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Motivated by the unexplored complexity of the phase diagrams for multiorbital Hubbard models, a three-band
Hubbard model at integer fillings (N = 4) with orbital degeneracy lifted partially by crystal field splitting is
analyzed systematically in this work. By using the single-site dynamical mean-field theory and rotationally
invariant Gutzwiller approximation, we have computed the full phase diagram with Coulomb interaction strength
U and crystal field splitting �. We find a large region in the phase diagram where an orbital-selective Mott
phase will be stabilized by the positive crystal field lifting the orbital degeneracy. Further analysis indicates that
Hund’s rule coupling is essential for the orbital-selective Mott phase, and the transition toward this phase is
accompanied by a high-spin to low-spin transition. Such a model may be relevant for the recently discovered
Ru-based materials.
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I. INTRODUCTION

The Mott-Hubbard metal-insulator transition (MIT) has
been a subject of great interest for decades.1 Most of the
attention before this century has been focused on the one-band
case only because most of the qualitative features of MIT have
already been captured by the single-band Hubbard model, as
shown by numerous studies using the single-site dynamical
mean-field theory (DMFT).2 However, in realistic materials
most of the Mott transitions involve more than one band
and thus exhibit multiorbital features.3 Multiorbital extension
of the Hubbard model allows more realistic description of
MIT and other strongly correlated physics, which contains,
in general, much richer phase diagrams and exotic physical
phenomena. For instance, the redistribution of electrons among
different orbitals leads to new scenarios, such as orbital
ordering,4 high-spin to low-spin (HS-LS) transition,5 orbital-
selective Mott transition (OSMT),6 etc.

Mott transitions in multiorbital models have been studied
within the framework of DMFT for more than ten years.2,7

Previous studies show8 that simply increasing the band
degeneracy only changes the critical interaction strength Uc but
does not change the fundamental features of Mott transition,
where all the degenerate bands undergo Mott transition
simultaneously under the increment of interaction strength.
Recent studies of realistic materials have focused interest on
the interplay between MIT and orbital degeneracy.6,9–11 A very
fundamental question raised in this field is how the multiorbital
systems respond to the breakdown of the orbital degeneracy. In
such a system, it is possible that the Mott transitions in different
orbitals happen separately, which is the so-called OSMT and
was suggested first by Anisimov et al.6 in the pioneering study
of Ca2−xSrxRuO4.

After its proposal, the concept of OSMT attracted much
scientific interest.12–25 The early DMFT studies on this
problem were focused on the two-band Hubbard model
with half-filling, which is the simplest system that might
have OSMT when the bandwidths of the two bands are

different. The DMFT calculations from different groups with
finite-temperature exact diagonalization12,13 and the Hirsch-
Fye quantum Monte Carlo method14–18 as impurity solvers
converge to two essential conclusions: (1) The OSMT in the
two-band Hubbard model is mainly induced by the bandwidth
difference, which breaks the degeneracy between the two
bands, and the crystal field splitting plays a minor role here.
(2) The emergence of OSMT is very sensitive to the symmetry
of the local interaction. In other words, OSMT easily occurs
when the local interaction is rotationally invariant but not when
the local interaction breaks the rotational invariance.

The OSMT in the three-band Hubbard model, which is more
relevant to the realistic situation of Ca2−xSrxRuO4,6,22 is not
a trivial generalization of the two-band model. In two-band
systems, the OSMT can only take place in the half-filling
case, while in three-band systems it can take place when
the occupation numbers are 2, 3, or 4 or even for fractional
occupation.20,23 When the total occupation number is 3, the
three-band system is half-filled, and actually, the situation
is very similar to the two-band model. The most interesting
case is when the occupation number is 2 or 4, which can be
transformed between each other by the particle-hole symmetry.
Recently, de’ Medici et al.23 proposed a new mechanism for
OSMT, which happens in three-band systems with a filling
factor of 2 or 4. In this new scenario of OSMT, the driving
force is not the difference of the bandwidth but the crystal
field splitting lifting the band degeneracy. Then Kita et al.26

