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Electrically tunable charge and spin transitions in Landau levels of interacting Dirac fermions
in trilayer graphene
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Trilayer graphene in the fractional quantum Hall effect regime displays a set of unique interaction-induced
transitions that can be tuned entirely by the applied bias voltage. These transitions occur near the anticrossing
points of two Landau levels. In a large magnetic field (>8 T) the electron-electron interactions close the
anticrossing gap, resulting in some unusual transitions between different Landau levels. For the filling factor
ν = 2

3 , these transitions are accompanied by a change of spin polarization of the ground state. For small Zeeman
energy, this provides a unique opportunity to control the spin polarization of the ground state by fine tuning the
bias voltage.
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I. INTRODUCTION

Dirac fermions in monolayer and bilayer graphene with
their remarkable electronic properties have received extraor-
dinary scrutiny in recent years.1,2 In an external magnetic
field these systems exhibit unconventional quantum Hall
effects3,4 that are direct manifestations of their rather unusual
band structures.5,6 As a consequence, the Landau level (LL)
energies of these systems are very different from those of
conventional two-dimensional electron systems. In monolayer
graphene the Landau level energies exhibit a square root
dependence on the applied field,7 while a linear dependence
is observed in bilayer graphene.8 Interactions among Dirac
fermions in the fractional quantum Hall effect (FQHE)9,10

regime reveal several unexpected and intriguing effects in
monolayer11 and bilayer12 graphene. Experimental obser-
vation of FQHE in monolayer graphene13,14 has indeed
confirmed the important role electron-electron interactions
play in these systems. Clearly, the dynamics of Dirac
fermions are sensitive to the number of graphene layers
present in the system and their stacking arrangements. The
attention has naturally shifted to the investigation of the
electronic properties of Dirac fermions in trilayer graphene
(TLG).

A TLG consisting of three coupled graphene layers
(see Fig. 1) has a very unique electronic energy spectrum.
Within the nearest-neighbor interlayer coupling approxima-
tion the energy spectrum of TLG with Bernal stacking
consists effectively of decoupled single-layer graphene and
the bilayer graphene energy spectra. Therefore it allows
us to study the energy spectra of both the massless and
massive Dirac fermions within a single system. In a strong
perpendicular magnetic field, the LL energy spectrum of
TLG becomes a combination of Landau levels of single-
layer and bilayer graphene.15 The spectrum exhibits many
crossings of the LLs as a function of the magnetic field.
At the crossing points the LLs are highly degenerate. The
degeneracy is lifted when higher-order interlayer coupling

terms are taken into account, resulting in several unusual
properties of the quantum Hall effect (QHE) in trilayer
graphene.16

While the single-particle features of the QHE are in-
teresting, here we report that interactions among Dirac
fermions in a TLG in the FQHE regime result in very
unique properties of the TLG that are far beyond the mere
level crossings observed in the integer QHE. We found
several LL repulsions and level crossings which resulted
in some intriguing spin transitions among the LLs in this
system that have no analogues in the interaction-induced
spin-reversed ground states and elementary excitations dis-
covered earlier in conventional electron systems.17,18 These
spin transitions in the TLG are driven by an applied perpen-
dicular bias field for a fixed magnetic field, and therefore
we expect these novel transitions to be entirely tunable.
These transitions are not expected in a bilayer graphene.
The origin of these many-body transitions in TLG lies in
the higher-order couplings, γ2 and γ5, between layers 1
and 3 [Fig. 1] that are responsible for the anticrossings,
the gap of which is comparable to the FQHE energy
gap.

