetric stripes of maximum enhancement can be observed.

related quadrupole tensor in free space is Qfs
xz. This particular

coefficient is linked to the multipole expansion coefficient as
used in Eq. (1) via Qxz = i√

6
(p−12 − p12). Therefore, the local

quadratic enhancement of a quadrupole field may be defined as
the ratio ηloc

ij (r0) = |Qna
ij (r0)/Qfs

xz(r0)|2 . One may also define
the integrated enhancement factor ηij = ∫

�
ηloc

ij (r0)dV with
respect to a certain domain �. Note that for enhancements
obeying certain symmetries, it is convenient to regard a
lower dimensional integration. Throughout this paper, the
superscripts fs and na designate the free space and the
nanoantenna scenario, respectively.

Figure 2(a) shows ηxz as a function of excitation wavelength
for two different separations of the nanospheres. The dimer
is illuminated by a plane wave as sketched in Fig. 2(b). It
can clearly be seen that for a separation of 3 nm, ηxz has a
maximum of 1.6 × 106 at 437 nm. Because it is strongest,
we will exclusively focus on this resonance. For comparison,
Fig. 2(a) also shows ηxz for a nanosphere separation of
10 nm. The integrated enhancement factor is approximately
two orders of magnitude less than compared to the 3-nm
separation. Therefore, it is obvious that the enhancement of the
electric quadrupole contribution with respect to the near field
stems from the strong coupling of the two nanospheres, which
critically depends on their separation. All other components of
ηij are orders of magnitude less than ηxz and shall therefore be
neglected here. Figure 2(b) shows ηloc

xz (r0) in the xz plane for a
3-nm separation at a wavelength of 437 nm. The enhancement
of the electric quadrupole contribution takes place in a narrow
spatial domain between the surfaces of the two nanospheres.
In Fig. 2(c), which displays a zoomed view of Fig. 2(b), it

can be observed that ηloc
xz consists of two symmetric stripes of

approximately 5 nm width.

III. FORBIDDEN TRANSITIONS

After having considered the enhancement of the local
electric quadrupole field near the nanoantenna, the resulting
enhancement of quadrupole transition rates will now be exam-
ined. The transition rates from the ith to the j th eigenstate of a
nonrelativistic quantum mechanical system with unperturbed
Hamiltonian H0 follows Fermi’s golden rule

�ij = 2π

h̄2 |〈i|V |j 〉|2{δ(ωij − ω) + δ(ωij + ω)}. (2)

Here, the time-harmonic interaction potential VI =
e−iωtV (x) + eiωtV †(x) is assumed to be a small perturbation.
Within this framework, the action of an electromagnetic field
on an electron with momentum operator p is given by the
minimal coupling interaction potential VI = − e

m
A · p + H.c.

(Ref. 29) (see also Appendix B 1). Here, the weak-field ap-
proximation is applied and hence the ponderomotive potential
e2

2m
A2 shall be neglected. The electromagnetic fields are related

to the vector potential A by B = curlA and E = iωA − gradU .
Choosing the Coulomb gauge where U ≡ 0 can always be
achieved, the electric field is given by E = iωA.

Furthermore, a decomposition of the interaction potential
yields VI = − ie

h̄
{[H0,A · x] + [A,H0]x}. In this form, the

terms can be directly interpreted as electric and magnetic
coupling terms V = Ve + Vm with

Ve = − e

h̄ω
[H0,E · x], Vm = μB

h̄
L · B, (3)

where μB = eh̄
2m

is Bohr’s magneton and L = x × p denotes
the angular momentum operator. A derivation of this decom-
position can be found in Appendix B 2.

Without loss of generality, the analysis shall be restricted
to electric transitions. Referring to Eq. (1) and the relation
Mmn(x) · x = 0, the electric interaction potential Ve can be
fully characterized by the complex multipole coefficients pmn

and the related vector spherical harmonics Nmn. Using the
definition of the Nmn following the notation of Ref. 30, one
finds the explicit expression

E · x =
∑
m,n

pmn

n(n + 1)

k
jn(kr)P m

n (cos θ ) exp(imϕ), (4)

where jn denotes spherical Bessel functions and P m
n associated

Legendre polynomials. The latter expression holds in the
coordinate system of the quantum system, i.e., for r0 = 0.