investigated how the orbital level splitting and Ising-type
Hund’s rule coupling affect the Mott transition in the case
of two electrons per site. Their results reveal that the critical
interaction strength separating a metallic phase and two kinds
of insulating phases shows a nonmonotonic behavior as a
function of the orbital level splitting. They suggested that this
behavior is characteristic for 1/3 filling, in comparison with
the preceding results for different fillings and for two-band
models. It is worth noting that the three-band system is
very popular in transition-metal compounds.1,3 Provided the
Fermi energy falls into the t2g bands, the tetragonal distortion
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will further split them into a nondegenerate a1g band and
twofold-degenerate e′

g bands. When the occupation number
is 4, the appropriate crystal field will redistribute the four
electrons into a1g band and e′

g bands as 1 and 3, respectively
[dubbed the (3,1) configuration]. Thus, if we neglect the
correlation between a1g and e′

g subsystems, the a1g band
becomes a one-band system with half-filling, and e′

g bands
become a two-band system with quarter-filling, which will lead
to an orbital-selective Mott phase (OSMP) at equal bandwidth
because it is much easier to get a Mott insulator in the a1g band.
The mean-field phase diagram of this model determined by the
slave-spin method23,24 contains quite a large region for OSMP,
in which the a1g band has already become a Mott insulator
while the e′

g bands are still metallic.
The OSMT driven by the band degeneracy lifting is

quite a robust phenomenon determined by the interplay
between crystal symmetry and correlation effects. In a previous
work,23 the phase diagram of the three-band Hubbard model
was mainly calculated by the slave-spin method, which is
qualitatively correct but not accurate enough. In the present
paper, we study systematically this t2g-like Hubbard model
with crystal field splitting by two more accurate methods: the
DMFT method combined with a state-of-the-art hybridization
expansion continuous-time quantum Monte Carlo impurity
solver (generally abbreviated as DMFT + CT-HYB)27–30 and
the newly developed rotationally invariant Gutzwiller ap-
proximation (RIGA) method.31–34 The metal-insulator phase
diagram, band-specific quasiparticle weight Za , orbital oc-
cupation number na , and local magnetic moment Meff are
computed by both methods with respect to crystal field splitting
� and Coulomb interaction strength U . Based on these results,
we mainly discuss three important aspects of OSMT in this
system: (i) the crucial role of Hund’s rule coupling, (ii) the
redistribution of four electrons among the a1g and e′

g bands,
and (iii) the relationship between OSMT and HS-LS spin-state
crossover.

The rest of this paper is organized as follows: In Sec. II the
three-band Hubbard model treated in this work is specified.
In Sec. III A the main results of this paper, U -� phase
diagrams for rotationally invariant interaction and SU(N )
density-density interaction, are presented and compared with
each other. In Sec. III B, the redistribution of electrons among
different orbitals and its relationship with the OSMT are
discussed in detail. And the accompanying HS-LS spin-state
crossovers are discussed in Sec. III C. Section IV serves as a
conclusion.

II. MODEL

We consider the three-band Hubbard model defined by

H = −
∑

ij,aσ

tij c
†
iaσ cjaσ +

∑

i

H i
loc, (1)

where c
(†)
iaσ is an annihilation (creation) operator of an electron

with spin σ (=↑, ↓) and orbital a ( = 1, 2, 3) at the ith site and
tij is the hopping integral between site i and site j . The local
part of Hamiltonian Hi

loc can be defined as follows (for the
sake of simplicity, the site index i has been ignored in the rest

of this paper):

Hloc = −
∑

aσ

(μ − �a)naσ +
∑

a

Una↑na↓

+
∑

a>b,σ

[U ′naσ nbσ̄ + (U ′ − J )naσnbσ ]

−
∑

a<b

J (d†
a↓d

†
b↑db↓da↑ + d

†
b↑d

†
b↓da↑da↓ + H.c.). (2)

