
PHYSICAL REVIEW B 86, 035141 (2012)

First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals
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By using the
⇀

k · ⇀
p method, we propose a first-principles theory to study the linear dispersions in phononic and

photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be
described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of
−π . Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry
no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately
the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of
frequency and lattice structure.
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I. INTRODUCTION

Graphene has attracted much attention in the past several
years partly due to its intriguing transport properties, such as
Klein tunneling, Zitterbewegung, antilocalization, abnormal
quantum Hall effect, etc., arising from its unique band
structures where the E-k relation is linear at the six corners of
the hexagonal Brillouin zone.1 The existence of Dirac cones
in graphene can be well understood by using a tight-binding
model for carbon atoms in a honeycomb lattice.1 Recently,
Dirac cones in photonic and phononic crystals have also been
found at the corners of the Brillouin zones of triangular and
honeycomb lattices where two bands meet,2–9 leading to the
observation of many novel wave transport properties, such as
classical analogs of Zitterbewegung and pseudodiffusion. It
was reported that linear dispersions can also occur at the Bril-
louin zone center of a square lattice photonic crystal, induced
by simultaneous zero permittivity (εeff = 0) and permeability
(μeff = 0), and the linear dispersions could be understood
from an effective medium perspective.10 Different from the
Dirac cone near the K point of a triangular/honeycomb lattice,
which is a result of double degeneracy, the existence of the
linear dispersions near the � point of a square lattice is a result
of triple degeneracy, i.e., accidental degeneracy of a doubly
degenerate mode and a single mode. We call this type of linear
dispersion Dirac-like cones. Very recently, the Dirac-like cone
has also been found in elastic/acoustic waves11 and in the
simple cubic lattice.12 In the past few years, various transport
properties of zero-refractive-index metamaterials have been
studied near the Dirac-like point and the Dirac equation was
widely assumed13 for those studies. The Dirac cones have also
been found in many other photonic or plasmonic crystals in
various dimensions.14–20

The existence of linear dispersions at some symmetry
points of a Brillouin zone is much more common in classical
waves than in electrons. As we will see below, some exist
naturally as a consequence of lattice symmetry and some
can be made to occur by tuning the microstructures of a
phononic/photonic crystal. Although quite a bit of effort

has been devoted to this topic recently, some fundamental
questions remain unanswered. For example, the physical origin
of linear dispersions of a Dirac or Dirac-like cone in classical
waves is not well understood. Specifically, many authors
assumed that a Dirac cone can always be described by the
Dirac equation with two degenerate Bloch states at the K

point as the basis of the spinors. But this has only been shown
explicitly in the nearly-free-photon approximation,2 not for
a realistic phononic/photonic crystal, where Bloch states are
the results of multiple scatterings. For graphene, the basis
functions of the spinors are the atomic wave functions of two
equivalent lattice sites in the unit cell of a honeycomb lattice.
However, for a Dirac point in phononic/photonic crystals, this
very fundamental information is still unknown to us thus far.
Also, there exists no general theory that allows us to derive
the linear slopes of a Dirac cone from first principles. Finally,
it is not clear whether the Dirac-like cone dispersion at the �

point can also be described by the Dirac equation, although
this has been widely assumed in the literature.13 The answer
to this question is important because it is known that the Dirac
equation leads to a Berry phase which in turn gives rise to
antilocalization properties as found in disordered graphene.

To answer all the above questions, in this paper we propose
a theory which generalizes the

⇀

k · ⇀

p method of electrons to
classical waves, to study from the first principles the origin
of Dirac/Dirac-like cones in phononic/photonic crystals. The
⇀

k · ⇀

p method is a perturbative method which takes the set
of eigenfunctions at a particular symmetry point of interest
as the unperturbed basis to study the eigenstates in the
vicinity of that point. These eigenfunctions take account of
all multiple scatterings in the phononic/photonic crystal and
can be exactly determined. Furthermore, the result obtained
from the method is valid independent of the details of the
field distribution of the eigenmode, as it makes no assumption
on whether the energy is concentrated in the host or in the
embedding medium. Thus, the theory can accurately predict
the slopes of linear dispersions at various symmetry points,
independent of frequency and lattice structure. We note that the
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physical properties of Dirac-like systems can be discussed with
effective medium theories only if the systems satisfy certain
conditions. For example, the Dirac-like point should come
from monopole and dipole degeneracy in two-dimensional
(2D) photonic systems.10,11 The formulation here is more
general and is valid even if effective medium theory does not
apply. The reduced Hamiltonian constructed from the theory
reveals that only Dirac cones can be mapped into the form
of a massless Dirac Hamiltonian, and the basis functions of
the spinors can be determined from the reduced Hamiltonian
through some nontrivial unitary transformation. Furthermore,
we show that such Dirac cones possess a Berry phase of
–π and, therefore, give rise to antilocalization effects. On
the other hand, the Dirac-like cones with triple degeneracy
cannot be mapped into the massless Dirac Hamiltonian and
carry no Berry phase, and therefore, are expected to exhibit
normal localization behaviors rather than antilocalization in
the presence of disorder.