II. THEORETICAL APPROACH

We only consider the Bernal or ABA-stacking of our TLG
(Fig. 1). In the tight-binding approximation the Hamiltonian
of the TLG is characterized by the intralayer hopping integral,
γ0 = 3.1 eV, and interlayer hopping integrals, γ1 = 0.39 eV,
γ2 = −0.028 eV, γ4 = 0.041 eV, and γ5 = 0.05 eV, corre-
sponding to different types of interlayer coupling, shown
schematically in Fig. 1.16 In the basis (ψA1

− ψA3
,ψB1

−
ψB3

,ψA1
+ ψA3

,ψB2
,ψA2

,ψB1
+ ψB3

) and in a perpendicular
magnetic field, the Hamiltonian of a TLG for a single valley,
e.g.,
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valley K , takes the form15,16

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

−γ2/2 v0π+ −U/2 0 0 0
v0π− −γ5/2 + δ 0 0 0 −U/2
−U/2 0 +γ2/2 0 −√

2v4π+ v0π+
0 0 0 0 v0π− −√

2v4π−
0 0 −√

2v4π− v0π+ δ
√

2γ1

0 −U/2 v0π− −√
2v4π+

√
2γ1 γ5/2 + δ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

where v0 = (
√

3/2)aγ0/h̄ ≈ 106 m/s, v4 = (
√

3/2)aγ4/h̄,
and π± = πx ± πy . Here �π = �p + e �A/c is the generalized
momentum. The parameter δ = 0.046 eV is the difference
between the on-site energies of two sublattices within a single
graphene layer.16 The bias voltage U , which is externally
varied, is the potential difference, i.e., the on-site energy
difference between layers 1 and 3. The potentials of layers 1–3
are assumed to be 0, U/2, and U , respectively. The interlayer
couplings γ2 and γ5 and the finite bias voltage U break the
valley symmetry of the trilayer Hamiltonian and lift the valley
degeneracy of the TLG system. Without the Zeeman energy
each level has a two-fold spin degeneracy.

The LLs of a TLG are obtained from the Hamiltonian (1).
The corresponding wave functions are parametrized by the
integer n � −2 and are expressed in terms of the conventional
(nonrelativistic) Landau level functions, φn,m

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1φn+2,m

C2φn+1,m

C3φn+2,m

C4φn,m

C5φn+1,m

C6φn+1,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

FIG. 1. (Color online) TLG in ABA stacking (schematic). Each
layer consists of two inequivalent sites A and B. The interlayer
and intralayer hopping integrals, γi , show the couplings which are
included in the single-particle Hamiltonian (1).

for n � 0;

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1φ1,m

C2φ0,m

C3φ1,m

0

C5φ0,m

C6φ0,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for n = −1, and

� =

⎛
⎜⎜⎜⎜⎜⎝

C1φ0,m

0
C3φ0,m

0
0
0

⎞
⎟⎟⎟⎟⎟⎠

,

for n = −2. Here m is the intra-Landau level parameter, e.g.,
the angular momentum, and Ci are constants. Therefore, the
LL wave functions of a TLG are combinations of n, n + 1, and
n + 2 nonrelativistic Landau functions.
We consider a many-electron system with partial occupation of
a single LL of the TLG. We have studied the properties of these
systems in the FQHE regime, specifically for filling factors,
ν = 1

3 , 2
3 , and 2

5 . In these cases, the conventional nonrelativistic
system shows incompressible behavior with a finite energy
gap.9,10 The interaction properties of the many-electron system
occupying a single Landau level are completely determined by
the Haldane pseudopotentials V (n)

m ,19 which are the interaction
energies of two electrons with relative angular momentum
m. These pseudopotentials are evaluated from the following
expression:19

V (n)
m =

∫ ∞

0

dq

2π
qV (q)[Fn(q)]2Lm(q2)e−q2

, (2)

where Lm(x) are the Laguerre polinomials, V (q) =
2πe2/(κ
0q) is the Coulomb interaction in the momentum
space, κ is the dielectric constant, 
0 = √

eh̄/cB is the
magnetic length, and Fn(q) is the form factor of the nth Landau
level (n � −2). The form factor is completely determined by
the LL wave functions. With the known wave functions, the
form factors for the corresponding Landau level of TLG can
be evaluated from