Here naσ = c
†
aσ caσ is the number operator, μ is the chemical

potential, and �a is the energy level for orbital a. In the
interaction terms, U (U ′) is the intraorbital (interorbital)
Coulomb interaction, and J is the Hund’s rule coupling.
The constrained condition U = U ′ + 2J is imposed as usual,
which is valid for atomic-like local orbitals. The above
interaction terms include both the spin-flip and pair-hopping
terms and thus are rotationally invariant in the spin space. In
order to elucidate the Mott MIT in the case of four electrons
per site, the chemical potential μ is adjusted dynamically in
the simulations to fix the electron filling per site as N = 4.
In the present paper, we focus on the t2g-like bands under the
tetragonal crystal field, which are split into the nondegenerate
a1g band (namely, orbital 1) and doubly degenerate e′

g bands
(namely, orbitals 2 and 3), as mentioned above. Therefore the
on-site energy level is assumed to be �1 �= �2 = �3, and their
difference is defined as � = �1 − �2.

This lattice model [see Eqs. (1) and (2)] can be solved
in the framework of single-site DMFT,2,7 which neglects
the momentum dependence of the self-energy and reduces
the original lattice problem to the self-consistent solution of
an effective impurity model. In this paper, a semicircular
density of states with half bandwidth D = 1 is used, which
corresponds to the infinite coordination Bethe lattice. All the
orbitals have equal bandwidth, and the energy unit is set to
be D. To solve the effective impurity model, the CT-HYB
impurity solver within general formulation27–30 is adopted.
This method allows us to access the strong interaction regime
down to very low temperatures. In our calculations, the system
temperature is set to be T = 0.01 (corresponding to inverse
temperature β = 100) unless otherwise stated. In each DMFT
iteration, typically 4 × 108 Monte Carlo samplings have been
performed to reach sufficient numerical accuracy.

In the present work, we also use the efficient RIGA
method31–34 to crosscheck the results obtained by the
DMFT + CT-HYB method. In contrast to the finite-
temperature DMFT + CT-HYB calculations, only the zero-
temperature physical quantities can be obtained by using the
RIGA method. Although the RIGA method cannot access the
dynamical properties of correlated systems, it provides a very
fast and economic way to calculate the ground-state properties,
for example, the total energy and occupation numbers. Thus,
it can be viewed as a good complementary approach to the
DMFT + CT-HYB method. As will be discussed in detail
in the following sections, the phase diagrams and other
physical properties obtained by both methods are in very
good agreement. The presence of both results from the two
different methods gives a more comprehensive description
of the phase diagrams for both zero and finite temperatures.
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The implementation details of the RIGA method have been
presented elsewhere.34

III. RESULTS AND DISCUSSION

A. U-� phase diagram

To map out the metal-insulator phase diagram we have
computed thoroughly the dependence of charge density,
quasiparticle weight, and local magnetic moment as a function
of crystal field splitting for various Coulomb interaction
strengths. In this section, we will focus first on the U -� phase
diagrams with both nonzero and zeroed Hund’s rule coupling
J . We will show in the following that the Ising-type Hund’s
rule coupling Jz is extremely crucial for the appearance of
OSMP in the three-band system with four electrons.

When the spin-flip and pair-hopping interaction terms are
taken into full consideration, the Hamiltonian for the three-
band Hubbard model is rotationally invariant in the spin space,
and the phase diagram contains four different phases, which are
the metal, band insulator, OSMP, and Mott insulator phases,
respectively. The obtained U -� phase diagrams for the J =
U/4 case are illustrated in Fig. 1. The top panel is the results
obtained by the DMFT + CT-HYB method, and the bottom
panel is obtained by the RIGA method. From Fig. 1, we can
easily see that the consistency between both methods is quite
excellent, except the phase boundary obtained by the RIGA
method is a bit higher, which is similar to the situations found
in the one- and two-band models.33,34 Comparing with the
analogous phase diagrams previously obtained by the slave-
spin method,23,24 there are two important differences. First,
the critical Uc for Mott transition at � = 0 is much lower
in the phase diagram determined by the DMFT + CT-HYB
method. Second, in the phase diagrams obtained with both the
DMFT + CT-HYB and RIGA methods, the phase boundary
between the metal and band insulator phases depends on U

monotonically; however, in the phase diagram obtained with
the slave-spin method, it decreases first and then increases.23

