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Calculated multiplet spectra are presented for the electric-multipole transitions in nonresonant inelastic x-ray
scattering (NIXS) at the O4,5 edges of actinides and the N4,5 edges of rare earths. The multiplet structure is
characteristic for the f count as well as for the angular momentum coupling. As a remarkable peculiarity, the
calculations for the actinide O4,5 edge show that the higher multipole spectra resemble jj coupling, whereas the
dipole spectrum is close to LS coupling. The exchange integral G1(5d,5f ) is responsible for a shift of ∼15 eV
of the dipole spectrum to higher energy. This high energy is conserved by a sum rule for the average energy of the
accessible final states. In the higher multipole spectra, where the allowed final states are different, the splitting by
the 5d spin-orbit interaction exceeds that of the electrostatic interaction. This leads to a distinct spin-orbit-split
doublet structure, with a broad first peak and a narrower second peak. According to the spin-orbit sum rule, the
5f spin-orbit interaction per hole is linearly related to the core-level branching ratio, where the proportionality
factor is opposite in sign for the k = 3 and 5 spectra. Compared to the k = 3 spectrum, the k = 5 spectrum has
overall a lower intensity in the low-energy region but a higher intensity in the high-energy region, especially for
the heavier elements in the series. The NIXS at the rare-earth N4,5 edge is quite different since the electrostatic
and core spin-orbit splitting in the k = 3 and 5 spectra are of similar size. The pre-edge region of the rare-earth
spectra, where the linewidth is narrow, shows a rich multiplet structure that depends strongly on the initial-state
J value.
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I. INTRODUCTION

Nonresonant inelastic x-ray scattering (NIXS) is emerging
as a useful bulk-sensitive probe to study the electronic structure
in strongly correlated materials.1 NIXS is a photon-in–photon-
out technique, which has clear advantages over measurements
using electron detection. While the low-energy loss spectrum
shows collective excitations, such as plasmons and phonons,
the high-energy loss spectrum displays core excitations and
Compton scattering. Here, we will discuss uniquely the
shallow core excitations observed in hard x-ray scattering from
actinides and rare earths, which have relatively high cross sec-
tions. Among the advantages of using hard x rays instead of soft
x rays are access to extreme conditions, bulk sensitivity, and an
almost unlimited momentum transfer. Whereas electric-dipole
transitions prevail at low photon energies, the availability of
high-energy synchrotron radiation has enabled the exploration
of the higher multipole transitions. These transitions prevail at
high momentum transfer and give complementary information
compared to the electric-dipole transitions measured by x-ray
absorption spectroscopy (XAS) or electron energy loss spec-
troscopy (EELS), hence provide information on the electronic
configuration and local environment, such as valence state,
site symmetry, and hybridization.1–6 Compared to resonant
inelastic x-ray scattering, NIXS loses out on count rate,
however, this is often largely compensated by an unambiguous
interpretation in terms of a first-order process instead of more
complicated coherent second-order processes.

Very recently, a spin-orbit sum rule for the electric-
multipole transitions in NIXS was derived, which gives a
linear relation between the spin-orbit-split branching ratio of
the core-level spectrum and the angular part of the initial-state
spin-orbit interaction per hole.7

Actinide elements and their compounds are only modestly
understood, and questions remain concerning the number of

5f electrons, valence state, and angular momentum coupling,
which all play a major role in the magnetic and electronic
properties of these materials.8,9 Recent studies of the ac-
tinide chemical bonding are leading a revision of previous
notions of valence state and electronic orbital mixing, thus
putting a premium on experimental methods sensitive to the
valence electronic structure and low-energy electronic excited
states.10–13 Rare-earth materials form an integral component
in a wide range of modern technologies, such as wind turbines,
hybrid-car engines, visual displays, and lasers.

Recently, Caciuffo et al.5 reported a strong NIXS at the
O4,5 in uranium compounds, associated with the electronic
transition 5f n + h̄ωi → 5d95f n+1 + h̄ωf . For small values of
the scattering vector q, the spectrum is dominated by dipole-
allowed transitions encapsulated within the ill-defined giant
resonance, which shows good agreement with XAS and EELS
measurements.8,14,15 At higher q values, the higher multipole
transitions give strong and well-defined multiplet peaks in the
pre-edge region. A similar behavior is found for NIXS at the
N4,5 edges of rare earths.6

The inelastic scattering cross section is large between shells
of the same principal quantum number, i.e., for the nd → nf

transitions, such as the rare-earth N4,5 (4d → 4f ) and actinide
O4,5 (5d → 5f ) edges, especially when the nf electrons are
localized. In contrast, the (n − 1)d → nf transitions are much
weaker because of the reduced radial overlap of initial- and
final-state wave functions, and also they require a higher
momentum transfer q. So far, NIXS experiments did not reveal
the actinide N4,5 (4d → 5f ) edges5 and for the rare-earth M4,5

(3d → 4f ) edges only the k = 1 spectra could be observed.6

Comparison of the experimental NIXS with calculated spectra
have shown no evidence that the rare-earth M4,5 spectra contain
significant amounts of higher multipole contributions at the
measured q range from 2.2–5.8 a.u. The absence of these
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higher multipole contributions can be ascribed to the smaller
radius of the 3d core orbitals, compared to the 4d, which shifts
the maximum intensity of the individual multipole transitions
to higher q, so that the region where k = 3 and 5 scattering is
dominant is also a region of very low NIXS intensity.6

In this paper, we use many-electron multiplet theory to
calculate the actinide and rare-earth transitions in XAS, EELS,
and NIXS. There have been attempts to interpret the actinide
O4,5 spectra either with spin-orbit interaction16 or electrostatic
interactions,17 but here we will show that it is essential to
take both interactions into account. The multiplet structure is
spread over a region of up to 20 eV, which is comparable to the
5d spin-orbit splitting (≈8.2 eV). Hence, a model that relies
primarily on electrostatic interactions would fail to describe
all features. In fact, it turns out to be quite the opposite. We
demonstrate that spin-orbit interaction plays a dominant role
in the higher multipole spectra.