Fn�0(q) = [|C2|2 + |C5|2 + |C6|2]Ln+1(q2/2)

+ [|C1|2 + |C3|2]Ln+2(q2/2)

+ |C4|2Ln(q2/2), (3)
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FIG. 2. (Color online) LL spectrum of TLG in 15 T magnetic field
as a function of the bias voltage, U . Two red lines show anticrossing
for U ≈ 400 meV. The corresponding LLs are labeled as level-1
and level-2, respectively. The LLs 1 and 2 belong to the set of
Landau levels with parameter n = 0. The inset shows the region
of anticrossing. The anticrossing gap is ≈2.6 meV ≈ 30 K.

Fn=−1(q) = [|C2|2 + |C5|2 + |C6|2]L0(q2/2)

+ [|C1|2 + |C3|2]L1(q2/2), (4)

and

Fn=−2(q) = [|C1|2 + |C3|2]L0(q2/2). (5)

We study the FQHE state in a TLG by considering a finite-size
system of N electrons in a spherical geometry19 with interac-
tion potentials determined by the Haldane pseudopotentials.
The radius of the sphere is

√
S
0, where 2S is the number of

magnetic fluxes through the sphere in units of the flux quantum.
The parameter S also determines the number of single-particles
states, 2S + 1, and for a finite number of electrons–the filling
factor of the system.20 For example, the filling factor ν = 1

p
is

realized for 2S = p(N − 1).

III. RESULTS AND DISCUSSION

From the Hamiltonian (1) we evaluate the single-particle
LL energy spectrum. The LLs are parametrized by the integer
n [see Eq. (2)]; for each n there are 6 LLs. A typical LL
spectrum is shown in Fig. 2. The spectrum as a function of U

(or the magnetic field) shows crossing and anticrossing of the
energy levels. The anticrossing gap (ACG) in Fig. 2 is about
2.6 meV ≈30 K for a field of 15 T. Near these anticrossing
points (ACPs) the FQHE has nontrivial and unique interaction-
induced properties. We focus our attention near the special
ACP shown as the inset in Fig. 2. This point corresponds to
anticrossing of the LLs with n = 0. We label the corresponding
levels as Landau level-1 (LL-1) and Landau level-2 (LL-2)
[Fig. 2] and consider the FQHE states only in these levels. For
each FQHE state we have evaluated the ground state energy
per particle and the FQHE excitation gap.

We first consider the fundamental ν = 1
3 -FQHE states in

LLs 1 and 2 (Fig. 3). The system behaves very differently
for weak and strong magnetic fields. In a weak magnetic
field (B = 5 T) the many-particle states show an anticrossing
[Fig. 1], just as for the single-particle levels [Fig. 2]. This

FIG. 3. (Color online) Results for ν = 1
3 -FQHE states in LL 1 and

LL 2, shown as a function of the bias voltage near the anticrossing
point. Panels (a) and (b) show the ground state energy per particle,
while panels (c) and (d) show the excitation gaps for the corresponding
energy levels with filling factor ν = 1

3 . Blue arrows in panel (d)
indicate jumps of the FQHE gaps at the level crossing in panel (b).
The number of electrons is N = 9 and the parameter of the sphere is
2S = 24.

anticrossing is clearly visible in the dependence of the 1
3 -FQHE

gaps since the values of the FQHE gaps in LL-1 and LL-2 are
interchanged when the system goes through the ACP. The
system shows an interesting behavior exactly at the ACP.
Here, due to a mixture of the single-particle wave functions
of LL-1 and LL-2, the many-particle interaction properties
are enhanced in LL-1 while suppressed in LL-2. As a result,
at the ACP the 1

