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We introduce a family of quantum spin chains with nearest-neighbor interactions that can serve to clarify and
refine the classification of gapped quantum phases of such systems. The gapped ground states of these models
can be described as a product vacuum with a finite number of particles bound to the edges. The numbers of
particles, nL and nR , that can bind to the left and right edges of the finite chains serve as indices of the particular
phase a model belongs to. All these ground states, which we call product vacua with boundary states (PVBS),
can be described as matrix product states (MPS). We present a curve of gapped Hamiltonians connecting the
Affleck-Kennedy-Lieb-Tasaki (AKLT) model to its representative PVBS model, which has indices nL = nR = 1.
We also present examples with nL = nR = J , for any integer J � 1, that are related to a recently introduced
class of SO(2J + 1)-invariant quantum spin chains.
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I. INTRODUCTION

Gapped quantum phases and the transitions between them
are a subject of great current interest both for their fundamental
importance, as illustrated by the experimental observation of
an E8 symmetry at the critical point of the quantum Ising
model,1 and because of their potential application in quantum
information and computation as proposed in Ref. 2. In the latter
case the focus is on the topological phases,3 which cannot
be classified using a local order parameter, but depend on
global features of the system such as the underlying topology
of the model, as, for example, in the quantum Hall effect.4

These topological orders can be characterized by an equivalent
boundary theory.5

Several recent works have aimed at classifying the ground
state phases of quantum spin chains.6,7 While true topological
order may not occur in one dimension, direct analogs of some
essential phenomena are present, including the role of edge
states, which is the main topic of this article.

The consensus is that the ground states of two models
H0 and H1 with short-range interactions are in the same
phase if there exists a smooth path of Hamiltonians H (s),
0 � s � 1, H0 = H (0),H1 = H (1), such that the gap above
the ground state does not close along this path.8,9 Using the
notion of automorphic equivalence, in Ref. 9 we showed how
this definition can be made precise so that it can also be applied
for infinite systems. In general, proving that the gap does not
close is a hard problem but a criterion exists for frustration-free
models whose ground states are matrix product states (MPS).10

Most progress has been made by focusing on such frustration-
free models, with or without prescribed symmetries.7,11

In this article, we introduce a new family of quantum spin
chains with nearest-neighbor interactions with MPS ground
states of a special type which we call product vacua with
boundary states (PVBS). The bulk phase is a product state (or
several product states), but for finite chains there are 2n ground
states that are obtained from the product vacuum by adding
up to n distinguishable particles. Of these n particles nL bind
to the left edge of the interval and nR to the right edge. The
equivalence classes of gapped ground states are in one-to-one
correspondence with the values of the non-negative integers
nL and nR . The Hamiltonian preserves the particle number for

each type of particle separately. As an example, we identify the
classes to which the SO(2J + 1)-invariant models of Ref. 12
belong, namely, nL = nR = J . The Affleck-Kennedy-Lieb-
Tasaki (AKLT) model corresponds to J = 1. The complete
class of PVBS models is more general and will be described
elsewhere.

II. PRODUCT VACUA WITH BOUNDARY STATES

We consider a quantum spin chain with spin dimension
d � n + 1. There are n + 1 states at each site that we interpret
as n distinguishable particles and a vacuum. In addition, there
may be excited states of positive energy that will play no
role in our discussion. For simplicity, we stick to the case
d = n + 1. We start from a MPS representation of the ground
states of the model. The Hamiltonian is constructed as the
parent Hamiltonian for the set of MPS ground states and by
general arguments we can then conclude that it has a gap and
no other ground states.13

Let 0 label the empty state and let 1, . . . ,n denote the n

particle types. The ground states are generated by n + 1 square
matrices v0,v1, . . . ,vn, satisfying the following commutation
relations:

vivj = eiθij λiλ
−1
j vj vi, i �= j, (1)

v2
i = 0, i �= 0, (2)

where θij ∈ R, θij = −θji , and 0 �= λi ∈ R, for 0 � i,j � n.
By redefining the phases θij , we can assume λi > 0 without
loss of generality. We will also assume that λ0 = 1, which
amounts to a choice of normalization for v0. Although the
exact form of the matrices is not essential for our discussion,
it is important that such matrices exist. One representation of
the commutation relations is most conveniently described in
terms of a chain of n spin-1/2 particles, yielding matrices of
dimension 2n. Define

σ+ =
(

0 1

0 0

)
, σ− =

(
0 0

1 0

)
,

wi =
(

1 0

0 λi

)
, Pij =

(
eiθij /2 0

0 1

)
,
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for i,j = 0, . . . n. The matrices are given by

v0 =
n⊗

i=1

P 2
0iwi,

vi =
i−1⊗
j=1

Pijwj ⊗ σ+ ⊗
n⊗

k=i+1

Pikwk, i = 1, . . . n.