II. METHODOLOGY

We consider the following acoustic wave equation in a
periodic structure:

∇ ·
[

1

ρr (
⇀

r )
∇p

]
= −ω2

c2
1

· p

Br (
⇀

r )
, (1)

where p is the pressure, ρr (
⇀

r ) = ρ(
⇀

r )/ρ1 and Br (
⇀

r ) = B(
⇀

r )/B1

are the relative mass density and bulk modulus, respectively,
and c1 = √

B1/ρ1 is the speed of sound in the host. Our
task is to find the origin of linear dispersions near a Dirac
or Dirac-like cone located at some particular high-symmetry
point

⇀

k0 with frequency ω0, independent of the origin of the
degeneracy. The approach is similar to the well-known

⇀

k · ⇀

p

method for electrons. Although the method developed below
is for phononic crystals, it is also applicable to 2D photonic
crystals by using mapping of variables. Take the transverse
magnetic (TM) polarization with

⇀

E = (0,0,Ez) as an example;
by making the following substitutions in Eq. (1)—p ⇔ Ez,
ρr ⇔ μr , 1

Br
⇔ εr—we will arrive at

∇ ·
[

1

μr (
⇀

r )
∇Ez

]
= −ω2

c2
· εr (

⇀

r )Ez,

which is exactly the wave equation satisfied by the TM polar-
ization. The mapping to transverse electric (TE) polarization
with

⇀

H = (0,0,Hz) can also be made in a similar way.
Assuming that all the Bloch states at the

⇀

k0 point are
known,21 i.e., Bloch wave functions ψ

n
⇀
k 0

(
⇀

r ) = ei
⇀
k 0·⇀r u

n
⇀
k 0

(
⇀

r )
and eigenfrequencies ωn0, where “n” denotes the band index,
we can write the Bloch state at a wave vector

⇀

k near
⇀

k0 as

ψ
n

⇀
k
(

⇀

r ) = u
n

⇀
k
(

⇀

r )ei
⇀
k ·⇀r =

∑
j

Anj (
⇀

k)ei(
⇀
k−⇀

k 0)·⇀r ψ
j

⇀
k 0

(
⇀

r ), (2)

where the unknown periodic functions u
n

⇀
k
(

⇀

r ) have been ex-

pressed as linear combinations of u
j

⇀
k 0

(
⇀

r ). Substituting Eq. (2)

into Eq. (1), we obtain∑
j

Anj (
⇀

k)ei(
⇀
k−⇀

k 0)·⇀r

×
{(

ω2

n
⇀
k

− ω2
j0

)
ψ

j
⇀
k 0

(
⇀

r )

c2
1Br (

⇀

r )
+

2i(
⇀

k − ⇀

k0) · ∇ψ
j

⇀
k 0

(
⇀

r )

ρr (
⇀

r )

+
[
i(

⇀

k − ⇀

k0) · ∇ 1

ρr (
⇀

r )

]
ψ

j
⇀
k 0

(
⇀

r ) −
(

⇀

k − ⇀

k0)2ψ
j

⇀
k 0

(
⇀

r )

ρr (
⇀

r )

}
= 0.