3 -FQHE gap in LL-1 has a maximum while
the 1

3 -state in LL-2 becomes compressible with a vanishing
gap [Fig. 3(c)]. Due to a larger cohesive energy of the
incompressible state compared to the compressible one, the
many-particle ACG shows a small enhancement relative to
the single-particle value by 0.4 meV ≈ 5 K. Experimentally,
the anticrossing properties of TLG in a small magnetic field
can be observed by studying the FQHE in LL-2. In such a
system, with increasing bias voltage one would observe a
transition FQHE–no FQHE–FQHE within a single LL, just
as we predicted earlier for bilayer graphene.12

In a large magnetic field (B = 15 T), TLG shows several
novel features near the ACP [Figs. 3(b) and 3(d)]: The
anticrossing of the single-particle energy levels becomes
double crossings for the many-particle states. This means that
the cohesive energy of the many-particle state in LL-2 is larger
than that in LL-1, and this difference overcomes the ACG.
The reason for such a behavior is the change in the interaction
strength in LL-1 and LL-2.

For a large magnetic field the many-particle interaction
potential at the ACP becomes stronger in LL-2 and weaker
in LL-1, which is opposite to what we see for a weak
magnetic field [Figs. 3(a) and 3(c)]. As a result, the FQHE
gap in LL-2 has a maximum at the ACP, while the gap in
LL-1 is suppressed. Therefore at the ACP the ν = 1

3 -many-
particle system is incompressible in LL-2 and compressible
in LL-1. Since the incompressible FQHE state has a lower
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FIG. 4. (Color online) The ACG corresponding to the anti-
crossing of LL-1 and LL-2 [Fig. 1(b)], versus the magnetic field.
For different magnetic fields, anticrossings occur for different bias
voltages. The black line and the squares describe a single-particle
system, while the red line and the circles correspond to the many-
particle ν = 1

3 -FQHE state (Fig. 2). The single-particle ACG is closed
for the many-particle system for B ∼ 8 T.

binding energy than that of the compressible state, this energy
difference is enough to close the ACG. Therefore, in a large
magnetic field and as a function of the bias voltage, we should
expect the following behavior: The FQHE state, which initially
for U < 400 meV, is in LL-1, occupies LL-2 at the ACP,
U = 400 meV, leaving LL-1 empty. For U > 400 meV, the
system returns to LL-1, while LL-2 becomes empty. These
transitions between different LLs at the ACP are accompanied
by jumps in the value of the FQHE gap [blue lines in Fig. 3(d)].

The strength of FQHE, i.e., the magnitude of the FQHE gap,
and correspondingly the cohesive energy of the FQHE states,
is determined by the short-range properties of the interaction
potential, i.e, the Haldane pseudopotentials for small values
of the relative angular momentum, m. There, at the ACP
the short-range interaction strength is enhanced in LL-1 for
weak magnetic fields and in LL-2 for high magnetic fields.
This results in a weak enhancement of the many-particle
ACG for weak magnetic fields and strong suppression of
the many-particle ACG for strong magnetic fields. In Fig. 4,
the ACGs for single-particle and many-particle ν = 1

3 -FQHE
state are shown for different magnetic fields. For small values
of the magnetic fields, 1.5 T < B < 8 T, the many-particle
gap clearly shows an enhancement compared to that for the
single-particle case. The many-particle and single-particle
ACGs show almost parabolic dependence on the magnetic
field, where the many-particle gap shows stronger dependence
with a width that is about one-fifth of that of the single-particle
gap. For B ≈ 8 T the many-particle ACG closes, and for
B > 8 T the anticrossing in a single-particle system becomes
a double-crossing in the many-particle FQHE state.

