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Rotationally invariant exchange interaction: The case of paramagnetic iron
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We present a generalization of the spin-fluctuation theory of magnetism which allows us to treat the full
rotational invariance of the exchange interaction. The approach is formulated in terms of the local density
approximation plus dynamical mean-field theory (LDA + DMFT), providing a systematic many-body treatment
of the effect of spin-density fluctuations. This technique is employed to study the electronic and magnetic
properties of paramagnetic α iron. Our result for the Curie temperature is in good agreement with experiment,
while the calculations with the Ising-type exchange interaction yield almost twice the overestimated value.
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I. INTRODUCTION

The theoretical description of metallic magnets, especially
those containing transition metals, is one of the central
problems in condensed matter physics. Even today, in view of
the great technological importance of such materials, a detailed
understanding of their electronic, magnetic, and structural
properties at finite temperatures remains problematic. This is
mostly due to the presence of local magnetic moments above
the magnetic ordering temperature which complicates the
problem considerably and reduces the predictive power of first-
principles calculations. Various properties of metallic magnets
can be understood by using the spin-fluctuation theory1 with its
most general form based on a functional integral formulation.2

This formulation was employed to describe the formation
of local moments in paramagnetic metals3 by reducing the
many-body problem to a one-particle problem in a fluctuating
external magnetic field and then evaluating the functional
average. Stimulated by these results, different analytical and
numerical methods have been developed, e.g., the well-known
quantum Monte Carlo techniques.4,5 By taking into account
fluctuation corrections to the mean-field approximation, the
spin-fluctuation theory has shown to provide a good qualitative
description of the Curie-Weiss law behavior of magnetic
susceptibility. However, applications of this technique to
describe, e.g., the α-γ phase transition in iron, do not lead
to satisfactory results.6 In particular, it predicts the bcc-fcc
phase transition to occur below the Curie temperature, TC ,
while, in fact, this phase transition occurs 150 K above TC .

The local density approximation plus dynamical mean-
field theory (LDA + DMFT) method,7 a combination of the
ab initio local density approximation (LDA) of the density
functional theory and dynamical mean-field theory (DMFT),
nowadays has become a state-of-the-art approach for the
calculation of electronic and magnetic properties of correlated
electron compounds.8 Applications of the LDA + DMFT to
study transition-metal compounds have given a good quan-
titative description of localized as well as itinerant electron
states.9–11 These calculations predict the correct values of
the local magnetic moment and magnetization, while the
magnetic transition temperature turns out to be significantly
overestimated. There are two reasons for the overestimation of

the magnetic transition temperature. The first one is the single-
site (local) nature of the DMFT approach, which is not able to
capture the reduction of magnetic transition temperature due to
long-wavelength spin waves.9 The second reason comes from
the approximate form of the local Coulomb repulsion restricted
to the Ising-type exchange interaction. The model calculations
for the Bethe lattice with the infinite coordination number (and
thus exact in DMFT) show substantial overestimation of the
Curie temperature for the density-density type of Coulomb
interaction.12 These problems can be repaired using DMFT
extensions13 and modern family of continuous-time quan-
tum Monte Carlo (CT-QMC) solvers,14 respectively. While
the different DMFT extensions are actively developed and
successfully applied to model systems, the implementations
of these techniques to real materials (five-orbital systems)
can really be counted by fingers.15 The recently proposed
continuous-time quantum Monte Carlo algorithms14 as well
as some other quantum impurity solvers16 allow one to treat
the Coulomb interaction in its general form retaining rotational
spin symmetry. However, applications of these methods so far
have been mostly limited to simple low degenerate model
systems and only a few realistic calculations for the 3d

compounds have recently appeared.17 The main drawback of
the CT-QMC algorithms with the full Coulomb interaction
matrix is a high computational cost due to the exponential
scaling with the number of orbitals. Therefore, at present,
the density-density part of the Coulomb repulsion has been
employed in the most material-specific calculations of the
uniform magnetic susceptibility. However, as we will show
below on the example of paramagnetic iron, retaining spin
rotational symmetry is crucial for the correct description of
magnetic properties.