As mentioned earlier, this spherical representation can also
be transformed to a Cartesian one and the moments can locally
be related to the coefficients of a Taylor expansion E · x ∝∑

n

∑n
i...k Qi...kx

i . . . xk . Then, it becomes evident why the
quadrupole coupling term (n = 2) is related to the near-field
gradients of the electric field: Qij ∝ ∂i∂j (E · x). However, care
has to be taken regarding the normalization of the Qij , which
is not consistent throughout the literature. For the calculations
in the main body of the paper, we have chosen the notation as
given in Ref. 32.

Combining Eqs. (1)–(3), the transition rates, related to
different multipole orders, can be computed directly from a
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given field distribution. Hence, the transition rate at the atomic
site r0, resulting from the electric potential Ve, is proportional
to the square modulus of a linear combination of the multipole
coefficients pmn, i.e.,

�ij (r0) = 2πe2

h̄2

∣∣∣∣∣
∑
n,m

pmn(r0)〈i|Nmn · x|j 〉
∣∣∣∣
2

δ(ωij ± ω).

(5)

Equation (5) establishes the link between the enhancement
of higher-order electric transitions in a quantum mechanical
system and contributions of higher-order multipoles to the
local field as investigated in Fig. 2. Therefore, the previously
investigated optical nanoantenna can be used to increase the
strength of electrical quadrupole transitions in a quantum
mechanical system.

IV. MODIFIED EMISSION CHARACTERISTICS

After having demonstrated that near optical nanoantennas
the quadrupole field can be enhanced by many orders of
magnitude, the focus will now be directed to the effect of these
multipole contributions on the dynamics of the entire quantum
mechanical system. For simplicity, a three-level system will
be considered in the following, which is excited through an
electric quadrupole transition and decays via two consecutive
electric dipole transitions [see Fig. 3(a)]. It must be noted
that it is reasonably assumed herein that only the quadrupolar
fields contribute to the quadrupole transition, i.e., the transition
is dipole forbidden. If this assumption does not hold, the
interaction to other enhanced multipole components of the
field has to be taken into account following Eq. (5). As
an example, a comparison to local dipolar enhancements is
given in Appendix A. In the subsequent discussion, it will be
shown how the emission characteristics of the entire system
are modified in the presence of the nanoantenna. As a system
of reference, a dimer with a distance of 3 nm between the silver
nanospheres has been chosen.

A. Dynamics of the three-level system

The dynamics of the three-level system is governed by the
following rate equations. They describe the population of the
three energy levels, i.e.,

ṅ0 = γ10 · n1 − �02 · n0, ṅ1 = γ21 · n2 − γ10 · n1,

ṅ2 = �02 · n0 − γ21 · n2.

Here, the γij denote the spontaneous decay rates from the
ith to the j th level, whereas �02 denotes the excitation rate
of the quadrupole transition. The quadrupole transition takes
place at a wavelength of λ02 = 437 nm, for which the previ-
ously investigated optical nanoantenna provides the maximal
enhancement of an electric quadrupole field [see Fig. 2(a)].

In the system under investigation, quadrupolar emission
processes at λ02 are neglected37 because the spontaneous decay
from the second to the first level is assumed to be much
faster. The emission wavelength of the first dipole transition
is assumed to be λ21 = 3.47 μm; consequently, the second
dipole transition takes place at λ10 = 500 nm. For both dipole
transitions, stimulated processes are neglected.
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FIG. 3. (Color online) (a) Scheme of the quantum mechanical
system that is placed in the vicinity of the nanoantenna. (b) Local
enhancement of the luminescence, i.e., ṅ

rad,na
1 /ṅ

rad,fs
1 , in the x-z

plane. Because of saturation, the enhancement is not as strong as
expected from the quadrupole enhancement alone. (c) Luminescence
enhancement as a function of the intensity at the location x = 0 nm,
z = 4 nm. The dashed lines correspond to predictions for low and
high intensities as discussed in Sec. IV B (i) and (ii).

In free space and under plane-wave illumination with unit
intensity, the ratios �fs

02/γ
fs
21 = 10−5 and γ fs

10/γ
fs
21 = 10−2 were

chosen. These rates correspond to real physical systems as
outlined in Appendix C.

To investigate the enhancement of the efficiency of the
quadrupole transition due to the nanoantenna, the amount of
light spontaneously emitted at λ10 = 500 nm per unit time
shall serve as a figure of merit. Therefore, the rate equations are
solved in equilibrium. In this regime, luminescence is given by
ṅrad

1 = γ rad
10 n1, where γ rad

10 is the spontaneous radiative decay
rate. The total decay rate is given by the relation γ10 = γ rad

10 +
γ nonrad

10 , where γ nonrad
10 describes the nonradiative decay rate.