This difference is mainly due to the oversimplified treatment
of Hund’s rule coupling terms in the slave-spin method.24

The general shape of the phase diagram can be easily
understood by considering two limiting cases: (i) For � = 0,
the model reduces to a fully degenerate three-band Hubbard
model with total filling N = 4, which undergoes a Mott
transition around U = 10.0. (ii) For the uncorrelated limit (i.e.,
U = 0), when � > 0 a simple transition from metal to band
insulator can be observed at � = 2.0 with the fully occupied
e′
g bands and empty a1g band. Another transition can also

be seen on the negative side at � = −1.0, after which the
nondegenerate a1g band is a fully occupied band insulator and
the doubly degenerate e′

g bands are metallic at half-filling.
When both the Coulomb interaction U and crystal field

� are finite, the phase diagram is quite complicated and very
different for � > 0 and � < 0. Now let’s have a further discus-
sion about this phase diagram. On one hand, if the crystal field
splitting � > 0, the isolate a1g band is lifted up, and the doubly
degenerate e′

g bands are pushed down. This part of the phase
diagram can be divided vertically into two regions: (i) For
2.0 > � > 0.0, the system undergoes successive transitions
from metal to Mott insulator through an OSMP as the Coulomb
interaction strength increases. (ii) For � > 2.0, the system
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FIG. 1. (Color online) Calculated phase diagrams of the three-
band Hubbard model with rotationally invariant interactions in
the plane of Coulomb interaction U (J = U/4) and crystal field
splitting � (� = �1 − �2). (top) Calculated by the DMFT + CT-
HYB method27,28 at finite temperature T = 0.01. (bottom) Calculated
by the RIGA method34 at zero temperature. In all the calculations, the
chemical potential μ is adjusted dynamically to fulfill the total oc-
cupation number condition (N = 4). The label “(2,2) Metal + Band
Insulator” means the twofold-degenerate bands (e′

g states) are metallic
while the nondegenerate band (a1g state) is insulating, and (2,2)
means the corresponding orbital occupancies. All the other labels
have similar explanations. The pink zone shows the LS state, and the
orange zone shows the HS state. The solid blue line with circles and
solid red line denote the phase boundaries for rotationally invariant
interaction and Ising-type Hund’s rule coupling cases, respectively.

undergoes a different type of successive transitions from band
insulator to Mott insulator through metal and OSMP phases in
sequence. On the other hand, if the crystal field splitting � < 0,
i.e., the a1g band is lower than the twofold-degenerate e′

g bands,
this part of the phase diagram can be divided vertically into
three different regions: (i) For −1.0 < � < 0.0, with weak
Coulomb interaction both bands have fractional filling and are
metallic. As the Coulomb interaction strength U increases,
the system undergoes a transition from a fully metallic phase
to an insulator phase, after which the occupation numbers
for both the a1g and e′

g bands are 2. Since the a1g band
has no degeneracy, it is completely occupied and becomes
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a band insulator in this situation. At the same time the e′
g

bands with double degeneracy become Mott insulators with
half-filling. Thus, it is called the (2,2) Mott insulator phase
throughout this paper. (ii) For −1.4 < � < −1.0, with weak
Coulomb interaction the a1g band is already fully occupied,
and the e′

g bands are half-filled and metallic. As the Coulomb
interaction strength U increases, the system first becomes a
fully metallic phase with fractional filling factors for all the
bands and then goes back to the original (2,2) metal plus
band insulator phase after a “reentrance” transition. Finally,
it becomes the (2,2) Mott insulator phase once U > 2.0.
(iii) For � < −1.4, the a1g band remains fully occupied
regardless of the interaction strength, and the system reduces
to an equivalent two-band model with half-filling, which
undergoes a typical Mott MIT around U = 2.0, as determined
by the DMFT + CT-HYB method. As seen in Fig. 1, the
OSMP covers a wide parameter range. In a previous work,
de’ Medici et al. have suggested that the non-Fermi-liquid
properties can be seen in the OSMP.23 Not surprisingly, in the
present work the non-Fermi-liquid behavior is also observed
in the OSMP determined by the DMFT + CT-HYB method.
The imaginary part of the calculated low-frequency Matsubara
self-energy function (only for the itinerant component of
OSMP), Im�(iω), exhibits apparently fractional power-law
behavior with respect to iω, which is the signature of the non-
Fermi-liquid phase. The non-Fermi-liquid behavior in OSMP
was first proposed by de’ Medici et al.23 with the DMFT + ED
method and was confirmed by our DMFT + CT-HYB studies.