In this paper, we present the spin-fluctuation theory of
magnetism which is formulated in the framework of the
LDA + DMFT method. The approach provides a systematic
treatment of the effect of local electronic correlations by
reducing the many-body problem to the functional integral
over a fluctuating magnetic field on an effective impurity. The
spin-fluctuation theory is generalized by replacing a scalar
fluctuating magnetic field with a vector one. This allows one to
take into account the full rotational invariance of the exchange
interaction instead of the approximate Ising-type form. The
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proposed method is employed to study the electronic and
magnetic properties of paramagnetic α iron, resulting in a
Curie temperature value which is in good agreement with
experiment.

II. METHOD

We start with the simple Hamiltonian of the Coulomb
interaction in the following form:

ĤCoul = 1

2

∑
μ,ν,σ

Un̂μσ n̂νσ̄ + 1

2

∑
μ,ν,σ
μ �=ν

(U − J )̂nμσ n̂νσ , (1)

where n̂μσ denotes the electron number operator with spin
σ (=↑ , ↓) at orbital μ. Using the total electron number
operator, N̂ = ∑

μσ n̂μσ , and the z projection of the spin
operator, Ŝz = ∑

μ (̂nμ↑ − n̂μ↓)/2, the Hamiltonian can be
rewritten as

ĤCoul = 1
2 Ū N̂ (N̂ − 1) + 1

4J N̂ − J Ŝ2
z , (2)

where Ū = U − J/2 is the average value of the Coulomb
interaction. This Hamiltonian represents the density-density
part of the Coulomb interaction and contains the exchange
interaction in the Ising-type form. To restore the spin rotational
symmetry, one should replace the z projection of the spin

operator, Ŝz, to the vector spin operator, �̂S. Therefore, the
Hamiltonian with the rotationally invariant exchange interac-
tion reads

ĤCoul = 1
2 Ū N̂ (N̂ − 1) + 1

4J N̂ − J �̂S2
. (3)

Following the spin-fluctuation theory, we assume that the
charge fluctuations are of high frequency and thus the charac-
teristic time of the charge fluctuations is substantially smaller
than that of the spin fluctuations. This makes it reasonable
to average (not neglect) the contribution from the charge
fluctuations and focus on the spin dynamics. The first quadratic
term in Eq. (3) can be treated as N̂2 → N̂nd , where nd = 〈 N̂ 〉
is the number of 3d electrons averaged over spin fluctuation
time. The Hamiltonian of the system can be expressed as

Ĥ = ĤLDA + Ū (nd − nd0)N̂ − J �̂S2
, (4)

where the first term, ĤLDA, is a kinetic contribution borrowed
from the LDA. The second term is a combination of the LDA
double counting term (nd0 is the LDA value for nd ) and static
charge term discussed above. The last term is responsible for
spin fluctuations.

In the DMFT approach the lattice problem with Hamilto-
nian (4) is mapped onto a quantum impurity model. Using the
general form of the Hubbard-Stratonovich transformation,2 the
partition function can be expressed as a functional integral

Z =
∫

D�ξ (τ )exp

[
−π

β

∫ β

0

�ξ 2(τ )dτ

]
Z(�ξ ), (5)

where

Z(�ξ ) = Tr

{
Tτ exp

[
−βĤLDA − βŪ (nd − nd0)N̂

+ 2c

∫ β

0

�ξ (τ )̂�S dτ

]}
. (6)

Here, Tτ denotes the time-ordering operator, β the inverse
temperature, and c = √

πJ/β. Function �ξ (τ ) stands for an
effective magnetic field resulting in the potential V̂ (τ ) =
2c �ξ (τ )̂�S. The functional integral over all fluctuating fields
gives a solution of the impurity problem.