Equation (1) follows from σ+wi = λiwiσ
+ and Pijσ

+ =
eiθij /2σ+Pij as well as [Pjk,wi] = 0 for all i,j,k. Finally, (2)
is a direct consequence of (σ+)2 = 0.

The MPS generated by this set of matrices for a chain of L

spins are given by

ψ(B) =
n∑

i1,...,iL=0

Tr
(
BviL · · · vi1

) |i1, . . . ,iL〉 , (3)

where B is an arbitrary 2n × 2n matrix. Consider the case
L = 2. From the commutation relations (1) and (2) it follows
that all MPS vectors of the form (3) will be orthogonal to the
vectors φij ∈ Cd ⊗ Cd given by

φi = |0,i〉 − e−iθi0λi |i,0〉 , (4)

φij = |i,j 〉 − e−iθji λ−1
i λj |j,i〉 , (5)

φii = |i,i〉 , (6)

for 1 � i,j � n and i �= j . If n > 2, not all combinations of
particles can be realized in a ground state of a chain of length
2. Nevertheless, it is sufficient to consider a Hamiltonian with
a nearest-neighbor interaction defined by

h =
n∑

i=1

|φ̂i〉〈φ̂i | +
n∑

1�i�j�n

|φ̂ij 〉〈φ̂ij |,

where ·̂ denotes normalization. The Hamiltonian for a finite
chain of spins is then given by

H[a,b] =
b−1∑
x=a

hx,x+1, (7)

where and hx,x+1 is a copy of h acting on the pair of spins at the
sites x and x + 1. As a sum of orthogonal projections, H[a,b]

is non-negative and it is straightforward to verify that the MPS
defined in (3) are eigenvectors with zero energy, hence ground
states of the model. It is not hard to show that these are all the
ground states of H[a,b].14

If b − a + 1 � n, for each subset {i1, . . . ,im} of {1, . . . ,n}
there is a ground state ψ

i1,...,im
[a,b] = ψ(Bi1,...,im ) having exactly

one particle of each type i1, . . . ,im. The matrices Bi1,...,im

generating ψi1,...,im through (3) (up to normalization) can be
chosen as

Bi1,...,im = p⊗(i1−1) ⊗ σ− ⊗ p⊗(i2−i1−1) ⊗ σ− ⊗
· · · ⊗ σ− ⊗ p⊗(n−im),

where p = σ+σ−. An interesting example is the ground state
containing only particle i,

ψi
[a,b] =

b∑
x=a

(eiθi0λi)
x |0, . . . ,i, . . . ,0〉 , (8)

where i is at site x in each term of the sum. We now add the
assumption that λi �= 1, for 1 � i � n. The nL particles having
λi < 1 are bound to the left edge, whereas the nR = n − nL

particles with λi > 1 are localized near the right edge, as can
be seen in (8). The state with m = 0 is the product state

� = |0, . . . ,0〉 .

All other ground states differ from � only near the edges.
Specifically,

lim
a → −∞
b → +∞

〈
ψ̂

i1,...,im
[a,b] ,Aψ̂

i1,...,im
[a,b]

〉 = 〈�,A�〉

for any local observable A. If only one of the edges is taken to
infinity, the limiting ground states for the half-infinite chain
depend on the particles at the other edge. Concretely, on
the chain that extends to infinity on the right but with a left
boundary, there remain 2nL ground states corresponding to the
possible combinations of the nL particles that bind to the left
edge. Similarly, there are 2nR ground states on the left infinite
chain with a right boundary.

Using the method of Ref. 10, we can prove that the energy of
the first excited state is bounded below by a positive constant,
independently of the length of the chain. As at most one
particle of each type can bind to the edge, any second particle
of that type must be in a scattering state. The dispersion
relation of these scattering states can be explicitly calculated
by considering the restrictions of the Hamiltonian to any of
the n invariant spaces containing exactly one particle. Properly
centered and rescaled, these operators reduce to a free hopping
Hamiltonian with λ-dependent boundary conditions. A plane
wave ansatz yields the dispersion relation

εi(k) = 1 − 2λi

1 + λ2
i

cos(k + θi0).