(3)

Utilizing the orthonormal property22 of the basis functions
ψ

j
⇀
k 0

(
⇀

r ), i.e., (2π)2

	

∫
unit cell ψ

∗
l
⇀
k 0

(
⇀

r ) 1
Br (

⇀
r )

ψ
j

⇀
k 0

(
⇀

r )d
⇀

r = δlj , where

	 is the area of a unit cell, Eq. (3) can be written as

∑
j

⎡
⎣ω2

j0 − ω2

n
⇀
k

c2
1

δlj − Plj (
⇀

k)

⎤
⎦Anj (

⇀

k) = 0, (4)

where

Plj (
⇀

k) = (
⇀

k − ⇀

k0) · ⇀

plj − (
⇀

k − ⇀

k0)2qlj , (5)

with

⇀

plj = i
(2π )2

	

∫
unit cell

ψ∗
l
⇀
k 0

(
⇀

r )

×
{

2∇ψ
j

⇀
k 0

(
⇀

r )

ρr (
⇀

r )
+
[
∇ 1

ρr (
⇀

r )

]
ψ

j
⇀
k 0

(
⇀

r )

}
d

⇀

r, (6)

and

qlj = (2π )2

	

∫
unit cell

ψ∗
l
⇀
k 0

(
⇀

r )
1

ρr (
⇀

r )
ψ

j
⇀
k 0

(
⇀

r )d
⇀

r. (7)

It is easy to show that the matrices
⇀

plj and qlj are Hermitian,

i.e.,
⇀

p
∗
j l = ⇀

plj and q∗
j l = qlj . Equation (4) has nontrivial

solutions only when the following secular equation is satisfied:

det

∣∣∣∣∣H −
ω2

n
⇀
k

− ω2
j0

c2
1

I

∣∣∣∣∣ = 0, (8)

where H is the reduced Hamiltonian with matrix elements

Hlj = −Plj . (9)

To obtain the dispersion relation ω
n

⇀
k
(

⇀

k) from Eq. (8),
one has to incorporate all Bloch states at

⇀

k0. However, as
we are interested in linear dispersions of a Dirac/Dirac-like
cone, we only have to consider the degenerate states at the
Dirac/Dirac-like point in the summation of Eq. (2). Other
bands only contribute to the quadratic term |⇀k − ⇀

k0|2 in the
dispersion relation. This greatly reduces the dimension of the
matrix H , and makes Eq. (8) analytically solvable. The analytic
solution to Eq. (8) for small �k ≡ |⇀k − ⇀

k0| can be expressed
as

�ωβ

�k
= γβc1 + O(�k); β = 1,2, . . . ,s, (10)

where �ωβ ≡ ω
β

⇀
k

− ω0, with ω0 and s being, respectively,
the frequency and number of degenerate Bloch states at the
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Dirac/Dirac-like point. Here we have approximated ω2
0 − ω2

β
⇀
k

by −2ω0�ωβ . The linear slopes γβ are determined by
⇀

plj only, and qlj contributes to the �k2 term. Thus, the
slope of the linear dispersion is proportional to the strength
of the coupling between the degenerate Bloch states ψ

l
⇀
k 0

and ψ
j

⇀
k 0

, as shown in Eq. (6). Therefore, it is clear that the

coupling of the degenerate Bloch states leads to the frequency
repulsion effect, which in turn gives rise to linear dispersions
of a Dirac/Dirac-like cone. It should be pointed out that the
above perturbative approach is exact to the first order in �k.23

Thus, the existence of linear dispersions requires both the
degeneracy of Bloch states at some high-symmetry point

⇀

k0

and the corresponding
⇀

plj �= 0, independent of whether the
degeneracy is accidental or due to lattice symmetry. The
matrix elements of

⇀

plj and qlj can be easily evaluated by
performing numerical integration of Eqs. (6) and (7) using
the knowledge of degenerate Bloch wave functions at

⇀

k0.
There are various ways to obtain the Bloch wave functions
for phononic/photonic crystals numerically. In this work, we
adopted the COMSOL Multiphysics, a commercial package
based on the finite-element method.

III. RESULTS AND DISCUSSIONS

A. Physical system

Figure 1(a) shows the band structures of a triangular array of
iron cylinders, with radii of 0.3203a (a is the lattice constant),
embedded in a water host calculated by COMSOL. There
exist two points, marked by “A” and “B”, at which linear
dispersions are found. The mass densities of iron and water are
ρ2 = 7670 kg/m3 and ρ1 = 1000 kg/m3, respectively, and the
corresponding longitudinal wave velocities are c2 = 6010 m/s
for iron and c1 = 1490 m/s for water. Since the longitudinal

FIG. 1. (Color online) (a) Band structures of a 2D phononic
crystal consisting of a triangular lattice of iron rods embedded in
a water host, with a rod radius r/a = 0.3203, where a is the lattice
constant. Point A is a Dirac-like point while point B is a Dirac point.
The inset shows the Brillouin zone. (b), (c) Closeup of bandstructures
around the � point for different rod radii, with r/a = 0.26 in (b), and
r/a = 0.38 in (c), respectively. (d), (e) Closeup of band structures
around the K point for different rod radii, with r/a = 0.26 in (d), and
r/a = 0.38 in (e), respectively. The red boxes in Fig. 1(a) mark the
areas from where Figs. 1(b)–1(e), 2(d), and 3(c) are extended.

wave velocity contrast between iron and water is large, the
shear modes inside the iron cylinders are not important and
can be ignored.24 This has simplified our calculations.