Note, in this study, in free space γ fs
10 = γ

rad,fs
10 and

γ
nonrad,fs
10 = 0. On the other hand, in the presence of the

nanoantenna, γ nonrad,na
10 is merely determined by the absorption

in the metal. From the rate equations in steady state and
1 = n0 + n1 + n2, one can solve for n1 finding

ṅrad
1 = γ rad

10
γ21 �02

γ10 γ21 + γ21 �02 + γ10 �02
, (6)

which holds both in free space and in the vicinity of the
nanoantenna. Since the quadrupole enhancement of the electric
field varies spatially, the same holds for �02. Furthermore, the
presence of the nanoantenna alters the local density of states.
Thus, the spatial dependence of the spontaneous decay rates
γij also has to be considered.

Within the weak atom-field coupling regime, the spon-
taneous decay rates are given as γij = 2ω2

h̄ε0c2 |dij |2 Im
[G(r0,r0,ωij )], where G is the component of the Green’s tensor
corresponding to the direction of the dipole moment dij of the
specific transition.27 The Green’s tensor is calculated at
the position r0 of the quantum system. Using this relation, the
decay rates in the vicinity of the nanoantenna γ na

ij are related
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to the decay rates in free space γ fs
ij via

γ na
ij

/
γ fs

ij = Im[Gna(r0,r0,ωij )]/Im[Gfs(r0,r0,ωij )].

Since Qxz is the dominant quadrupole component, the emis-
sion from the dipole transitions is assumed to be either x or
z polarized; hence, γ na

ij is the arithmetic mean of these two
contributions.

In the subsequent discussion, ṅrad
1 is chosen as the figure

of merit, assessing how efficiently the emission at λ10 can
be raised due to the enhancement of the electric quadrupole
fields. Figure 3(b) shows ṅ

rad,na
1 /ṅ

rad,fs
1 . It can be seen that

ṅ
rad,na
1 can be enhanced by over four orders of magnitude

relative to free space. As expected, in regions where the
quadrupole enhancement is the strongest, the luminescence
is strongly enhanced as well. However, due to saturation
effects and nonradiative losses, characteristic values of the
luminescence rates are about two orders of magnitude lower
than the quadrupole enhancement. This can be understood in
terms of different limiting cases of Eq. (6) and will be discussed
in the following.

B. Effect of excitation intensities on
the luminescence enhancement

Naturally, the chosen ratios of the rates affect the lumines-
cence enhancement. However, the excitation rate �02 depends
not only on the geometry, but also on the intensity. Using
Eq. (6), one may estimate the luminescence enhancement
ṅ

rad,na
1 /ṅ

rad,fs
1 by the main contributions given in the nominator

for free space and in the vicinity of the nanoantenna with
respect to different intensities:

ṅ
rad,na
1

ṅ
rad,fs
1

= γ
rad,na
10

γ
rad,fs
10

· �na
02

�fs
02︸ ︷︷ ︸

Purcell effect and
quadrupole enhancement

· γ fs
10 γ21 + γ21 �fs

02 + γ fs
10 �fs

02

γ na
10 γ21 + γ21 �na

02 + γ na
10 �na

02︸ ︷︷ ︸
dynamics of quantum system

. (7)

In this form, it tends to be evident that not only the
enhancement of the radiative rate of the luminescing transition
γ

rad,na
10 /γ

rad,fs
10 has to be taken into account as well as the

quadrupole enhancement �na
02/�fs

02, but also the dynamics of
the quantum system given in the last term in Eq. (7). In
passing, we note that the enhancement of radiative rates in
an environment is usually termed Purcell effect.

As discussed before, the excitation rate in free space at
an intensity I0 was assumed to be �fs

02(I = I0) = 10−5γ fs
21.

Also, γ21 = 102γ fs
10 has been chosen implying �fs

02(I =
I0) = 10−3γ fs

10. Furthermore, in the vicinity of the nanoan-
tenna, γ10 gets also hugely enhanced and γ na

10 	 γ21 holds.
Equation (7) can be understood for different limiting cases
of low, intermediate, or high intensities. This is done in the
following and will explain the results found in Fig. 3 in detail.