In the functional integral formulation of the conventional
spin-fluctuation theory, the fluctuating magnetic field in Eq. (5)
is considered to be scalar. The generalization to a vector field
corresponds to the transition from Eq. (2) to Eq. (3) and allows
one to take into account the spin-rotational symmetry, thereby
extending the theory from the Ising-type exchange interaction
to the full rotationally invariant one. Dividing the imaginary
time interval [0,β] on L slices of length 
τ and using the
Trotter breakup for the exponential operator in Eq. (6), the
partition function Z(�ξ ) for a given �ξ (τ ) can be expressed as

Z(�ξ ) 
 Tr

{
Tτ

L∏
l=1

(exp[−
τĤ0] exp[V̂ (τl)])

}
, (7)

where Ĥ0 = ĤLDA + U (nd − nd0)N̂ is the �ξ -independent part
of the Hamiltonian. These equations are similar to those of the
Hirsch-Fye quantum Monte Carlo (HF-QMC) method.5 The
partition function can be written as

Z =
∑
{�ξ}

exp

[
−π

L

L∑
l=1

�ξ 2(τl)

] ∏
μ

det
[
G−1

μ (�ξ )
]
. (8)

However, instead of a single spin flip as in the HF-QMC
method, here one should stochastically change the value of
the field �ξ (τ ) for a random value of imaginary time. Due to

the vector nature of the spin operator �̂S, the instant Green
function for a given fluctuation field configuration becomes
nondiagonal in spin indexes. The interacting Green function
restores the spin symmetry after averaging over all fluctuating
fields. The computational scheme where the partition function
is calculated with an auxiliary vector magnetic field is
referred to below as �J -QMC. By taking into account only
the z component of the field, the approximate form of the
local Coulomb interaction, limited to the Ising-type exchange
interaction, is assumed (referred to as Jz-QMC).

III. RESULTS AND DISCUSSION

Elemental iron is one of the most famous itinerant-electron
ferromagnets which exhibits localized moment behavior above
the Curie temperature TC . Although various properties of the
low-temperature ferromagnetic state of Fe can be understood
within the density functional theory,18 applications of these
techniques to describe the paramagnetic state do not lead
to satisfactory results. Clearly, an overall understanding of
the properties of iron requires a formalism which takes into
account the existence of local magnetic moments above TC .19

Recent applications of the LDA + DMFT have shown to pro-
vide a qualitatively correct description of the electronic, mag-
netic, and structural properties of paramagnetic iron.9,11,20–22

However, a quantitative agreement has been achieved only in
terms of the reduced temperature T/TC , while the calculated
Curie temperature9 was found to be about twice larger than
the experimental value of 1043 K.23 The average Coulomb
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interaction in the Fe 3d shell is considerably smaller than the
bandwidth, showing no evidence for the formation of Hubbard
bands in the spectral function. However, due to the strong
exchange interaction,11 local magnetic moments are formed
that are accompanied by loss of coherence for metallic states
due to scattering of electrons on the fluctuating spins. The
charge fluctuations in paramagnetic iron are of high frequency
with 3d electrons being far from the localization limit. In
addition, body-centered cubic iron has a large coordination
number, z = 8, implying small error in Curie temperature due
to the local nature of the DMFT. These arguments make iron
an ideal candidate for our study.

To calculate the electronic structure of paramagnetic α

iron within the LDA, the tight-binding linear muffin-tin
orbital (TB-LMTO) method was employed.24 The low-energy
Hamiltonian containing the 4s, 4p, and 3d states has been
constructed with the use of an N th-order muffin-tin orbital
(NMTO) method.25 In our calculations, we used the value of
the screened Coulomb interaction, U = 2.3 eV, and the value
of Hund’s exchange, J = 0.9 eV, which are consistent with
the previous estimations.9,11,20,26

In Fig. 1 we present the partial densities of states and the cor-
responding imaginary parts of the self-energies obtained by the
LDA + DMFT at β = 10 eV−1. The HF-QMC and �J -QMC
calculations give qualitatively similar results, reproducing the
splitting in the density of states of the eg orbitals near the Fermi
level caused by exchange interaction.11 The splitting in the
density of states of the t2g orbitals is found to occur in the LDA
calculation and hence can be attributed to the band-structure
effects. In both approaches, the self-energies for the eg orbitals
diverge at low frequencies forming a non-Fermi-liquid state.
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FIG. 1. (Color online) Partial t2g (black) and eg (red dashed)
densities of states obtained by �J -QMC (top panel) and HF-QMC
(bottom panel) calculations within LDA + DMFT. The Fermi level
is indicated by the vertical (gray) line at zero energy. Insets: imaginary
parts of the corresponding self-energies. The lower inset also shows
the imaginary parts of the t2g (green squares) and eg (blue stars)
self-energies obtained by HF-QMC with J = 0.
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FIG. 2. (Color online) Spin-spin correlation functions on the real
and imaginary energy (inset) axes calculated by the HF-QMC and
�J -QMC within LDA + DMFT.