The outline of this paper is as follows. Section II gives a gen-
eral theoretical description for the NIXS transitions and makes
a comparison with XAS. Section III provides a step-by-step
derivation of the allowed transitions and associated intensities
in the different multipole spectra for the transition f 0 → d9f 1,
in which spin-orbit and electrostatic interactions are taken on
equal footing. This rather straightforward calculation provides
deeper insight into the origin of the various spectral features.
Section IV presents many-electron calculations for the actinide
O4,5 spectra. It compares the results in intermediate coupling
with those in the LS- and jj -coupling limits, which facilitates
the analysis of the spectral structure. Section V makes a com-
parison with the rare-earth N4,5 multipole spectra. Section VI
gives the summary and conclusions.

II. THEORY

A. Multipolar expansion of NIXS

In the relativistic photon-matter interaction Hamiltonian
Hint, the leading terms containing explicitly the vector poten-
tial A are1,18

Hint =
N∑

n=1

[
e

mc
A(k,rn) · pn + e2

2mc
A2(k,rn)

+ eh̄

2mc
σn · ∇ × A(k,rn) + . . .

]
, (1)

where rn and pn are the position vector and momentum
operator of the nth electron, respectively, k is the photon wave
vector, e is the elementary charge, m is the electron rest mass,
and c is the speed of light. The first two terms arise from the
expansion of the kinetic energy operator 1

2m
(p − e

c
A)2, while

the third one comes out of the Dirac equation, where σn is the
spin vector operator, the components of which are the Pauli
matrices. For brevity, we will omit the summation over n in
the following.

The A · p term in Eq. (1) gives the resonant electric-
multipole scattering, including XAS and resonant inelastic
scattering (RIXS), the A2 term gives the nonresonant scat-
tering, and the σ · ∇ × A = σ · B term gives the magnetic
scattering, which is much smaller. At incident photon energies
far away from resonant excitation, the double differential cross
section (DDCS) for inelastic x-ray scattering is usually derived

in the Born approximation.1,5–7,19 Applying Fermi’s golden
rule to the A2 term and writing the vector potential as

A(k,r) = ε̂(k)eik·r, (2)

where ε̂(k) is the photon polarization vector, the DDCS is
obtained as

d2σ

d�dω
=

(
dσ

d�

)
Th

S(q,ω), (3)

with the dynamical structure factor

S(q,ω) =
∑
f

|〈f |eiq·r|i〉|2δ(Ei − Ef + h̄ω), (4)

and geometrical factor
(

dδ

d�

)
Th

= r2
0

ωf

ωi

|ε̂∗
f (kf ) · ε̂i(ki)|2, (5)

where h̄ω = h̄ωi − h̄ωf is the energy transfer, q = ki − kf is
the momentum transfer in the excitation process, |i〉 and 〈f |
are the initial and final multielectronic states of the target (with
associated energies Ei and Ef ), and r0 is the classical electron
radius.

In Eq. (3), the Thomson differential scattering cross section
(dσ/d�)Th is factored out of the DDCS, so that the technique
measures a target excitation structure known as the dynamic
structure factor S(q,ω), which is independent of the specific
experiment. In the case of EELS, one uses the Rutherford
electron scattering cross section

(
dδ

d�

)
Ru

= 4

q4

pf

pi

, (6)

where pi (pf ) is the momentum of the incoming (scattered)
electron.

The transition operator eiq·r in the dynamical structure
factor can be expanded in a sum over scalar products of
spherical multipole tensors with rank k and components
κ = −k, . . . ,k as

eiq·r =
∑
k,κ

ik(2k + 1)jk(qr)C(k)∗
κ (q̂) · C(k)

κ (r̂), (7)

where jk(qr) is the kth-order spherical Bessel function and
C(k)

κ (r̂) = √
4π/(2k + 1) Y (k)

κ (r̂) are the renormalized spheri-
cal harmonics.

Assuming isotropic sample conditions, interference terms
(k 	= k′) vanish. With the radial-matrix elements constant over
the spectral region of interest, S(q,ω) can be separated into
an angular and a radial part. The angular part of the isotropic
2k-pole spectrum is

I k(ω) =
∑
f,κ

|〈f |C(k)
κ (r̂)|i〉|2δ(Ei − Ef + h̄ω). (8)

Multipole moments k for the 	 → 	′ transition are restricted
by the triangle condition |	 − 	′| � k � 	 + 	′ and parity
rule 	 + 	′ + k = even. Thus, for d → f transitions, k =
1 (dipole), k = 3 (octupole), and k = 5 (triakontadipole)
transitions are allowed.
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B. Comparison with XAS

At low momentum transfer (q → 0), as in the case of
soft XAS or EELS, only dipole transitions are important. In
the dipole approximation, the XAS spectrum for f n + h̄ω →
d9f n+1 is the same as the NIXS spectrum for f n + h̄ωi →
d9f n+1 + h̄ωf .