We note that the Coulomb interaction U has two basic
effects for multiorbital systems. One is to reduce the quasipar-
ticle weight;12–15 the other one is to redistribute the electrons
among different bands.5,20,24 The interplay between these two
effects determines the schematic structure of the above phase
diagrams. Next we will focus on the first effect, and then
the second effect will be discussed in detail in the following
sections. The band-specific quasiparticle weights Za as a
function of Coulomb interaction U are shown in Fig. 2(a).
The crystal field splitting is fixed to � = 1.0. For simplicity,
only the results obtained with the RIGA method, which are
consistent with those obtained with the DMFT + CT-HYB
method, are displayed in Fig. 2(a). It is apparent that the
quasiparticle weights Za decrease monotonously from 1.0 to
0.0 when Coulomb interaction strength increases. As U < 3.0,
the Za are larger than 0.1, and both the e′

g and a1g bands are
metallic. As U > 3.0, Z1 becomes zero, while Z2(=Z3) is still
considerable. This means that the a1g band undergoes a Mott
MIT and turns into an insulator around U = 3.0, and at the
same time the e′

g bands remain metallic, which is the so-called
(3,1) OSMP. When the Coulomb interaction strength continues
to increase (U > 11.0 for the RIGA method and U > 9.0 for
the DMFT + CT-HYB method), the e′

g bands undergo another
Mott MIT, and the system goes to the (3,1) Mott insulator phase
finally; then all Za will approach zero. Indeed, the quasiparticle
weights are used to determine the phase-transition points
for the RIGA calculations. Since Z is not a well-defined
quantity in finite temperatures any longer, with respect to the
DMFT + CT-HYB method, alternative quantities such as the
G(β/2), orbital occupation, and kinetic energy are used to
determine the phase boundaries. Particularly, the imaginary-
time Green’s function at τ = β/2 represents the integrated
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FIG. 2. (Color online) (a) Quasiparticle weights Za as a function
of Coulomb interaction U for selected crystal field splitting � = 1.0.
The calculations are done by the RIGA method at zero temperature.34

The colored arrows correspond to metal-insulator transition points.
(b) The U -dependent imaginary-time Green’s function at τ = β/2
for � = 1.0. The calculations are done by the DMFT + CT-HYB
method at β = 100. In this plot, the quantities renormalized by
G(β/2)|U=1.0 for the a1g band (orbital 1) are shown, and the colored
arrows correspond to phase-transition points as well.

spectral weight within a few kBT of the Fermi level, so it is
a reasonable physical quantity to discuss the metal-insulator
transition as well.14 In Fig. 2(b) G(β/2) as a function of
Coulomb interaction U for selected crystal field splitting
� = 1.0 is plotted. It is apparent that the phase-transition
points determined by the two methods accord with each
other to some extent. As pointed out in previous works,12,26

the OSMTs are of the first order at finite temperatures. In
Fig. 2 we observe sudden drops for Za and G(β/2) around the
phase-transition points, which correspond to typical first-order
transitions.