The FQHE ground state of conventional semiconductor sys-
tems is known to be either spin-polarized or spin-unpolarized.
The polarization properties of the system are determined by
the filling factor and strength of the applied magnetic field.10,17

While in conventional systems the ν = 1
m

FQHE state is
always fully spin-polarized, for filling factors ν = 2

3 and ν = 2
5

there is a competition between the energies of spin-polarized
and spin-unpolarized incompressible states.17 With increasing
strength of the magnetic field, the Zeeman energy of electrons

favors the spin-polarized state, which results in possible spin
transitions in the system by varying the magnetic field. Those
theoretical predictions subsequently received experimental
confirmation.18,21 In fact, TLG shows a different type of spin
transitions realized at the ACPs, which could also be probed
experimentally. Spin transitions in the FQHE regime for a
conventional semiconductor system are determined by the
competition between the Zeeman energy and the difference
between the cohesive energies of the spin-polarized and
spin-unpolarized ground states. Therefore, the spin transitions
in conventional systems are driven by the Zeeman energy.
In the present system the spin transitions are determined by
a modification of the interaction potentials in a given Landau
level. This modification is due to the anticrossing of the energy
levels, which influences the single-particle wave functions and
correspondingly changes the interelectron interaction strength.
Therefore in this case, by changing the parameters of the
system (e.g., the bias voltage) we change the interelectron
interaction, and spin transitions at 2/3 filling factor should be
possible even for zero Zeeman energy.

The spin properties of the FQHE states in TLG are analyzed
for filling factors ν = 2

3 and ν = 2
5 . In Fig. 5 the results

for the ν = 2
3 -FQHE state are shown for LL-1 and LL-2

without including the Zeeman energy. The black and red
lines in Figs. 5(a) and 5(b) correspond to spin-polarized and
spin-unpolarized states, respectively. The general behavior of
the state is similar to that of the ν = 1

3 state. For small magnetic
fields there are stronger interactions in LL-1, while for larger
magnetic fields the anticrossing of energy levels becomes
double crossings. For a small magnetic field, the ground
state of the ν = 2

3 state is mainly spin-polarized with only
a small region of bias voltages, U , when the system becomes
spin-unpolarized in LL-2. Therefore, for a weak magnetic

FIG. 5. (Color online) The ground state energy per particle
[panels (a) and (b)] and the excitation gaps [panels (c) and (d)] for
ν = 2

3 in LL-1 and LL-2 versus the bias voltage near the ACPs. The
excitation gaps are shown only for the spin-polarized systems. The
black and red lines in panels (a) and (b) correspond to spin-polarized
and spin-unpolarized states, respectively. For the spin-polarized state,
the number of electrons is N = 16 and the parameter 2S is 24, while
for the spin-unpolarized state N = 10 and 2S = 12.
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field, B ∼ 5 T, the ν = 2
3 state in LL-2 should show spin

transition into an unpolarized state within a narrow interval of
U at the ACP. A strong Zeeman energy >2 meV (for B = 5 T)
will suppress this spin transition [see Appendix].

In a large magnetic field [Fig. 5(b)], the ν = 2
3 state shows

interesting spin properties. While in LL-1 the ν = 2
3 ground

state is spin-unpolarized for small values of U , it becomes
spin-polarized for large bias voltage, U > 420 meV. In LL-2
the ground state is spin-polarized for all values of U . Finally,
combining these two behaviors and comparing the ground
state energies of different systems [Fig. 5(b)], we predict
the following spin transitions.22 If the system is initially in
LL-1 for the ν = 2

3 -FQHE state, then with increasing bias
voltage the system will undergo the following transitions:
spin-unpolarized state in LL-1 ↔ spin-polarized state in
LL-2 ⇔ spin-unpolarized state in LL-1 ⇔ spin-polarized
state in LL-1. What is remarkable here is that spin polarization
of the ν = 2

3 state in TLG can be controlled by fine tuning
the bias voltage, a possibility that never existed in the FQHE
regime of conventional systems. The spin transitions for ν = 2

3
exist for a small Zeeman energy �1.5 meV [see Appendix].

We have also studied ν = 2
5 in LL-1 and LL-2, and find the

general properties to be similar to that for ν = 1
3 , but no spin

transitions.23 In the above analysis we discussed the properties
of TLG as a function of the bias voltage and the magnetic
field for fixed values of other parameters. Variation of these
parameters changes the positions of anticrossing transitions
and the values of ACGs, which show most sensitivity to the
values of γ2 and γ5.