XAS arises from the A · p term in Hint. Converting the
matrix elements to the length form by using the equation of
motion

p ≡ −ih̄∇ = m

ih̄
[r,H0] , (9)

where H0 is the ground-state Hamiltonian, and expanding the
vector potential [cf. Eq. (2)] gives

〈f |A · p|i〉 = i m(Ef − Ei)〈f |(ε̂ · r)eik·r|i〉. (10)

For low momentum transfer (k · r) � 1, the exponential in
the matrix element can be expanded as

eik·r = 1 + ik · r − 1
2 (k · r)2 + . . . , (11)

and the leading terms in the transition amplitude are

−m

h̄
(Ef − Ei)

[
〈f |ε̂ · r|i〉 + i

2
〈f |(ε̂ · r)(k · r)|i〉

]

−〈f |(k × ε̂)(L + gS)|i〉 + . . . , (12)

where the first, second, and third terms represent the electric
dipole (E1), quadrupole (E2), and magnetic-dipole (M1)
transition matrix elements, respectively. The E2 and M1
transition probabilities are (αZeff)2 times smaller than that
of E1, where α is the fine-structure constant e2/h̄c ≈ 1/137.

The transition operator (ε̂ · r)eik·r can be recoupled to sum
over spherical-tensor products

∑
L

[
[C(1)(ε̂),C(L−1)(k̂)](L)

λ ,C
(L)
λ (r̂)

](0)
0 , (13)

with the couplings defined by

[C(L′),C(L′′)](L)
λ ≡

∑
λ′λ′′

C
(L′)
λ′ C

(L′′)
′λ′′ CLλ

L′λ′,L′′λ′′ , (14)

where CLλ
L′λ′,L′′λ′′ is a Clebsch-Gordan coefficient.

The factor C
(L)
λ (r̂) in Eq. (13), which can be separated

from the geometrical part, describes the dynamical part, gives
the same isotropic spectra IL(ω) as in NIXS [cf. Eq. (8)].
Expressions for the geometric and dynamical part of the
electric- and magnetic-multipole transitions of arbitrary rank
can be found in Ref. 20.

The reason that XAS and NIXS give the same spectra,
despite different transition-matrix elements, is provided by
the concept of the fundamental spectra, where the angular
part of the transition probability is separated from the radial
and geometrical parts.21,22 A requirement for this is that the
radial part remains constant over the spectral range, which is
usually fulfilled. This concept is a general principle, and can
lead to striking connections, e.g., in core-level photoemission
the magnetic linear dichroism in the angular dependence gives
the same spectrum as the magnetic circular dichroism.23

For the electric dipole (L = 1), the k̂ dependence is absent,
and the transition operator is

ε̂ · r =
∑

j=x,y,z

ε̂j rj = r
∑

λ=−1,0,1

C
(1)∗
λ (ε̂) · C

(1)
λ (r̂). (15)

Thus, in the dipole approximation, ε̂ in XAS plays the same
role as q̂ in NIXS. However, it should be noted that ε̂ is
an axial vector, allowing anti-Hermitian matrix elements and
hence x-ray magnetic circular dichroism (XMCD),24 whereas
q̂ is a polar vector allowing only Hermitian matrix elements.
Contrary to XAS, it is easy in NIXS to reach the range qa �
1, where a is the atomic radius, enabling dipole-forbidden
transitions with high probability, by increasing the scattering
angle θ and thereby shifting q = 2(ki − kf ) sin θ .

C. Multiplet calculations

The calculated multipole spectra defined in Eq. (8) will be
presented in the following sections. In Sec. III, calculations
for transitions from a closed shell to a two-particle final
state are performed step by step in order to provide a deeper
insight into the origin of the spectral features. Many-electron
systems containing more than two particles can be calculated
using Racah algebra, including coefficients of fractional
parentage and seniority numbers when two or more terms
have the same LS value. In Sec. IV, transition probabilities
for angle-integrated electric 2k-pole transitions f n → d9f n+1

are obtained using atomic multiplet calculations in spherical
symmetry.20 The wave functions of the initial- and final-state
configurations are calculated in intermediate coupling using
Cowan’s atomic Hartree-Fock (HF) code with relativistic
correction.25

The HF values of the Slater parameters are reduced
to 70% for actinides and 80% for rare earths to account
for configuration interaction and screening effects. Such a
reduction was previously found as the optimal value for the
rare-earth M4,5 XAS.20,26 The calculated actinide O4,5 and
rare-earth N4,5 spectra were broadened with a Lorentzian of
half-width 
 = 0.5 and 0.1 eV, respectively, to conform to
previous experimental work.5,6,8 The energy resolution of the
k = 3 and 5 transitions in the experimental rare-earth N4,5

spectra is usually limited by the instrumental broadening and
not by the intrinsic linewidth, which is expected to be the same
as in the pre-edge of the dipole spectrum. A good agreement
for the giant-resonance structure in the dipole spectra can
be obtained by convolution of the peaks with a Fano line
shape of half-width 
 = 4–6 eV and asymmetry parameter
q = 4–2.5.27–29

III. f 0 → d9 f 1 TRANSITION

As a case of manageable size, the multipole spectra of the
f 0 → d9f 1 transition are derived step by step in intermediate
coupling, which takes into account both spin-orbit and elec-
trostatic interactions. The results provide useful insight into
the origin of the multiplet structure.
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TABLE I. Final states of the d9f 1 configuration. From the initial
state 1S0, only the singlet final states can be reached in LS coupling
with selection rules �S = 0 and �L = �J = k. In intermediate
coupling, the singlet state mixes with triplet states of the same J value.
In jj coupling, the jdjf states with |jd − jf | � J � jd + jf can be
reached. Each J block has the same number of jdjf as LS states.