In particular, the gap closes whenever λi → 1 for some i.
Moreover, we conjecture that the exact gap in the thermody-
namic limit is given by

γ = min

{
(1 − λi)2

1 + λ2
i

: 1 � i � n

}
.

III. AUTOMORPHIC EQUIVALENCE AND GAPPED
GROUND STATE PHASES

Despite their simplicity, the PVBS models introduced in the
previous section display the general characteristics of gapped
one-dimensional systems with a unique bulk ground state, and
we can use them to illustrate the role of edge states in the
classification of gapped phases.

In Ref. 15 it is concluded that all gapped, translation
invariant, one-dimensional quantum spin systems without
symmetry breaking belong to the same phase, and that they
are equivalent to a product state. We believe that taking into
account edge states, and in particular the behavior of the
system on semi-infinite chains, is necessary as it allows for
a finer classification closer in spirit to what one would find
for models on two- and higher-dimensional manifolds with
nontrivial topology.
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A. The PVBS classes

It is easily seen that two PVBS models of the type we
introduced here belong to the same equivalence class if and
only if they have the same values for the non-negative integers
nL and nR . The reasoning is as follows. Since equivalent phases
are related by an automorphism, a unique bulk ground state
can only be mapped to another unique bulk state. Similarly, the
ground state space dimensions of the half-infinite chains, 2nL

and 2nR , are also preserved by an automorphism. Hence, if two
PVBS models belong to the same phase, they must have equal
nL and nR . Conversely, if two PVBS models have the same
values of nL and nR but each with their own sets of parameters
{λi(α) | 1 � i � nL + nR} and {θij (α) | 1 � i,j � nL + nR},
for α = 0,1, an interpolating path along which the gap does
not close can be constructed as follows. First, one may apply
a strictly local unitary to perform a change of basis in spin
space such that both are PVBS expressed in the same spin
basis and such that λi(α) < 1 for 1 � i � nL and λi(α) > 1
for nL + 1 � i � nL + nR , for both α = 0 and α = 1. Let u be
the unitary for this change of basis. Then, take a smooth curve
of unitaries u(s), 0 � s � 1, with u(0) = 11 and u(1) = u, and
let U[a,b](s) be the (b − a + 1)-fold tensor product of u(s).
Now we conjugate the initial H[a,b] with these unitaries to
define a smooth path of Hamiltonians with a constant gap.
Simultaneously, we can deform the parameters of the two
models by linear interpolation:

λi(s) = (1 − s)λi(0) + sλi(1),

θij (s) = (1 − s)θij (0) + sθij (1).

This yields a smooth family of vectors φij (s) as in (4)–(6) and
thereby a smooth family of nearest-neighbor interactions h(s)
and of Hamiltonians. The gap remains open because λi(s) �= 1
for all 1 � i � n and s ∈ [0,1]. By the general result of Ref. 9
this implies the quasilocal automorphic equivalence of the two
models. Note that it is essential that in each pair between which
we interpolate, the λi’s are either both <1 or both >1, which
is why we had to assume that nL and nR are the same for both
models. If one uses the same type of interpolation to connect
models with different values of nL and nR , the gap necessarily
closes along the path and there is a quantum phase transition.
This is not to say that one could not construct paths along
which the gap closes also for the case of constant nL and nR

and of course this would then not imply a transition between
different gapped phases.

The uncountable family of PVBS models which depend
on the real parameters {λi} and {θij } is completely classified
by the pair of integers (nL,nR). Given their simplicity, it is
natural to choose them as representatives of the much larger
phase they belong to.

B. The AKLT model

As a first example, we show that the AKLT model16 belongs
to the same equivalence class as the PVBS models with nL =
nR = 1. The AKLT model is an antiferromagnetic spin-1 chain
with a unique, gapped ground state in the thermodynamic limit,
and four zero-energy states on a finite chain, which are usually
described in terms of a spin-1/2 particle attached to the two

ends of the chain. We found a smooth path of gapped models
connecting the AKLT model with a PBVS model with one
particle for each boundary. Let us denote the two particle
states by − and +. For s ∈ [0,s0] where sin(s0) = √

2/3, the
following four vectors span the ground state space of two
neighboring spins of the interpolating models as a function of
s:

ψ00(s) = μ(s) sin(s)[λ(s)2| − ,+〉 + | + ,−〉]
− cos2(s)(1 + λ(s)4)|0,0〉,

ψ0−(s) = −λ(s)|0,−〉 + | − ,0〉,
ψ0+(s) = −λ(s)| + ,0〉 + |0,+〉,
ψ−+(s) = | − ,+〉 − λ(s)2| + ,−〉,

where λ(s) is a smooth function such that λ(s0) = 1, 0 <

λ(s) < 1, for all s < s0, and μ(s) = [1 − λ(s)2 cos2(s)]1/2. The
corresponding nearest-neighbor interaction,

h(s) = 1 −
∑

(ij )∈{(00),(0−),(0+),(−+)}
|ψ̂ ij (s)〉〈ψ̂ ij (s)|,

is the projection onto the orthogonal complement of
this four-dimensional space. We then define H[a,b](s) =∑b−1

x=a hx,x+1(s). It readily follows that H[a,b](s0) is the AKLT
Hamiltonian and that H[a,b](0) is the PVBS model with
nL = nR = 1, the coefficients λ− = λ(0) and λ+ = λ(0)−1,
and all the phases θij = π . The path of interactions is smooth
as the four ground state vectors are smooth, remain orthogonal
to each other and of finite norm for all s, and the spectral gap
does not close.17 Hence, the AKLT model belongs to the same
gapped quantum phase as the PVBS model with nL = nR = 1.
In particular, the sets of ground states of these models are
automorphically equivalent for the finite, half-infinite, and
infinite chains, where they are isomorphic to a pair of qubits,
a single qubit, and a unique pure product state, respectively.

The ground states of H[a,b](s) for s > 0 have a minimal ma-
trix product representation with 2 × 2 matrices vi(s) defined
as follows:

v0 = − cos(s)

(
1 0

0 −λ(s)

)
, (9)

v− =
(

0 −μ(s)

0 0

)
, v+ =

(
0 0

sin(s) 0

)
. (10)

By contrast, the MPS representation of the ground states
of the PVBS model, at s = 0, uses 4 × 4 matrices. In fact,
there is no faithful two-dimensional representation of the
commutation relations (1) and (2) with n = 2. Up to unitary
change of basis, the only nilpotent matrix is σ+, so we can set
v+ = c+σ+ and v− = c−U ∗σ+U , with c± �= 0 and U �= 1.
But their commutation relation implies Tr(v−v+) = 0 so that
U = 1 if c± �= 0. The parent Hamiltonian constructed from
the limiting matrices vi(0) corresponds to a PVBS model
with nL = 1 and nR = 0. With a minor modification one can
interchange the roles of nL and nR , but in either case the
limiting matrices lead to a parent Hamiltonian that is not in the
same phase as the AKLT model; it turns out to be equivalent
only in the bulk and on the half-infinite chain tending to ∞
on the right but not on the chain that is infinite on the left. We
believe that the finer classification we propose in this paper
yields interesting additional information compared to previous
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approaches such as Ref. 11. We conclude that it is essential to
construct a smooth, gapped family of Hamiltonians, and that it
is not sufficient to find a smooth family of MPS matrices only.
A similar conclusion was reached in Ref. 18, where “uncle
Hamiltonians” were constructed that share the ground state
spaces of gapped “parent Hamiltonians” but are gapless in the
thermodynamic limit.

C. The SO(2 J + 1) models

The SU(2)-symmetric spin-1 AKLT chain has been gen-
eralized in a number of different directions: higher SU(2)
spins,19 higher lattice dimensions,20 SU(N )-invariant models
with N � 2,21 and most recently to a class of spin-J models
with an SO(2J + 1)-invariant nearest-neighbor interaction.12

The simplest way to introduce the latter generalization is to
note that the kernel of the interaction of the AKLT model, i.e.,
the ground state space of two neighboring spins is spanned
by the antisymmetric vectors, namely, the spin-1 triplet, and
the spin singlet state, which is symmetric. As shown in
Ref. 14, the antisymmetric subspace of two spins enhanced
with one, arbitrary, symmetric state is the ground state space
of a frustration-free spin chain with a translation invariant
nearest-neighbor interaction. In particular, the spin-J chain,
with integral J � 1, with the nearest-neighbor interaction
given by the projection onto the orthogonal complement of
the span of the antisymmetric vectors and the (symmetric)
spin singlet state, is a frustration-free model with a unique
gapped MPS ground state of the infinite chain. It is easy to see
that this interaction commutes with SO(2J + 1) acting by its
fundamental representation on each spin.