The Hund’s rule coupling J has enormous influence on the
metal-insulator phase diagram for the multiorbital Hubbard
model.26,35 It is noted that if we neglect the spin-flip and
pair-hopping terms, only keeping the Ising-type Hund’s rule
coupling term Jz (=J ), we can obtain a very similar phase
diagram, albeit the phase boundary is shifted downwards
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FIG. 3. (Color online) Calculated phase diagrams of the three-
band Hubbard model with SU(N ) density-density interaction in
the plane of Coulomb interaction U (J = 0.0) and crystal field
splitting � (� = �1 − �2). (Top) Calculated by the DMFT + CT-
HYB method27,28 at finite temperature T = 0.01. (Bottom) Calculated
by the RIGA method34 at zero temperature. IN the calculations,
the chemical potential μ is adjusted dynamically to fulfill the
total occupation number condition (N = 4). With respect to the
explanations of labels and colored zones in this figure, please refer to
the caption of Fig. 1 and main text.

slightly (see the red lines in Fig. 1). It is apparent that the
Ising-type Hund’s rule coupling term Jz is the key requirement
for OSMT and such a rich phase diagram. In order to reveal
the underlying physics more clearly we also did calculations
for the phase diagram of a similar three-band Hubbard model
without any Hund’s rule coupling terms (J = 0). Thus, we
can compare the U -� phase diagrams for the cases with finite
J (see Fig. 1) and SU(N ) J = 0 (see Fig. 3). Obviously,
the latter is much simpler and has no OSMP in the whole
phase diagram. The top panel of Fig. 3 is the calculated
results obtained by the DMFT + CT-HYB method, and the
bottom panel of Fig. 3 is obtained by the RIGA method. These
two methods give almost identical results again. First, we
concentrate on the noninteraction case (U = 0). On one hand,
when the crystal field splitting is positive (� > 0), an obvious
transition can be seen at � = 2.0, after which the system
becomes a band insulator. On the other hand, when the crystal

field splitting is negative (� < 0), a similar MIT can be found
at � = −1.0. When � > 0, the phase diagram only consists
of metal and band insulator phases. The lower left region is
metallic, and the upper right region is a band insulator phase.
The OSMP disappears completely. When � < 0, the phase
diagram contains metal, band insulator, and Mott insulator
phases, but the characteristic “tip” which can be clearly seen
around U = 1.0 and � = −1.2 in Fig. 1 vanishes, and the
phase boundary between the (2,2) metal plus band insulator
and the (2,2) Mott insulator is shifted upward significantly.
Thus, in summary the Hund’s rule coupling J has played a
key role in the phase diagram. More specifically, finite Jz is
the minimal requirement to drive an OSMT.

B. Redistribution of electrons

In this section, we will discuss the second important
effect of Coulomb interaction U on multiorbital systems
with broken symmetry: the redistribution of electrons among
different orbitals. In order to understand the intriguing physics
contained in the U -� phase diagrams more clearly, we further
plot the occupation numbers of the nondegenerate a1g band as
a function of Coulomb interaction U and crystal field splitting
� in Figs. 4 and 5, respectively.

In Fig. 4(a), the evolution of the orbital occupancy with the
Coulomb interaction strength is shown. The vertical arrows
denote phase-transition points. In Fig. 4(a), only the orbital
filling of the nondegenerate band (a1g band) is plotted. For a
negative crystal field, the a1g band is much lower in energy,
and the effect of the Coulomb interaction depends on the
value of the crystal field � in the following way: (i) For
0 > � > −1.0, the effect of the correlation effect is to transfer
electrons from the e′

g bands to the a1g band until it is fully
occupied and becomes a band insulator, as shown by the blue
curve in Fig. 4(a). (ii) For −1.0 > � > −1.4, the a1g band
is already fully occupied in the noninteracting case, and the
effect of the correlation is nonmonotonic. With the increase
of the repulsive interaction U and Hund’s rule coupling J ,
the occupation number of the a1g band first drops due to the
Hund’s rule coupling and then returns back to being fully
occupied. We note that the interesting nonmonotonic behavior
of the occupation is the consequence of the interplay between
the Hund’s rule coupling J , which favors an even distribution
of the electrons, and the Coulomb repulsive interaction U ,
which tends to increase the occupation difference between
orbitals. Therefore, this behavior disappears when the Hund’s
rule coupling has been set to zero, as shown in Fig. 4(b).
(iii) For � < −1.4, the charge distribution will not be affected
by the correlation effect, and the occupation number of the
a1g band remains constant with the increase of U . While the
situation is very different for � > 0, in this case the energy
level of the a1g band is higher, and the occupation number is
less than 0.5 in the noninteracting case. As we can see from
Fig. 4(a), the increase of the interaction strength will pump
the electrons from the e′