Allowed 2S+1LJ states

J Singlet Triplet Allowed jj states

0 3P0 d5/2f5/2

1 1P1
3P1, 3D1 d3/2f5/2,d5/2f5/2,d5/2f7/2

2 1D2
3P2, 3D2, 3F2 d3/2f5/2,d3/2f7/2,d5/2f5/2,d5/2f7/2

3 1F3
3D3, 3F3, 3G3 d3/2f5/2,d3/2f7/2,d5/2f5/2,d5/2f7/2

4 1G4
3F4, 3G4, 3H4 d3/2f5/2,d3/2f7/2,d5/2f5/2,d5/2f7/2

5 1H5
3G5, 3H5 d3/2f7/2,d5/2f5/2,d5/2f7/2

6 3H6 d5/2f7/2

A. Allowed multipole transitions

The initial state f 0 is 1S0. The final state d9f 1 configuration
has a total number of LSJMJ levels equal to (4	 + 2)(4	′ +
2) = 140, where 	, L, S, J , and MJ are the azimuthal, orbital,
spin, angular momentum, and magnetic quantum numbers,
respectively. Accounting for the degeneracy in MJ (where
−J � MJ � J ) in the absence of magnetic and crystal fields
gives 20 different LSJ states. These are the 2S+1LJ states
with |	d − 	f | � L � 	d + 	f , S = 0,1, and |L − S| � J �
L + S, listed in Table I, where they are separated in singlet
and triplet states. In LS coupling, electric 2k-pole transitions
from 1S0 are allowed to final states with S = 0 and J = L = k.
This limits the number of allowed LS states to one for each k.

In intermediate coupling, only J is a good quantum number,
and J = k due to the absence of angular momentum in the
initial state. The spin-orbit interaction mixes the singlet L = k

state with triplet states that have k − 1 � L � k + 1. If all
multipole transitions would be allowed, all final states of
the d9f 1 configuration could be reached, however, parity
conservation permits only odd k.

In jj coupling, jd = {3/2,5/2} and jf = {5/2,7/2} levels
can have J values with |jd − jf | � J � jd + jf , which are
listed in Table I. Since J is a good quantum number, each J

block contains the same number of jdjf as LS states. Since
J = k, each multipole spectrum corresponds to a unique J

block.

B. Electrostatic interaction

Having established the allowed final states of each k

spectrum in the various coupling schemes, we now turn
our attention to the energy positions of these final states,
which are split by electrostatic and spin-orbit interaction.
The electrostatic interaction for the LS state is given by the
two-particle integral

〈n	,n′	′; LS| e2

r12
|n	,n′	′; LS〉

= Eav +
∑
k>0

fk(	,	′; L)Fk(n	,n′	′)

+
∑

k

gk(	,	′; LS)Gk(n	,n′	′), (16)

TABLE II. Values of the coefficients fk and gk for d9f 1 using
Eqs. (17) and (18), with the boldface numbers for singlet states with
L = k. The last column gives the final-state energies (in eV) using
the Slater parameters for U 5d95f 1 from Table III scaled to 70% and
without spin-orbit interaction.

f2 f4 g1 g3 g5 E(N4,5)

3P1 −8/35 −2/21 −3/70 −2/105 −5/231 −2.979
3H5 −2/21 −1/231 −3/70 −2/105 −5/231 −1.418
3D1,3 −2/35 1/7 −3/70 −2/105 −5/231 −0.332
3F3 11/105 −2/21 −3/70 −2/105 −5/231 −0.278
1H5 −2/21 −1/231 −3/70 −2/105 215/847 −0.228
3G3,5 1/7 2/63 −3/70 −2/105 −5/231 +0.701
1F3 11/105 −2/21 −3/70 38/105 −5/231 +2.021
1P1 −8/35 −2/21 137/70 −2/105 −5/231 +16.404

where fk and gk are the angular coefficients, and Fk and Gk

the radial integrals of the Coulomb and exchange integrals,
respectively, where k refers here to the multipole rank of the
electrostatic interaction (and not the rank of the transition
operator). Eav is the spherically averaged electrostatic energy.

For 		′ (=	4	+1	′), i.e., one hole, denoted by an underscore,
in the 	 shell and one electron in the 	′ shell, the angular
coefficients are30

fk(	,	′; L) = (−)L〈	‖C(k) ‖	〉〈	′ ‖C(k) ‖	′〉
{

	 	′ L

	′ 	 k

}
,

(17)

gk(	,	′; LS) = 1

2
〈	‖C(k) ‖	′〉2

[
− 1

[	,	′]
+ δL,kδS,0

1

[L]

]
,

(18)

where the reduced-matrix element is defined as

〈	‖C(k) ‖	′〉 ≡ (−)	[	,	′]1/2

(
	 k 	′
0 0 0

)
, (19)

with shorthand [	,	′] ≡ (2	 + 1)(	′ + 1). The allowed k values
follow from the triangle conditions of the 3j and 6j sym-
bols. The coefficients fk(	,	′) are nonzero for k = 0,2, . . . ,

min(2	,2	′). The coefficients gk(	,	′) with n	 	= n′	′ are
nonzero for k = |	 − 	′|,|	 − 	′ + 2|, . . . ,	 + 	′.