(i) Low intensities. First of all, one might consider the case
of very low intensity �02 
 γij both in free space and close to
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FIG. 4. (Color online) The antenna efficiency γ
rad,na
10 /γ na

10 . It acts
as a natural limiting factor for the luminescence enhancement.
Noteworthy, with respect to the actual form of the quadrupole
enhancement outlined in Fig. 2(c), a perfect agreement of the
luminescence enhancement predicted by equation Eq. (8) and the
results given in Fig. 3(b) can be seen.

the nanoantenna. Then, one has

ṅ
rad,na
1

ṅ
rad,fs
1

≈ γ
rad,na
10

γ
rad,fs
10

· �na
02

�fs
02

· γ fs
10 γ21

γ na
10 γ21

= γ
rad,na
10

γ na
10

· �na
02

�fs
02

= antenna efficiency × quadrupole enhancement

since in free space γ fs
10 = γ

rad,fs
10 . One can see that the antenna

efficiency γ
rad,na
10 /γ na

10 is a limiting factor which will also
naturally hold for the other limiting cases. Furthermore, the lu-
minescence enhancement is basically given by the quadrupole
enhancement and can be calculated without consideration
of the internal dynamics. Thus, one can anticipate that the
enhancement is most pronounced in this intensity regime. If the
intensity is stronger, one can expect that the internal dynamics
act as a bottleneck, which will be examined in the following.

(ii) High intensities. Now, the intensity will be assumed
to be so high that in free space and in the vicinity of the
nanoantenna, �02 	 γij holds. Then,

ṅ
rad,na
1

ṅ
rad,fs
1

≈ γ
rad,na
10

γ
rad,fs
10

· �na
02

�fs
02

· γ21 �fs
02

γ na
10 �na

02

= γ
rad,na
10

γ na
10

· γ21

γ
rad,fs
10

= antenna efficiency × 102

consistent with Fig. 3(c) for I 	 I0. Interestingly the enhance-
ment is now independent of the quadrupole enhancement. This
results from the fact that in this intensity regime also in free
space the excitation is the fastest process.

(iii) Intensities comparable to I0. Finally, one may consider
an intermediate case where I ≈ I0. Here, �fs

02 
 γ21, but one
may still assume that �na

02 	 γ21. This is the case in the central
region of the nanoantenna which can be seen in Fig. 2(c) where
the quadrupolar enhancement is shown to be in the order of
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106. Thus,

ṅ
rad,na
1

ṅ
rad,fs
1

≈ γ
rad,na
10

γ
rad,fs
10

· �na
02

�fs
02

· γ fs
10 γ21

γ na
10 �na

02

= γ
rad,na
10

γ na
10

· γ21

�fs
02

= antenna efficiency × 105. (8)

It is important to note that the results outlined in Fig. 3(b)
correspond to the discussed intermediate intensity limit.
There, maximum luminescence enhancements in the order
of 5 . . . 6 × 104 were found. Looking at Eq. (8), this implies
an antenna efficiency of approximately 50% in-between the
nanospheres for the luminescence transition. This could be
confirmed by simulations shown in Fig. 4.

It can be stated that, under the given assumptions, the
dynamics of the quantum system had to be taken into
account to understand the luminescence enhancement of the
system driven by a quadrupolar excitation. Only in the weak
excitation limit, the luminescence enhancement simplifies to
ṅ

rad,na
1 /ṅ

rad,fs
1 = ηloc

xz · γ
rad,na
10 /γ na

10 . From this relation, it can
clearly be seen that the local luminescence enhancement is
directly proportional to the local quadrupole enhancement ηloc

xz .
For a sufficiently strong excitation field, however, the entire
process saturates and the overall enhancement decreases.

V. CONCLUSION

In conclusion, it was shown that optical nanoantennas
can effectively enhance higher-order multipole transitions
which are typically considered forbidden in free space. This
can be achieved by enhancing higher-order multipole fields
near the antenna. A quadrupole transition as the dominant
excitation channel in a three-level system was considered.
It was demonstrated how the enhancement of this transition
can significantly intensify subsequent emission processes with
respect to altered emission characteristics. Since the effects
under consideration depend on geometrical parameters, the
properties of the optical nanoantenna can be tailored and hence
allow for direct implementations in spectroscopic schemes. It
must, furthermore, be emphasized that the example of the
isolated dimer is just a specific case of what is possible with
advanced optical nanoantennas. It can be anticipated that this
work will give impetus for further research on such hybrid
systems as well as plasmonic engineering.
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APPENDIX A: DIPOLE VERSUS QUADRUPOLE
ENHANCEMENT