In the case of the AKLT model (J = 1), the antisymmetry
of the ground states is reflected in the fact that the matrices
(9) and (10) at s = s0 can be related to the generators of the
Clifford algebra C3:

Z1 =
√

3/2(v+ − v−), Z2 = −
√

3/2i(v+ + v−),
(11)

Z0 = −
√

3v0.

In fact, the transformation {v−,v0,v+} → {Z0,Z1,Z2} cor-
responds, up to a global rescaling by

√
3, to a change of

basis in the local Hilbert space of the spins. Similarly for
J > 1, the ground states of the SO(2J + 1) model are, up
to an overall normalization factor, generated by the matrices
{Zα = Z∗

α : 0 � α � 2J } of the higher-dimensional Clifford
algebra C2J+1 satisfying the anticommutation relations

ZαZβ + ZβZα = 2δαβ1. (12)

The symmetry of the ground state is manifest in the invariance
of (12) under the transformation Z′

β = ∑
α OβαZα for any

orthogonal matrix O. The normalization factor γ can be found
by setting

∑
α γ 2Z2

α = 1, yielding γ = (2J + 1)−1/2.
A representation of the Clifford algebra C2J+1 can be

obtained from a representation of the algebra of canonical
anticommutation relations (CARs) with J creation operators

a∗
j = (−1)q ⊗ · · · ⊗ (−1)q︸ ︷︷ ︸

j−1

⊗σ+ ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
J−j

,

where q = 1 − p = σ−σ+. Note that (−1)q = σ 3. Then, for
1 � j � J ,

Z2j−1 = aj + a∗
j , Z2j = i(aj − a∗

j ),

and

Z0 =
J∏

j=1

(2a∗
j aj − 1) =

J⊗
j=1

(−1)q .

The canonical anticommutation relations of the (a∗
j ,aj )Jj=1 im-

ply the Clifford relations for the (Zα)2J
α=0. This representation

is of dimension 2J .
Now, the matrices

V2j−1 = αjaj , V2j = βja
∗
j , V0 = γZ0,

are related to the normalized Clifford generators by a change
of basis if and only if |αj |2 = |βj |2 = 2/(2J + 1). In that
case, the set {V0} ∪ {V2j−1,V2j : 1 � j � J } generate the
same matrix product states as the (Zα)2J

α=0, namely, the
ground states of the SO(2J + 1)-invariant model. Note that∑

j |αj |2 + |γ |2 = 1, so that it is natural to set

γ =: cos(s0) and αj = 1√
J

sin(s0).

for all j = 1, . . . ,J .
It remains to introduce a deformation of the CAR algebra

to relate it to the PVBS algebra with nL = nR = J . We first
note that for any complex number λ,

λ · σ−λq = λqσ−, σ+λq = λ · λqσ+, (13)

where λq = p + λq. For parameters λ1, . . . ,λJ , we introduce
the following twisted creation operators

a∗
j (λ) = (−λ1)q ⊗ · · · ⊗ (−λj−1)q ⊗ σ+ ⊗ λ

q

j+1 ⊗ · · · ⊗ λ
q

J ,

their adjoints, and

a0(λ) = (−λ1)q ⊗ · · · ⊗ (−λJ )q .

Clearly, a∗
j (λ)2 = 0 = aj (λ)2. A direct consequence of (13)

are the twisted commutation relations

a∗
j (λ)aj (λ) + λ2

j aj (λ)a∗
j (λ) = a0(λ)2,

a∗
j (λ)ak(λ) + λjλkak(λ)a∗

j (λ) = 0 (j �= k),

a∗
j (λ)a0(λ) + λja0(λ)a∗

j (λ) = 0,

a∗
j (λ)a∗

k (λ) + λjλ
−1
k a∗

k (λ)a∗
j (λ) = 0,

and their adjoint relations. The higher-dimensional analog of
the algebraic path (9) and (10) is easily obtained with the
following definitions for s ∈ [0,s0]:

V2j−1(s) = αj (s)aj (s), V2j (s) = βj (s)a∗
j (s),
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and V0(s) = γ (s)a0(s), where a
�

j (s) = a
�

j [λ(s)] for a smooth
path of parameter vector λ(s) such that λj (s) < 1 for s <

s0 and λj (s0) = 1. Using the commutation relations, the
normalization

∑
α V ∗

α Vα = 1 reads

1 =
J∑

j=1

(|βj |2 − λ2
j |αj |2

)
aja

∗
j +

[
J∑

j=1

|αj |2 + |γ |2
]
a2

0,

which implies

J∑
j=1

|αj |2 + |γ |2 = 1 and |βj |2 = 1 − λ2
j (1 − |αj |2).