B. Dirac-like cone at the Brillouin zone center

1. The reduced Hamiltonian and slopes of linear dispersions

Point A shows a Dirac-like cone created by accidental
degeneracy of three Bloch states at the � point (

⇀

k0 = 0),
where the frequencies for the single Bloch state, ψ1� , and
the doubly degenerate Bloch states, ψ2� and ψ3� , are tuned
deliberately to coincide by adjusting the radii of the iron
cylinders. Figures 1(b) and 1(c) illustrate the band structures
near the � point for smaller and larger iron cylinders, i.e.,
r/a = 0.26 and 0.38, respectively. Both figures show clearly
the separated single mode and doubly degenerate modes.
In Fig. 1 we have used dimensionless units for frequency,
ωa/2πc1, and the radii of the iron cylinders, r/a. The three
degenerate Bloch states ψ1� , ψ2� , and ψ3� at point A when r/a

is tuned to 0.3203 are shown in Figs. 2(a)–2(c), respectively.
To the linear order in k, the reduced Hamiltonian near the point
A has the following form:

H =

⎛
⎜⎜⎝

0 i
⇀

k · ⇀

L12 i
⇀

k · ⇀

L13

−i
⇀

k · ⇀

L12 0 0

−i
⇀

k · ⇀

L13 0 0

⎞
⎟⎟⎠ , (11)

where
⇀

Llj = −i
⇀

plj , and
⇀

L12 and
⇀

L13 are two real vectors in
the x-y plane. Numerically we find

⇀

L12 = 1
a

(−9.9847, 2.2755)

and
⇀

L13 = 1
a

(−2.2755, − 9.9847). It is interesting to see that
⇀

L12 and
⇀

L13 have the same length s/a, and are perpendicular

(a) (b)

(c)
(d)

FIG. 2. (Color online) (a)–(c) Pressure field distributions of three
degenerate Bloch states, ψ1� , ψ2� , and ψ3� , respectively, at point A

as indicated in Fig. 1. Dark red and dark blue denote the positive and
negative maxima, respectively, which imply that the wave energy is
mainly concentrated in the host medium. (d) Black circles show the
band structure near point A obtained by finite-element calculations.
Red curves show the results predicted by Eqs. (8) and (11).
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to each other, i.e., |⇀

L12| = |⇀

L13| = s/a and
⇀

L12 · ⇀

L13 = 0.
These properties are actually required by the isotropy of
the linear dispersion.25,26 By using Eq. (8), we find �ω/k =
±sc2

1/(2ω0a) and 0. From the length of
⇀

L12 or
⇀

L13, we obtain
s = 10.241. With the frequency at point A, ω0a/(2πc1) =
1.06, as shown in Fig. 1(a), we find �ω/k = ±0.769c1 and
0. Obviously, the first two values correspond to the two linear
dispersions and the third one corresponds to the flat band
shown near the point A. These results agree excellently with
the band structure calculations as can be seen from Fig. 2(d). It
is worth mentioning that if wave energy is localized within the
scatterers, then the slopes of the Dirac-like cone can also be
calculated by using a tight-binding model proposed in Ref. 12.
However, our theory does not have such restrictions as shown
in Fig. 2, in which the wave energy is mainly concentrated in
the host.