The values of fk and gk obtained for d9f 1 are given in
Table II. Since the Coulomb interaction has no spin depen-
dence, fk(	,	; L) has the same value for singlet and triplet
states. The coefficient gk(	,	; LS) has the same value for all LS

states, except for singlet states with L = k (boldfaced numbers
in Table II).

The Slater integrals Fk and Gk can be regarded as adjustable
physical parameters. Their values obtained by Hartree-Fock
(HF) calculations25 are given in Table III. They are usually
scaled to 70%–80% to take into account configuration inter-
action and screening.20,26,31

The last column in Table II gives the final-state energies
for U 5d95f 1 using the corresponding Slater parameters from
Table III scaled to 70% and without spin-orbit interaction. The
1P state has much higher energy than the other LS states, which
is due to the extra term δL,kδS,0[L]−1 in Eq. (18). The exchange
integral G1(5d,5f ) gives a large contribution to the energy of
the 1P state and contributes only little to the energy of the other
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TABLE III. Calculated Hartree-Fock values (in eV) of the Slater
parameters F k and Gk (before scaling) and spin-orbit parameters ζ	

for different d9f 1 configurations.

U 5d95f 1 U 4d95f 1 La 4d94f 1 La 3d94f 1

O4,5 N4,5 N4,5 M4,5

F 0 103.3 766.3 103.4 841.7
F 2(d,f ) 11.575 5.730 13.067 7.063
F 4(d,f ) 7.547 2.350 8.325 3.167
G1(d,f ) 13.845 1.027 15.523 4.723
G3(d,f ) 8.620 1.112 9.669 2.761
G5(d,f ) 6.175 0.914 6.817 1.905
ζd 3.282 17.412 1.117 6.799
ζf 0.323 0.344 0.077 0.092
G1(d,f )/ζd 4.21 0.059 13.9 0.695

LS states (cf. Table II). The values of G1(d,f ) in Table III show
that this effect is very strong for the nd → nf transitions,
but much smaller for the (n − 1)d → nf transitions in the
actinides and rare earths. The physical reason is that the orbital
planes of the d9 and f 1 electronic charge clouds coincide in
the 1P state, which results in a high repulsive energy when both
shells have the same principal quantum number n. Due to the
higher multipolarity, the G3 and G5 integrals give relatively
lower contributions to the exchange energies of the 1F3 and
1H5 states, respectively, so that their energies in the k = 3 and
5 spectra are not especially large.

C. Comparison with final state d9 f 13

It is instructive to compare the electrostatic interac-
tion for d9f 1 (one hole and one electron) with d9f 13

(two holes). While the Coulomb coefficients have oppo-
site sign, fk(	,	′; L) = fk(	,	′; L) = −fk(	,	′; L), the coeffi-
cients gk(	,	′; LS) and gk(	,	′; LS) are rather different. Instead
of Eq. (18), we have30

gk(	,	′; LS) = 〈	‖C(k) ‖	′〉2

[
1

2[	,	′]
+ (−)S

{
	 	′ L

	 	′ k

}]
.

(20)

The values of fk and gk for d9f 13 are given in Table IV,
which can be compared with d9f 1 in Table II. The exchange
interaction G1 contributes differently to each LS state and

TABLE IV. Values of the coefficients fk and gk for d9f 13 using
Eqs. (17) and (20). The last column gives the final-state energies
(in eV) using the same Slater parameters as used for U 5d95f 1 in
Table II.

f2 f4 g1 g3 g5 E(N4,5)

3P1 8/35 2/21 1/70 −2/35 −15/77 1.31
3H5 2/21 1/231 −27/70 −4/315 160/7623 −2.92
3D1,3 2/35 −1/7 9/70 16/105 −20/231 1.50
3F3 −11/105 2/21 −9/70 −13/315 −10/693 −1.90
1H5 2/21 1/231 33/70 16/315 170/7623 5.77
3G3,5 −1/7 −2/63 23/70 −29/315 10/693 1.37
1F3 −11/105 2/21 3/14 5/63 40/693 2.46
1P1 8/35 2/21 1/14 2/21 −5/21 4.65

is largest between 1H5 and 3H5. The 1P state in d9f 13 has
no longer an exceptionally high energy. Thus, the exchange
integral leads to a different result in the light and heavy
elements of the series.

D. Spin-orbit interaction

The Hamiltonian of the spin-orbit interaction for an electron
in the 	 shell is H = ζ	(r) 	 · s, where ζ	(r) is the radial part
and 	 · s the angular part. The angular part is equal to − 1

2 (	 +
1) and 1

2	 for j = 	 − 1
2 and j = 	 + 1

2 , respectively. Thus,
the energies of the levels for d9f 1 are

E(d3/2f7/2) = 3/2ζd + 3/2ζf = 5.408 eV,

E(d3/2f5/2) = 3/2ζd − 2ζf = 4.277 eV,
(21)

E(d5/2f7/2) = −ζd + 3/2ζf = −2.798 eV,

E(d5/2f5/2) = −ζd − 2ζf = −3.928 eV,

where the values in the last column have been obtained by
substituting ζd = 3.282 eV and ζf = 0.323 eV for the U N4,5

edge (cf. Table III). The spin-orbit interaction is diagonal in
the jj basis. However, in intermediate coupling, the final-state
Hamiltonian is more conveniently expressed using LS basis
states. Hence, this requires transformation matrices between
jj and LS basis states.