In the considered model system, it was assumed that the
energies of each transition are separated such that it is unlikely
that different transitions are competing for a certain excitation.

x (nm)

z 
(n

m
)

−5 0 5

−15

−10

−5

0

5

10

15
0

1

2

3

4

5

x 10
4

5 0 5
0

111111111111111111111111

2222222222222222222222222222222222

3333333333333333333333333333333333333333

4444444444444444444444

555555555555555555555555555555555555552.0

1.6

1.2

0.8

0.4

0

FIG. 5. (Color online) Local dipole enhancement factor
ηloc,dip

x (r0) = |dna
x (r0)/d fs

x (r0)|2 for the main dipole contribution dx .
The configuration is the same dimer nanoantenna as used before
with the same excitation wavelength λ = 437 nm. The dipole
enhancement is approximately two orders of magnitude smaller than
the quadrupolar one.

So, only the excitation rate with respect to the quantum system
in free space was compared. One may also ask the question
as to what happens if two transitions, namely a dipole and
a quadrupole one, are energetically very close. Can one then
make the latter transition rate comparable or even stronger
than the dipole transition? This should be possible when a
certain eigenmode of a structure can be tailored to have a
strong quadrupole and only a negligible dipole field. For the
dimer antenna under consideration, this is not the case and
was not intended. Here, also the electric dipole field gets
enhanced. The result of a corresponding calculation is outlined
in Fig. 5. There, one can see that the electric dipole field gets
enhanced approximately four orders of magnitude. This is still
a few orders of magnitude smaller than the quadrupolar one.
However, the difference for this particular antenna might not
suffice to enhance a quadrupole transition to be stronger than
a dipolar one.

In general quantum systems, transitions might on the other
hand be driven by a superposition of several multipolar fields
following Eq. (2), i.e., for Rydberg atoms. An enhanced
quadrupolar field component then might allow an additional
energy supply channel to such a system. However, as in the
discussed three-level system, an enhancement of higher-order
field components must be understood in terms of the whole
dynamics of the quantum system. The approach might be most
beneficial if this additional energy supply can account for an
existing bottleneck for processes one wishes to enhance.

APPENDIX B: MINIMAL COUPLING

In the main paper, the derivation of the minimal-coupling
potential VI = − e

m
A · p was not presented, as well as its

decomposition into an electric and magnetic part given by
Eq. (3). Although VI can be found in the literature and the
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derivation of its decomposition is straightforward, it will be
outlined in the following two sections.

1. Interaction potential

The action of an electromagnetic field on a given system
within the framework of nonrelativistic quantum mechanics is
realized due to a replacement in the unperturbed Hamiltonian
in the following way:

H0(p,x) → H [p − eA(t,x),x] + eU (t,x)

≡ H0(p,x) + VI (p,x,t),

which is called minimal coupling.29,38 Throughout the analy-
sis, a hydrogenlike Hamiltonian of the form

H0(p,x) = 1

2m
p2 − 1

4πε0

Z e2

r
(B1)

will be assumed.
The relation of the fields to the electrodynamic potentials

is given by

B = curlA and E = −∂tA − gradU. (B2)

Choosing the Coulomb gauge in which

divA = 0 and U ≡ 0 (B3)

holds if ρ = 0 and j = 0, one finds for the given Hamiltonian

H (p,x,t) = 1

2m
[p − eA(x,t)]2 − 1

4πε0

Z e2

r
+ eU (x,t)

= 1

2m
[p2 − ep · A − eA · p + e2A2] − 1

4πε0

Z e2

r

≈ 1

2m
p2 − 1

4πε0

Z e2

r
− e

m
A · p

≡ H0 + VI , (B4)

where it was used that in the given gauge U = 0 can always be
achieved and p · A = A · p. Furthermore, the term in A2 has
been neglected. This part corresponds to the ponderomotive
force.

2. Electric and magnetic coupling: A decomposition

Now that the interaction potential VI = − e
m

A · p is known,
it is desirable to further split it into an electric and magnetic
part. This approach eases later interpretation such as the
attribution of transitions to electric and magnetic multipoles.

First of all, one finds

A · p = im

h̄
A · [H0,x]

= im

h̄
{A · H0x − A · xH0 + H0A · x − H0A · x}

= im

h̄
{[H0,A · x] + [A,H0]x}.