2. Symmetry analysis

According to our theory developed in Sec. II, the existence
of linear dispersions requires that the matrix elements

⇀

plj ≡
i

⇀

Llj ≡ i〈ψ
l
⇀
k 0

|⇀

L|ψ
j

⇀
k 0

〉 be nonzero. From group theory, the
condition of whether 〈ψ

l
⇀
k 0

|⇀

L|ψ
j

⇀
k 0

〉 is zero turns out to be

whether the direct product of the irreducible representations
of ψ

l
⇀
k 0

,
⇀

L, and ψ
j

⇀
k 0

contains A1, the fully symmetrical

representation. Any Bloch state at the � point of a triangular
lattice is an irreducible representation of the C6v group.
As shown in Fig. 2, the triply degenerate Bloch states are
composed of one single state, ψ1� , corresponding to the
B2 representation, and doubly degenerate states, ψ2� and
ψ3� , transforming as the E2 representation. The operator

⇀

L

transforms like a vector27 and corresponds to the E1 irreducible
representation in C6v . Since the direct product B2 ⊗ E1 ⊗ E2

contains A1, we have a nonzero 〈ψ1�|⇀

L|ψ2�,3�〉, which implies
the existence of linear dispersions around point A.

3. The Berry phase

From Eq. (11), we find the following Bloch eigenfunctions
near point A:

�+(
⇀

k) = 1√
2

⎛
⎜⎝

1

ik̂ · L̂12

ik̂ · L̂13

⎞
⎟⎠ ei

⇀
k ·⇀r , (12)

�−(
⇀

k) = 1√
2

⎛
⎜⎝

1

−ik̂ · L̂12

−ik̂ · L̂13

⎞
⎟⎠ ei

⇀
k ·⇀r , (13)

�0(
⇀

k) = 1√
2

⎛
⎜⎝

0

−ik̂ · L̂13

ik̂ · L̂12

⎞
⎟⎠ ei

⇀
k ·⇀r , (14)

for �ω > 0, �ω < 0, and �ω = 0, respectively, where k̂ ≡
⇀
k
k

, L̂12 ≡
⇀
L12

|⇀L12|
, and L̂13 ≡

⇀
L13

|⇀L13|
are the unit vectors along the

⇀

k,
⇀

L12, and
⇀

L13 directions, respectively. From Eqs. (12) and (13),

we can calculate the Berry phase28 of the Dirac-like cone:

�± = i

∮
〈�±(

⇀

k)|∇⇀
k
|�±(

⇀

k)〉 · d
⇀

k. (15)

Let us take �+(
⇀

k) as an example. We can write L̂12 =
−ux̂ + vŷ and L̂13 = −vx̂ − uŷ, with u2 + v2 = 1. Substi-
tuting Eq. (12) into Eq. (15), we find

�+ = i

∮
〈�+(

⇀

k)|∇⇀
k
|�+(

⇀

k)〉 · d
⇀

k

= i

2

∮ [
1,− i

k
(−ukx + vky),− i

k
(−vkx − uky)

]

×

⎧⎪⎨
⎪⎩
⎡
⎢⎣

0
i
k

(−ux̂ + vŷ)
i
k

(−vx̂ − uŷ)

⎤
⎥⎦+

⎡
⎢⎣

1
i
k
(−ukx + vky)

i
k
(−vkx − uky)

⎤
⎥⎦ i

⇀

r

⎫⎪⎬
⎪⎭ · d

⇀

k

= i

2

∮ [
1

k2
(kxdkx + kydky)

]
+ i

2

∮
2i

⇀

r · d
⇀

k, (16)

in which the second term on the right-hand side is obviously
zero, while the first term can be simplified as

i

2

∮ [
1

k2
(kxdkx + kydky)

]

= i

2k2

∮
d

⇀

k · ⇀

A

= i

2k2

∫
σ

(∇ × ⇀

A) · d
⇀
σ = 0, (17)

since
⇀

A = kxx̂ + kyŷ so that ∇ × ⇀

A = 0. Finally, we arrive
at �+ = 0. The same result is obtained if we use �−(

⇀

k) in
Eq. (16). Thus, we find that the Berry phase for the Dirac-like
cone is zero. This implies that the cone found at the � point
is actually not a Dirac cone. It should be pointed out that the
presence of a linear dispersion is not the only property of a
Dirac cone. The eigenstates on the Dirac cone should satisfy
the massless Dirac equation and carry a Berry phase ±π . The
reduced Hamiltonian found in Eq. (11) shows a 3 × 3 matrix
representation, and, therefore, its eigenstates are in the forms
of Eqs. (12) and (13). These states cannot be the solutions of
the massless Dirac Hamiltonian, which has a 2 × 2 matrix rep-
resentation. This again points to the fact that the cone at the �

point is not a pure Dirac cone. Here, we call it a Dirac-like cone.
It is important to note that although the dispersion here also

has two cones touching at one point as in the case of graphene,
the existence of a third degree of freedom changes the physics.
Some papers in the literature (see, e.g., Ref. 13) used the Dirac
equation to describe the transport properties of these systems
and such assumption can lead to an erroneous conclusion in
the presence of disorder as the zero Berry phase implies that
a Dirac-like cone exhibits normal localization behavior rather
than antilocalization.