E. j j ↔ LS transformation

The Hamiltonian in spherical symmetry is block-diagonal
in J , which is a good quantum number. For each J block,
the LS- and jj -coupled basis states are transformed using
recoupling coefficients, which are expressed in 9j symbols,

〈ψ{[(	,	′)L,(s,s ′)S]J } | ψ{[(	,s)j,(	′,s ′)j ′]J }〉

= [L,S,j,j ′]1/2

⎧⎨
⎩

	 	′ L

s s ′ S

j j ′ J

⎫⎬
⎭ , (22)

where [L,S, . . .] ≡ (2L + 1)(2S + 1) . . . . The coefficients
give for each J block a transformation matrix T = 〈ψ(LS) |
ψ(jj )〉, which is an orthogonal matrix, meaning a square
matrix whose transpose is also its inverse. The matrices
transform the wave functions and operators as

ψ(jj ) = T · ψ(LS), (23a)

O(jj ) = T · O(LS) · T−1, (23b)

respectively. For our purpose, we need the matrices with J = k

for the allowed k values.
For k = 1, the matrix with J = 1 for a transformation

ψ(d3/2f5/2,d5/2f7/2,d5/2f5/2) = T(1) · ψ(3D1,
3P1,

1P1) is

T(1) =

⎛
⎜⎜⎜⎝

√
2
5

√
1
5

√
2
5

−
√

1
7 −

√
2
7

√
4
7

−
√

16
35

√
18
35 −

√
1

35

⎞
⎟⎟⎟⎠ . (24)

For k = 3, the matrix with J = 3 for a trans-
formation ψ(d3/2f7/2,d3/2f5/2,d5/2f7/2,d5/2f5/2) =
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T(3) · ψ(3G3,
3F3,

3D3,
1F3) is

T(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
7

√
3

√
3
7

3
7

√
2 − 1√

7

3
14

√
15 1

2

√
3

35 − 2
7

√
2
5

3√
35

− 3
14 − 1

2
√

7
2
7

√
6

√
3
7

− 1
7

√
10 3

√
2

35 − 3
7

√
3
5

√
6

35

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

For k = 5, the matrix with J = 5 for a transformation
ψ(d3/2f7/2,d5/2f7/2,d5/2f5/2) = T(5) · ψ(3H5,

3G5,
1H5) is

T(5) =

⎛
⎜⎜⎜⎝

2
5

√
3 1

5

√
3 −

√
2
5

− 1
5
√

7
12

5
√

7

√
6

35

3
√

2
35 −

√
2

35

√
3
7

⎞
⎟⎟⎟⎠ . (26)

F. Transition probabilities of jd j f states

It is instructive at this point to determine the intensities of
the jj -coupled final states, which need no matrix diagonal-
ization. Using the transformation matrix T(1), the jj -coupled
wave functions with J = 1 are obtained as LS-coupled wave
functions

ψ(d3/2f5/2) =
√

2

5
ψ(3D) +

√
1

5
ψ(3P ) +

√
2

5
ψ(1P ),

ψ(d5/2f7/2) = −
√

1

7
ψ(3D) −

√
2

7
ψ(3P ) +

√
4

7
ψ(1P ), (27)

ψ(d5/2f5/2) = − 4√
35

ψ(3D) + 6√
70

ψ(3P ) + 1√
35

ψ(1P ).

Electric-dipole transitions are only allowed to states with
1P1 character, thus the transition probability to the jdjf state
is given by |〈ψ(jdjf ) |ψ(1P1)〉|2, which is the square of the
wave-function coefficient. The k = 3 and 5 transitions are only

TABLE V. Multipole intensities for the pure jdjf levels
in the f 0 → d9f 1 transition. Each multipole transition gives∑

I (d3/2):
∑

I (d5/2) = 2/5 : 3/5 and
∑

I (f5/2):
∑

I (f7/2) = 3/7 :
4/7.

I (d3/2f7/2) I (d3/2f5/2) I (d5/2f7/2) I (d5/2f5/2)

k = 1 0 2/5 4/7 1/35
k = 3 1/7 9/35 3/7 6/35
k = 5 2/5 0 6/35 3/7

allowed to states with 1F3 and 1H5 character, respectively,
and their transition probabilities are derived in the same
manner. The resulting intensities for the pure jdjf states
are listed in Table V. It might seem remarkable that each
2k-pole transition has a ratio of the summed intensities equal to∑

I (d3/2):
∑

I (d5/2) = 2/5 : 3/5 and
∑

I (f5/2):
∑

I (f7/2) =
3/7 : 4/7, which corresponds precisely to the statistical ratio
of these j levels. However, this is simply a consequence
of the spin-orbit sum rule for electric-multipole transitions.7

Due the absence of spin-orbit interaction in the initial state
1S0, the spin-orbit-split levels in the final state have a statistical
intensity ratio (see also Sec. IV B).