Note that the SO(2J + 1) symmetry is broken as soon as
|βj | �= |αj |. Concretely we choose γ (s) = cos(s) and αj (s) =
sin(s)/

√
J for s ∈ [0,s0], thereby producing a path that mimics

(9) and (10). The commutation relations of the Vα’s interpolate
between those of the CAR [and therefore of the SO(2J + 1)
models] and of the PVBS with parameters

{λj (0),λj (0)−1 : 1 � j � J }, (14)

in particular,

V2j (s)V2j−1(s) + λj (s)2V2j−1(s)V2j (s)

= sin(s)
[
1 − λ2

j (1 − sin2(s)/J )
]

√
J cos2(s)

V 2
0 .

This algebraic path of matrices generates a smooth path
of matrix product states, from which a smooth family of
Hamiltonians with nearest-neighbor interaction can be con-
structed, for any J . They interpolate between the SO(2J + 1)
model and the PVBS model with nL = nR = J . The properties
needed to conclude that the gap remains open along the path
can be derived from a suitable generalization of the arguments
for the AKLT path, J = 1, and will be included in future work.

IV. DISCUSSION

The fact that one of each of the n types of particles can
appear in a ground state of the PVBS system, i.e., without
raising the energy, should not be interpreted as implying that
the particles are massless. Quite to the contrary, there is a mass
gap for each of them. It turns out, however, that they can bind
to the left or right edge of the chain and the binding energy
exactly equals the mass gap so that such states with a particle
bound to the edge are degenerate with the vacuum ground
state.

As we explained in the previous section, the AKLT model
is equivalent to a PVBS model with two types of particles,
one that binds to the left edge and one that binds to the
right edge. For a finite chain, this yields a four-dimensional
ground state space (no particles; one particle on the left
boundary; one particle on the right boundary; two particles,
one on the left and one on the right). The bulk ground state
is unique. It has a finite correlation length in the AKLT
model but is a simple product state in the equivalent PVBS
model. The unitary transformation relating the two models is
quasilocal,9 meaning that, under conjugation with the unitary,

local observables map to observables that are approximately
local, i.e., that up to an arbitrarily small correction depend only
on a finite number of spins. Since our goal is to understand
the structure of bulk phases and edge states (and, in higher
dimensions, also the effects of topology), the quasilocality of
this unitary transformation is essential. In finite volume, any
unitary will preserve the dimension of the ground state space.
The importance of the locality property comes into sharp focus
when one takes the thermodynamic limit and considers the
resulting ground states on the infinite and half-infinite chains.
For example, the nonlocal unitary transformation introduced
by Kennedy and Tasaki22 to reveal the hidden string order23

transforms the four AKLT ground states into four translation
invariant product states, which leads to four distinct bulk
ground states in the thermodynamic limit. This example shows
that nonlocal unitary transformations do not preserve the
structure of the bulk ground state(s) and clearly would not
be useful to classify gapped ground state phases.

Similary the bulk ground state of a SO(2J + 1) model for
any integer J is equivalent to a unique product state. This
however is not sufficient for them to all belong to the same
gapped phase as the number of edge states depends on J .
The definition of a phase through a quasilocal automorphism
yields a finer classification that takes these boundary states
into account.

Several generalizations of the PVBS are possible. First,
it is straightforward to describe models with more than one
vacuum state, e.g., models with a broken discrete symmetry.
This could include breaking of the translation symmetry of the
lattice to a subgroup, leading to periodic ground states. Second,
the construction can easily be generalized to allow more than
one particle to occupy the same site. The auxiliary chain of
n spin-1/2 particles we have used here has to be replaced
by an arbitrary finite spin chain. Third, if all or a subset of
the λ parameters are equal, one can describe Hamiltonians
with a local continuous symmetry group. Adding symmetry as
a constraint considerably enriches the classification problem
of the gapped ground state phases and the phase transitions
between them.7,24

It appears to us that the class of models with PVBS
ground states is able to capture the range of behaviors seen
in gapped ground states of one-dimensional spin systems
with short range interactions. The most interesting phenomena
from the physical point of view occur in two dimensions.
Some aspects of the classification problem have already
been considered in two and higher dimensions. The notion
of automorphic equivalence studied in Ref. 9, e.g., applies
to arbitrary dimensions. Interesting boundary states in two
dimensions have been studied in Ref. 25. Much further work
is needed to better understand the landscape of gapped ground
state phases in two and three dimensions.
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