C. Dirac cone at the Brillouin zone boundary

1. The reduced Hamiltonian

Point B in Fig. 1(a) represents a Dirac point where two
bands meet at the K point. These two bands are always
degenerate at the K point of a triangular/honeycomb lattice,
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(a) (b)

(c)

FIG. 3. (Color online) (a), (b) Pressure field distributions of two
degenerate Bloch states, ψ1K and ψ2K , respectively, at point B as
indicated in Fig. 1. Dark red and dark blue denote the positive
and negative maxima, respectively. (c) Black circles show the band
structures near point B obtained by finite-element calculations. Red
curves show the results predicted by Eqs. (8) and (18).

independent of the radii of the scatterers. This is a result of
crystal symmetry and is called the “deterministic degeneracy.”
In Figs. 1(d) and 1(e), we plot the dispersions around the K

point for two different radii, i.e., r/a = 0.26 and 0.38. It is
clearly seen that the degeneracy remains. The two degenerate
Bloch states ψ1K and ψ2K are shown in Figs. 3(a) and
3(b), respectively. The reduced Hamiltonian has the following
form:

H = �
⇀

k ·
(

⇀

p11 Re
⇀

p12 + iIm
⇀

p12

Re
⇀

p12 − iIm
⇀

p12 −⇀

p11

)

= (�
⇀

k · Re
⇀

p12)σ1 − (�
⇀

k · Im
⇀

p12)σ2 + (�
⇀

k · ⇀

p11)σ3

= d1σ1 + d2σ2 + d3σ3 = ⇀

d · ⇀
σ , (18)

where ⇀
σ = (σ1,σ2,σ3) are the Pauli matrices and σi are in the

basis of ( 1
0 ) = ψ1K , ( 0

1 ) = ψ2K .
⇀

p11, Re
⇀

p12, and Im
⇀

p12 are

three real vectors in the x-y plane. The vector
⇀

d is a function

of �
⇀

k with its 3 components given by

d1 = �
⇀

k · Re
⇀

p12 = (�k)x(Re
⇀

p12)x + (�k)y(Re
⇀

p12)y, (19)

d2 = −�
⇀

k · Im
⇀

p12

= −(�k)x(Im
⇀

p12)x − (�k)y(Im
⇀

p12)y, (20)

d3 = �
⇀

k · ⇀

p11 = (�k)x(
⇀

p11)x + (�k)y(
⇀

p11)y. (21)

Thus

H = (�k)x[(Re
⇀

p12)xσ1 − (Im
⇀

p12)xσ2 + (
⇀

p11)xσ3]

+ (�k)y[(Re
⇀

p12)yσ1 − (Im
⇀

p12)yσ2 + (
⇀

p11)yσ3]

= (�k)x(⇀
αx · ⇀

σ ) + (�k)y(⇀
αy · ⇀

σ ), (22)

where
⇀
αx = [(Re

⇀

p12)x, − (Im
⇀

p12)x,(
⇀

p11)x], (23)

⇀
αy = [(Re

⇀

p12)y, − (Im
⇀

p12)y,(
⇀

p11)y], (24)

are two three-dimensional real vectors in the pseudo-spin
space. The isotropy of the Dirac cone requires again that ⇀

αx

and ⇀
αy have the same length and are perpendicular to each

other, i.e.,
⇀
αx · ⇀

αy = 0, (25)

|⇀
αx | = |⇀

αy | = s

a
, (26)

with

s

a
= |⇀

d|
�k

=
√

(Re
⇀

p12)2
x + (Im

⇀

p12)2
x + (

⇀

p11)2
x

=
√

(Re
⇀

p12)2
y + (Im

⇀

p12)2
y + (

⇀

p11)2
y. (27)

Numerical results given in the following section confirm
the equalities given in Eqs. (25)–(27). Equation (18) can
be mapped into the Dirac Hamiltonian by applying three
successive rotations in the pseudo-spin space involving three
Euler angles. Specifically, we first rotate around the 3̂ axis to
move the 1̂ axis into the plane spanned by ⇀