G. Final-state Hamiltonian

The next step is to compose the final-state Hamiltonians
for the various multipole transitions. To put electrostatic
interactions and spin-orbit coupling on equal footing requires
intermediate coupling, which can be conveniently expressed
in LS basis states. The Hamiltonian in jj coupling with the
diagonal spin-orbit elements given in Eq. (21) is transformed
using Eqs. (24)–(26) to LS coupling, in which scheme the
diagonal electrostatic terms can be included. The resulting
final-state Hamiltonians for k = 1, 3, and 5 are given in
Eqs. (28)–(30), where the choice of LS basis set is clear from
the LS energy terms along the diagonal:

H(1)
(LS) =

⎛
⎜⎜⎝

E(3D) − 3
2ζf

1
2

√
2(ζd + ζf ) ζd − ζf

1
2

√
2(ζd + ζf ) E(3P ) − 1

2ζd − ζf
1
2

√
2(ζd + 2ζf )

ζd − ζf
1
2

√
2(ζd + 2ζf ) E(1P )

⎞
⎟⎟⎠ , (28)

H(3)
(LS) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E(3G) + 1
8 (7ζd − 13ζf ) 15

56

√
7(ζd + ζf ) 0 5

4

√
3
7 (ζd − ζf )

15
56

√
7(ζd + ζf ) E(3F ) + 1

8 (ζd − 3ζf )
√

6
7 (ζd + ζf ) − 1

4

√
3(ζd + 3ζf )

0
√

6
7 (ζd + ζf ) E(3D) + ζf − 3

14

√
14(ζd − ζf )

5
4

√
3
7 (ζd − ζf ) − 1

4

√
3(ζd + 3ζf ) − 3

14

√
14(ζd − ζf ) E(1F )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (29)

H(5)
(LS) =

⎛
⎜⎜⎜⎝

E(3H ) − 1
10 (2ζd − 3ζf ) 3

5 (ζd + ζf ) −
√

3
10 (2ζd + 3ζf )

3
5 (ζd + ζf ) E(3G) − 1

10 (7ζd − 13ζf ) − 3
10 (ζd − ζf )

−
√

3
10 (2ζd + 3ζf ) − 3

10 (ζd − ζf ) E(1H )

⎞
⎟⎟⎟⎠ . (30)
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For the uranium O4,5 edge, the energy splitting of the spin-
orbit interaction is 5

2ζd ≈ 8.2 eV. This can be compared with
the largest energy separation due to the electrostatic interaction
in d9f 1 (cf. Table II), which is

E(3D) − E(1P ) = 16.74 eV for k = 1,

E(1F ) − E(3D) = 2.35 eV for k = 3, (31)

E(3G) − E(3H ) = 2.12 eV for k = 5.

Thus, while the k = 1 spectrum is closer to LS coupling,
the k = 3 and 5 spectra, on the other hand, are closer to jj

coupling, which has profound implications for the spectral
analysis.

H. First-moment sum rule

As explained in Sec. III F, electric-multipole transitions
of rank k = 1, 3, and 5 are allowed to states with 1P1, 1F3,
and 1H5 character, respectively. We will indicate these terms
generically as 1Kk . For the f 0 → d9f 1 transition, we can
formulate a useful sum rule relating the first moment of the k

spectrum to the energy of the 1Kk state.
For each multipole rank k, the eigenvalues Ek

i and eigen-
states ψk

i (with running index i) are obtained by diagonalizing
the Hamiltonian H(k)

(LS). The intensities of the final states ψk
i

are given by the square of the wave-function coefficients

I k
i = ∣∣〈ψk

i

∣∣ψ(1
Kk

)〉∣∣2
. (32)

The energy term E(1Kk) is a diagonal matrix element in the
LS-coupled Hamiltonian, and because the trace of the matrix
is conserved, the average energy of the k spectrum is∑

i I
k
i Ek

i∑
i I

k
i

= E(1Kk) ≡ gE(1Kk)HF. (33)

Thus, the first moment of the spectrum (i.e., the sum over the
normalized intensities I k

i times their energy Ek
i ) is equal to

the HF energy E(1Kk)HF of the 1Kk state with scaling factor g

for the Slater integrals. Note that the HF energies have been
corrected for the spherically averaged electrostatic energy in
Eq. (16). This sum rule shows that the average energy does
not depend on the final-state spin-orbit interaction, as will be
illustrated by the example in Fig. 1 described in the following
section. General expressions for spectral moment distributions
can be found in Ref. 32.

I. Interplay between spin-orbit and electrostatic interactions

Figure 1 shows the uranium 5f 0 → 5d95f 1 multipole
spectra calculated for different scaling factors g of the Slater
parameters and z of the spin-orbit parameter. Figure 1(a)
shows the energy positions of the LS levels in the absence
of spin-orbit interaction (values in the last column of Table II).
The electrostatic interaction gives an energy spread over the
LS states of several eV, except for the 1P , which has much
higher energy for reasons explained in Sec. III B. Figure 1(b)
shows the peaks allowed in LS coupling, i.e., 1P1, 1F3, and 1H5

for k = 1, 3, and 5, respectively.
Switching on the spin-orbit interaction in Fig. 1(c) mixes

the singlet with the triplet states, listed in Table I. For k = 1, the
3P1 and 3D1 become allowed, however, their intensity remains