g bands to the a1g band again until
the latter reaches half-filling and becomes a Mott insulator.
When the crystal field strength � is smaller than 2.0, all the
bands are metallic, and the system becomes OSMP once the
a1g band reaches half-filling. However, when � is larger than
2.0, the system starts from a typical band insulator with fully
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FIG. 4. (Color online) Orbital filling as a function of Coulomb
interaction U for selected crystal field splitting � values.
(a) Rotationally invariant interaction case. (b) SU(N ) J = 0 case.
The results are calculated with the DMFT + CT-HYB method27,28

at finite temperature T = 0.01. Only the charge densities of the
nondegenerate band (the a1g band) are shown. The arrows correspond
to possible phase-transition points.

occupied e′
g and empty a1g bands. With the increase of the

Coulomb interaction, it first becomes metallic when the a1g

band becomes partially populated and finally goes into the
OSMP. Thus, there exist at least two phase-transition points in
the � = 2.5 curve.

In Figs. 5(a)–5(c), we plot the occupancy of the a1g band
under a fixed Coulomb interaction strength U as a function
of crystal field splitting �. For weak Coulomb interaction
(U = 1.0), when the crystal field splitting is increased from
very negative to very positive values, two plateaus can be found
in the occupancy of the a1g band, which correspond to fully
occupied and empty situations, respectively. The occupation
numbers decrease smoothly between the two plateaus corre-
sponding to the metallic phase. For an intermediate interaction
strength (U = 3.0) with nonzero Hund’s rule coupling J , there
is an additional plateau with an occupancy that is half-filled,
which corresponds to the OSMP, which is completely absent
as long as J = 0. For a strong interaction strength (U = 7.0),
in the second plateau, which corresponds to the OSMP as well,
the a1g band is half-filled.
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FIG. 5. (Color online) Orbital filling as a function of crystal field
splitting � for selected Coulomb interaction U values. (a) U = 1.0.
(b) U = 3.0. (c) U = 7.0. (d) U = 3.0. In (a)–(c), the interaction
Hamiltonian is rotationally invariant with nonzero spin-flip and pair-
hopping terms, whereas in (d) the interaction Hamiltonian is in the
SU(N ) scheme with J = 0. All the calculations are done by the
DMFT + CT-HYB method27,28 at finite temperature T = 0.01. Only
the charge densities of the nondegenerate a1g band are shown. The
arrows correspond to phase-transition points.

The redistribution of the electrons among the three orbitals
is the key point for the OSMT in this system and can be
understood by the subtle effect of Hund’s rule coupling, which
favors the HS state with the (3,1) configuration. As for the
SU(N ) J = 0 case, the redistribution of electrons is much
easier to understand. As shown in Fig. 4(b), the correlation
effect induced by the Coulomb interaction increases the
occupation of the a1g band for the � < 0 case and decreases
it for the � > 0 case, which is consistent with the results
obtained with the traditional Hartree-Fock mean-field method.

C. HS-LS transition

In this section, we focus on the magnetic properties of
the three-band model during the phase transitions, which
have been reported rarely in the literature. In Fig. 6 we
plot the evolution of the mean instantaneous moment, which
is defined as Meff = √〈S2

z 〉 = √〈(n↑ − n↓)2〉, as a function
of the Coulomb interaction strength U with selected crystal
field splitting �. Actually, since the interaction Hamiltonian
is rotationally invariant and the spin-rotation symmetry is
conserved by the CT-HYB impurity solver27 and the RIGA
method,34 we can easily prove that 〈S2

z 〉 = 〈S2
x 〉 = 〈S2

y 〉 =
〈S2〉/3. We find that although the overall behavior of

√〈S2
z 〉

looks quite similar for positive and negative crystal field
splitting, the underlying physics are very different for the two
cases.