αx and ⇀
αy . Then we

rotate around the 1̂′ axis to move 2̂′ into the plane spanned by
⇀
αx and ⇀

αy . Finally, we rotate around the 3̂′′ axis so that 1̂′′ and
2̂′′ coincide with ⇀

αx and ⇀
αy , respectively. After these rotations,

we can write ⇀
σ = σx 1̂′′ + σy 2̂′′ + σz3̂′′ and Eq. (18) becomes

H = s

a
[(�k)xσx + (�k)yσy], (28)

where σx,y =
⇀
αx,y

s/a
· ⇀
σ are the new Pauli matrices in the

transformed pseudo-spin space. As shown in Eq. (28), the
Hamiltonian can be cast into the Dirac form.

2. Gradients of linear dispersions

The matrix elements
⇀

plj and qlj can be evaluated using

the Bloch states ψjK (
⇀

r ), (j = 1,2) obtained from COMSOL
Multiphysics. From the numerical data we obtain

⇀

p11 = 1

a
(4.0068, − 0.6585), (29)

Re
⇀

p12 = 1

a
(−0.6615, − 4.0017), (30)

Im
⇀

p12 = 1

a
(−0.03944, 0.2160), (31)

s =
√

4.00682 + 0.66152 + 0.039442 = 4.0612. (32)

It is easy to show that the components of the three
vectors

⇀

p11, Re
⇀

p12, and Im
⇀

p12 satisfy the following
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relations:

(Re
⇀

p12)2
x + (Im

⇀

p12)2
x + (

⇀

p11)2
x

= (Re
⇀

p12)2
y + (Im

⇀

p12)2
y + (

⇀

p11)2
y, (33)

(Re
⇀

p12)x(Re
⇀

p12)y + (Im
⇀

p12)x(Im
⇀

p12)y + (
⇀

p11)x(
⇀

p11)y = 0,

(34)

which obviously agree with ⇀
αx · ⇀

αy = 0 and |⇀
αx | = |⇀

αy | = s
a

,
as specified previously in Eqs. (25) and (26).

As mentioned in Sec. II, our theory is exact to the first order
in �k (Ref. 23) so that it can correctly predict the linear slopes
of the Dirac cone. By solving the secular equation, we find

−2ω0�ωβ

c2
1

= ± s

a
�k, (35)

with s = 4.0612. Thus, the slopes of the linear dispersions are

�ωβ

�k
= γβc1, (36)

where γβ = ± sc1
2ω0a

= ±0.577, with the dimensionless fre-
quency ω0a

2πc1
= 0.560. The predicted slopes of the linear

dispersions near point B, i.e., ±0.577c1, are shown as red
curves in Fig. 3(c), which agree excellently with the band
structure calculations.

3. Symmetry analysis

The existence of linear dispersions near point B can
also be understood from group analysis. The point group
at the K point of a triangular lattice has C3v symmetry.
The doubly degenerate Bloch states ψ1K and ψ2K shown
in Fig. 3, transform as the E irreducible representation. The
existence of such a doublet is governed by the C3v symmetry
regardless of the radii of the inclusions. Since the operator

⇀

L

transforms as the E representation in the C3v group and the
direct product E ⊗ E ⊗ E again contains A1, we have linear
dispersions. Thus, the existence of a Dirac cone at the K point
is deterministic.

4. The Berry phase

The Berry phase can be evaluated by using the eigenfunc-
tions of the reduced Hamiltonian given in Eq. (18). We assume

that the angles between the vector
⇀

p11 and the vectors �
⇀

k,
Re

⇀

p12, Im
⇀

p12 are ϕ, α, β, respectively. Thus

d1 = �
⇀

k · Re
⇀

p12 = �k|Re
⇀

p12| cos(α − ϕ), (37)

d2 = −�
⇀

k · Im
⇀

p12 = −�k|Im⇀

p12| cos(β − ϕ), (38)

d3 = �
⇀

k · ⇀

p11 = �k|⇀

p11| cos ϕ. (39)

From Eq. (18), we find the following forms for the two
Bloch states near point B:

�+(�
⇀

k) = 1√
2

⎛
⎜⎜⎝
√

1 − �k̂ · ⇀

M11

−�k̂·⇀
M

∗
12√

1−�k̂·⇀
M11

⎞
⎟⎟⎠ ei�

⇀
k ·⇀r (�ω > 0),

(40)

�−(�
⇀

k) = 1√
2

⎛
⎜⎜⎝
√

1 + �k̂ · ⇀

M11

�k̂·⇀
M

∗
12√

1+�k̂·⇀
M11

⎞
⎟⎟⎠ ei�

⇀
k ·⇀r (�ω < 0),

(41)

where �k̂ ≡ �
⇀
k

�k
is a unit vector along the �

⇀

k direction, and
⇀

M11 ≡
⇀
p11
s/a

and
⇀

M12 ≡
⇀
p

∗
12

s/a
are two dimensionless vectors.