The self-energy for the t2g orbitals remains Fermi-liquid-like
in HF-QMC, but looks like non-Fermi-liquid in �J -QMC.
However, the calculations at lower temperatures indicate that
the coherence for the t2g states is restored. Thus, the formation
of local magnetic moments is accompanied by more incoherent
eg states and itinerant t2g states.11 The smaller magnitudes of
self-energies in �J -QMC than in HF-QMC can indicate that the
proposed method has a tendency to underestimate the strength
of Coulomb correlations. In the lower inset we also present the
imaginary parts of self-energies calculated by HF-QMC with
the exchange parameter switched off, J = 0. One can clearly
see that the self-energies tend to zero at low frequencies. This
confirms again that the incoherent behavior is defined by the
exchange interaction. We also note that at low frequencies
the self-energies obtained by the �J -QMC method are close to
those of the HF-QMC. This indicates that the physics near the
Fermi level is dominated by the spin fluctuations, while the
charge fluctuations play a minor role.

In Fig. 2 we show our results for the orbitally-resolved spin-
spin correlation functions on the real and imaginary energy
axes. In both approaches, the non-Fermi-liquid behavior of
the eg electrons yields a pronounced peak at zero energy of
the real energy axis indicating the presence of local magnetic
moments. The satisfactory agreement of the results obtained by
the HF-QMC and �J -QMC methods suggests that the effect of
the charge fluctuations, averaged within the �J -QMC approach,
is minor.

To proceed further we compute the uniform magnetic
susceptibility as a response to an external magnetic field.
The temperature dependence of the inverse uniform magnetic
susceptibility obtained by the LDA + DMFT shows a linear
behavior at high temperatures (Fig. 3). This indicates the
presence of local magnetic moments and corresponds to
the Curie-Weiss law, χ−1 = 3(T − TC)/μ2

eff , where TC is the
Curie temperature and μeff is the effective local magnetic
moment. The results of the least-square fit to the Curie-Weiss
law are shown in Fig. 3 by straight lines. It is clearly seen
that the HF-QMC method, limited to the Ising-type exchange
interaction, overestimates the Curie temperature value almost
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FIG. 3. (Color online) Temperature dependence of the inverse
uniform magnetic susceptibility obtained by the LDA + DMFT. The
straight lines depict the least-squares fit to the Curie-Weiss law.
The experimental value of TC = 1043 K is denoted by the (black)
arrow. The experimental value of the local magnetic moment is
μ

exp
eff = 3.13μB (Ref. 23).

twice. The Jz-QMC approach, which has the Ising-type
exchange interaction, gives a slightly smaller value of the TC

than the HF-QMC. This confirms the validity of the static
approximation for the charge degrees of freedom. Taking into
account the full rotationally invariant exchange interaction,
our calculations result in a substantial decrease of the TC

value, which is now found to be in satisfactory agreement with
experiment. These findings are compatible with the results
of the recent two-band model studies.12 In the case of α

iron, the influence of the approximate treatment of the charge
fluctuations on the Curie temperature appears to be much
smaller than the inclusion of spin-flip terms to the Hamiltonian.

IV. CONCLUSIONS

We presented a generalization of the spin-fluctuation theory
of magnetism which allows one to take into account the
full rotational invariance of the exchange interaction. The
approach is formulated in terms of the LDA + DMFT method,
providing a systematic many-body treatment of the effect of
spin-density fluctuations. We employed this technique to study
the electronic and magnetic properties of α iron. Our results
agree well with experiment and show that overestimation of the
Curie temperature by the LDA + DMFT in the case of α iron
is mostly related to the approximate (Ising-type) treatment of
the exchange Coulomb interaction rather than to the single-site
nature of the DMFT.
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