IV. CONCLUDING REMARKS

Trilayer graphene exhibits several very unique electronic
properties near the ACPs of two Landau levels. In the FQHE
regime the electron-electron interaction strongly renormalizes
the ACG. In a weak magnetic field (B < 8 T), the many-body
interaction enhances the ACG, resulting in a nonmonotonic
dependence of the excitation gaps on the bias voltage. In a large
magnetic field (B > 8 T), the electron-electron interaction
strongly suppresses and finally closes the ACG. In that case,
the spin-polarized FQHE state shows nontrivial transitions as a
function of the bias voltage, which are accompanied by jumps
of the FQHE gaps.

In a large magnetic field (B > 8 T) the TLG displays unique
spin polarizations with controllable spin transitions: With the
bias voltage the ν = 2

3 -FQHE state can be switched from spin-
polarized to spin-unpolarized states. These spin transitions are
due to modification of the interelectron interaction near the
ACP, and are different from those in conventional systems.18,21

In conventional semiconductor systems the spin transitions
are determined by a competition between the Zeeman energy
and the difference between cohesive energies of spin-polarized
and spin-unpolarized ground states. The origin of spin transi-
tions in conventional systems is therefore the Zeeman energy.

In the TLG system the spin transitions are determined by the
modification of interaction potentials in a given Landau level.
This modification is due to anticrossing of energy levels, which
affects the single particles wave functions and correspondingly
changes the interelectron interaction strength. Therefore in the

case of TLG, by variation of the parameters of the system, e.g.,
the bias voltage, we can change the interelectron interaction
and even for zero Zeeman energy we can observe spin
transitions at the ν = 2

3 filling factor. In TLG the spin transition
is therefore due to a competition between the cohesive energies
of spin-polarized and spin-unpolarized states. Although the
TLG system shows many crossings and anticrossings of the
Landau levels, only at one special anticrossing point (shown
in Fig. 2) can the spin transitions be observed. Therefore, the
system needs to be fine tuned to that specific point. Various
experimental techniques were developed in the past to study
spin transitions in the FQHE regime for conventional electron
systems.18,21 Similar experiments in trilayer graphene will
undoubtedly uncover a wealth of information about charge
and spin transitions in the FQHE regime.
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APPENDIX: SPIN TRANSITIONS IN TRILAYER
GRAPHENE IN THE 2

3 -FQHE FOR A FINITE ZEEMAN
ENERGY

The results for the ground state energies of the 2
3 -FQHE

systems, shown in Figs. 5(a) and 5(b), correspond to zero
Zeeman energy. The finite Zeeman energy, which affects
only the spin-polarized states, changes the relative energies
of the ground states of spin-polarized and spin-unpolarized
phases. The Zeeman energy is defined as �z(B) = gsμBB and
depends on the magnetic field B and the effective g factor of
electrons in trilayer graphene gs . Here μB is the Bohr magne-
ton. For a graphene layer the g factor is around 2. Introducing
the Zeeman energy as a parameter, we construct the phase
diagram shown in Fig. 6 with two phases corresponding to
the spin-polarized and spin-unpolarized ground states. The
variables in this diagram are the Zeeman energy �z and the
bias voltage U . Here we assume that the g factor of electrons
in trilayer graphene is the same as in a single-layer graphene,
i.e., gs ≈ 2. Then the Zeeman energy is �z ≈ 0.58 meV for
B = 5 T and �z ≈ 1.7 meV for B = 15 T.

FIG. 6. The phase diagram of the spin-polarized and spin-
unpolarized ground state of the system. The phase diagram is shown
for the two variables, the Zeeman energy and the bias voltage. The
dashed region corresponds to the spin-unpolarized state. The results
are shown for ν = 2/3 and magnetic fields B = 5 T and B = 15 T.
The number of electrons in the system is N = 16.
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