From this, we can calculate the Berry phase:

�± = i

∮
〈�±(�

⇀

k)|∇
�

⇀
k
|�±(�

⇀

k)〉 · d(�
⇀

k). (42)

Let us take �+(�
⇀

k) as an example, since

�k̂ · ⇀

M11 = |⇀

p11|
s/a

cos ϕ, (43)

�k̂ · ⇀

M
∗
12 = �k̂ ·

⇀

p
∗
12

s/a

= |Re
⇀

p12|
s/a

cos(α − ϕ) − i
|Im⇀

p12|
s/a

cos(β − ϕ),

(44)

we have

�+ = i

∮
〈�+(�

⇀

k)|∇
�

⇀
k
|�+(�

⇀

k)〉 · d(�
⇀

k)

= i

2

∫ 2π

0
dϕ

⎛
⎝
√

1 − |⇀

p11|
s/a

cos ϕ,
−�k̂·

⇀
p 12
s/a√

1− |⇀p 11 |
s/a

cos ϕ

⎞
⎠
⎡
⎢⎢⎢⎢⎣

|⇀p 11 |
s/a

sin ϕ

2

√
1− |⇀p 11 |

s/a
cos ϕ(

−�k̂·
⇀
p

∗
12

s/a

) |⇀p 11 |
s/a

sin ϕ

−2
(√

1− |⇀p 11 |
s/a

cos ϕ

)3
+

∂
∂ϕ

(
−�k̂·

⇀
p

∗
12

s/a

)
√

1− |⇀p 11 |
s/a

cos ϕ

⎤
⎥⎥⎥⎥⎦

= i

4

|⇀

p11|
s/a

∫ 2π

0
dϕ sin ϕ − i

4

|⇀

p11|
s/a

∫ 2π

0
dϕ

(
�k̂ ·

⇀
p12
s/a

)(
�k̂ ·

⇀
p

∗
12

s/a

)
sin ϕ(

1 − |⇀p11|
s/a

cos ϕ
)2

+ i

2

∫ 2π

0
dϕ

(
�k̂ ·

⇀
p12
s/a

)
∂
∂ϕ

(
�k̂ ·

⇀
p

∗
12

s/a

)
1 − |⇀p11|

s/a
cos ϕ

, (45)
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in which the first two terms on the right side are zero, while the third term can be evaluated as

i

2

∫ 2π

0
dϕ

(
�k̂ ·

⇀
p12
s/a

)
∂
∂ϕ

(
�k̂ ·

⇀
p

∗
12

s/a

)
1 − |⇀p11|

s/a
cos ϕ

= − sin(α − β)

2
· |Re

⇀

p12|
s/a

· |Im⇀

p12|
s/a

∫ 2π

0

dϕ

1 − |⇀p11|
s/a

cos ϕ
= −π. (46)

Using �−(
⇀

k), we obtain the same result. Therefore, we
find that the Berry phase �± = −π for the linear dispersions
around point B. This result is consistent with the fact that
Eq. (18) can be mapped into the Dirac Hamiltonian.

IV. CONCLUDING REMARKS

To conclude, we have developed a first-principles theory
to study the origin of Dirac/Dirac-like cone dispersions in
phononic/photonic crystals. The theory can predict accurately
the slopes of linear dispersions of a Dirac/Dirac-like cone
at any symmetric point in a Brillouin zone, independent of
frequency and lattice structure. Symmetry analysis based on
the theory provides an easy and quick check of the existence of
linear dispersion. The reduced Hamiltonian constructed from
the theory shows that only the Dirac cones created by doubly

degenerate Bloch states can be mapped into the massless Dirac
Hamiltonian and carry a Berry phase. The absence of a Berry
phase in Dirac-like cones implies normal localization behavior
when disorder is introduced.
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