Now, one can state for the first term

〈m|[H0,A · x]|n〉 = h̄ωmn〈m|A · x|n〉.
Because of E = −∂tA, this term can be interpreted in a time-
harmonic dependency of the fields as the electric contribution.

Then, E = iωA and the electric coupling may be introduced
as

Ve = − e

m

im

h̄
[H0,A · x] = − e

h̄ω
[H0,E · x]. (B5)

On the other hand,

[A,H0] = 1

2m
{Ap2 − p2A} = − h̄2

2m
�A = h̄2

2m
curlB,

where the curl is acting only on B. It is further

[A,H0]x = h̄2

2m
curlB · x = h̄2

2m
(x × ∇) · B = i

μB

e
L · B,

where μB = eh̄
2m

, p = −ih̄∇, and L = x × p was used. So, it
is natural to define

Vm = − e

m
· im

h̄
· i

μB

e
L · B = μB

h̄
L · B (B6)

as the magnetic coupling.

APPENDIX C: ON THE CHOICE OF ENERGY RANGES
AND DECAY RATES

The numbers chosen for the calculations were motivated by
order-of-magnitude estimations for quantum systems, namely,
hydrogenlike atoms and dye molecules. In this section, the
choice of transition energies and used rates will be related to
existing quantum systems. The suggested systems may be used
in experiments.

1. Energy ranges

A quadrupolar transition can be seen as the sum over all
possible consecutive dipolar transitions. For example, for the
quadrupolar potential V (x) ∝ xy, one finds

�ij ∝ |〈i|xy|j 〉|2 =
∣∣∣∣∣
∑

k

〈i|x|k〉〈k|y|j 〉
∣∣∣∣∣

2

.

Hydrogenlike atomic systems shall be considered now. There,
such transitions may be realized by the transition from an s

to a d orbital using a p orbital as the main intermediate step.
These three levels then form an effective three-level system as
the studied one.

The chosen energies correspond to such systems: potassium
has a quadrupolar transition λ4s→3d ≈ 446 nm with interme-
diate step λ4s→4p ≈ 770 nm followed by λ4p→3d ≈ 1.18 μm.
The next alkali atom is rubidium with λ5s→4d ≈ 516 nm,
λ5s→5p ≈ 780 nm, and λ5p→4d ≈ 1.4 μm. For cesium, one
finds λ6s→5d ≈ 685 nm, λ6s→6p ≈ 894 nm, and λ6p→5d ≈
2.9 μm.

However, lithium and sodium have higher quadrupolar
transition energies with wavelengths around 300 nm. Thus,
for such atoms, an experimental realization may not be
feasible: gold and silver lose their metallic character for such
high-photon energies.

2. Decay rates

At a certain saturation intensity Is , dipolar excitation rates
become comparable to spontaneous emission rates.39,40 For a
two-level-system, Is is given by the intensity at which both
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states are equally likely. Hydrogenlike atoms exhibit an Is in
the order of tens of W/m2 at optical frequencies. For instance,
rubidium has an Is = 16.4 W/m2 characterizing the 5s-5p

transition. On the other hand, Is may be more than 107 W/m2

for dye molecules.40

At intensities above Is , the excitation rates for dipolar
excitations become faster than their spontaneous counterparts.
Quadrupolar excitation rates are for optical frequencies in
the order of six to seven orders of magnitude smaller than
dipolar ones. Thus, at intensities I0 ≈ 103...4Is , one might
expect a quadrupole excitation rate to be in the order of
�fs

02(I0) ≈ 10−3γ fs
10 as was chosen in the calculations.

The normalized intensity range in Fig. 3(c), I/I0 ≈
10−4 . . . 104, corresponds to spectroscopic measurements.

Intensities employed in pulsed systems are in the order of
1012 . . . 1014 W/m2 and for continuously operating systems
with plasmonic structures 106 . . . 108 W/m2. Hence, for dye
molecules, pulsed measurements are at an intensity of Ipulse ≈
106Is ≈ 102...3I0 and continuous wave measurements are at
Icw ≈ Is ≈ 10−3...−4I0. As it was shown in Fig. 3(c), in-
between these intensity ranges different limiting cases take
place as discussed in Sec. IV B.

Furthermore, the fast nonradiative relaxation rate from
state |2〉 to |1〉, γ fs

21 was assumed to be the fastest pro-
cess in free space. It was assumed to be independent
of the environment, γ fs

21 ≡ γ na
21 = 102γ fs

10. This assumption
corresponds to fast thermal relaxations of excited atomic
systems.
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