For the negative crystal field splitting (� < 0), with the
increase of the Coulomb interaction strength and Hund’s rule
coupling, the system is approaching the (2,2) configuration
(two electrons in both the a1g and e′

g bands). The HS state
can be reached smoothly when the two electrons in the e′

g

bands fall into the triplet state due to the Hund’s rule coupling.
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FIG. 6. (Color online) Calculated effective local magnetic mo-
ment

√〈S2
z 〉 for the three-band Hubbard model with rotationally

invariant interaction terms. The calculations are done with the
DMFT + CT-HYB method27,28 at finite temperature T = 0.01. Only
the calculated results for representative crystal field splitting values
(� = −2.5, 1.0, and 2.5) are shown. The pink region denotes the
LS phase, and the orange region denotes the HS phase. The arrows
correspond to the possible phase-transition points.

Meanwhile, the Mott transition occurs when the spin state
gets close to the HS state. Nevertheless, the situation for
the positive crystal field splitting (� > 0) is very different.
Under weak Coulomb interaction, the occupation numbers
of the system are closer to the (4,0) configuration (all four
electrons are in the e′

g bands). With the increase of Coulomb
interaction strength and Hund’s rule coupling, when the crystal
field splitting is still not strong enough to drive the system
into the band insulator, the system undergoes two sequential
transitions. The first transition is more related to the charge
transfer from the e′

g bands to the a1g band, and the system
changes from the (4,0) to (3,1) configuration afterwards. This
transition comes from the competition between the crystal
field splitting, which favors the (4,0) configuration, and the
Hund’s rule coupling, which favors the (3,1) configuration.
After the first transition, which manifests itself in Fig. 6 as a
sharp upturn in the

√〈S2
z 〉-U curve for the � = 1.0 case, the

a1g band is half-filled, and the e′
g bands are only quarter-filled.

Since the system with half-filling is always much closer to a
Mott transition,5,20,21,26 the a1g band becomes a Mott insulator
first after the first transition, while the e′

g bands still remain
metallic. A second transition occurs by further increasing the
Coulomb interaction together with the Hund’s rule coupling,
after which the system becomes a Mott insulator for all the
bands with the spin state being very close to a pure HS state.

IV. CONCLUDING REMARKS

In summary, we have studied the Mott transition in the
three-band Hubbard model with orbital degeneracy lifting by
crystal field splitting. By using the DMFT + CT-HYB method
and the RIGA method, we have investigated how the orbital
level splitting and the Hund’s rule coupling affect the Mott
transition in a system with four electrons per site. We obtain
the following conclusions.

First, the Hund’s rule coupling J (more specifically, the
Ising-type Hund’s rule coupling Jz) is the minimal requirement
to induce OSMT and stabilize OSMP. In the phase diagram
for the three-band Hubbard model with rotationally invariant
interactions, the OSMP covers a wide parameter range.
However, in the phase diagram for the three-band Hubbard
model without any Hund’s rule coupling terms, though the
Mott MIT occurs when the Coulomb interaction strength
reaches some critical value, the OSMP is totally absent.

Second, the interplay between the crystal field splitting and
the Hund’s rule coupling terms induces the redistribution of
electrons among the three bands and leads to the complex
phase diagrams. For example, the (4,0) charge configuration
corresponds to a band insulator phase, the (3,1) charge
configuration leads to an OSMP or Mott insulator phase,
and the (2,2) charge configuration leads to a metal plus band
insulator or Mott insulator plus band insulator phase.

Third, the appearance of the OSMP in this system is
always accompanied by a HS-LS spin-state crossover. In the
OSMP, the electronic distribution always remains in the (3,1)
configuration, which strongly favors the HS state and lowers
the Hund’s rule energy. When the Coulomb interaction strength
is reduced, the OSMP collapses to a metal phase accompanied
by a HS-LS transition. Beyond that, in the metallic component
of the OSMP, the non-Fermi-liquid feature is confirmed as
well.

Finally, the three-band models arise in a number of
other physically important contexts, including doped C60 and
ruthenates and so on. In the present work, only the semicircular
density of states is taken into account, which is oversimplified
to understand the exotic physics generated by Hund’s rule.35

Extending our results to the models with a more realistic band
structure is of high priority for future research.
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