FIG. 1. (Color online) Uranium O4,5 NIXS. Calculated multipole
spectra with k = 1 (dashed black line), k = 3 (drawn blue line),
and k = 5 (dotted red line) for the transitions U 5f 0 → 5d95f 1,
varying the scaling factors g for the Slater parameter and z for
the spin-orbit parameter. (a) Energy positions of the LS states for
g = 0.7, z = 0 (values in last column of Table II). Nonallowed states
are dashed. NIXS spectra for (b) only electrostatic interactions;
g = 0.7, z = 0 (LS-coupling limit), (c) realistic values: g = 0.7,
z = 1 (intermediate coupling scheme applies), (d) strongly reduced
electrostatic interactions: g = 0.3, z = 1, and (e) only spin-orbit
interaction: g = 0, z = 1 (jj -coupling limit) with assignment jdjf .
For the J = 0 ground state, the 2k-pole transitions are only allowed
to final states with J = k. For relatively pure peaks, the approximate
peak assignment is indicated. The calculated spectra have been
convoluted with a Lorentzian of 
 = 0.2 eV and Gaussian of
σ = 0.4 eV.

low because the mixing with the remote 1P1 is small. Since the
dipole-allowed pure 1P1 state has exceptionally high energy,
the intensity of the k = 1 spectrum is at a very high energy
compared to the average energy of the final-state configuration.
The 1P1 state is pushed up further in energy in the presence
of spin-orbit interaction [cf. Figs. 1(b) and 1(c)]. Note that the
energy positions of the peaks obey the sum rule in Eq. (33),
so that the average energy of the spectrum remains the same
for constant g. Reducing the electrostatic interactions (from
g = 0.7 to 0.3) in Fig. 1(d) shifts the 1P1 to lower energy.

The situation is completely different for k = 3 and 5, where
the energy difference between the allowed states is much
smaller. Figure 1(e) shows the spectra without electrostatic
interaction, where the spin-orbit interaction gives the four
energy levels from Eq. (21). The average energy of each k

spectrum is zero since g = 0 [cf. Eq. (33)]. The 5d spin-
orbit interaction gives the large energy splitting and the 5f

spin-orbit interaction gives the smaller splitting. The peak
intensities for the various multipole spectra are given in
Table V. In jj coupling, the peak intensities are independent of
the energy positions, i.e., they do not depend on the size of the
spin-orbit splitting. This also follows from the spin-orbit sum
rule.7 It is seen that the scaling of the electrostatic interaction
has a much smaller influence on the k = 3 and 5 spectra.
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The higher k spectra show a clear energy separation
between the 5d5/2 and 5d3/2 structures, arising from the dom-
inant spin-orbit interaction. Changes due to the electrostatic
interaction are larger in the 5d3/2 structure because the k = 5
peak in jj coupling is at higher energy, while it is at lower
energy in LS coupling. This means that at some stage the
k = 5 and 3 peaks have to cross each other, which occurs
around g = 0.3 and z = 1. In the 5d5/2 structure, on the other
hand, the k = 5 is always at lower energy than the k = 3 peak.
Thus, while the 5d3/2 feature is narrow, the 5d5/2 remains a
distinct doublet. In this way, the 5d3/2 structure of the 5f 0

NIXS can give an estimation of the scaling factor g for the
electrostatic interaction.

IV. ACTINIDE O4,5 SPECTRA

We present here the calculated multipole spectra at the
O4,5 edges from Th f 0 to Cf f 9 and discuss the systematic
trends in these spectra. To gain a deeper understanding
of the various peak structures, the spectra calculated in
intermediate coupling are compared with those without 5d

spin-orbit interaction (LS-coupling limit) and without 5f -5d

electrostatic interactions (jj -coupling limit). The initial state
is always in intermediate coupling in order to keep it the same
for all three cases considered. The integrated intensity of each
spectrum is formally proportional to the number of holes in the
f shell, however, for better comparison, the k spectra for the
different f n configurations are plotted with equal normalized
integrated intensity.

A. Final state without spin-orbit interaction

The final state is taken in the LS-coupling limit. From an
initial state LSJ , the final-state levels L′S ′J ′ can be reached
that have |L − k| � L′ � L + k, S ′ = S, and |J − k| � J ′ �
J + k, which can amount to a large number of final-state
levels.

Higher L values have often lower energies, although this is
not completely regular (see, e.g., Table II), which implies that
higher multipole spectra have on average lower energies. The
actinide spectra without 5d spin-orbit interaction are displayed
in Fig. 2, showing that the accessible LS states for k = 5
are indeed lower in energy than for k = 3. For less than
half-filled 5f shell, the states for k = 1 are much higher in
energy, but from f 7 onwards they have shifted to lower energy.
This energy shift caused by the exchange integral G1 is thus
manifest far beyond f 0.

B. Final state without electrostatic interaction

The final state is taken in the jj -coupling limit. The calcu-
lated actinide spectra without 5d-5f electrostatic interaction
are shown in Fig. 3. The 5d spin-orbit interaction gives a neat
splitting into two edges, where each edge shows a small energy
spread over the various final-state J levels. A powerful tool
to analyze core-level spectra, in which j is a good quantum
number, is provided by the branching ratio,33 which is defined
for each k spectrum as the integrated intensity ratio of the 5d

FIG. 2. (Color online) Actinide O4,5 multipole spectra without
5d spin-orbit interaction (g = 0.7, z = 0), showing the calculations
with k = 1 (dashed black line), k = 3 (drawn blue line), and k = 5
(dotted red line) for the transitions 5f n → 5d95f n+1. The line spectra
were convoluted with a Lorentzian of 
 = 0.5 eV and Gaussian of
σ = 0.3 eV.

spin-orbit split levels,

Bk ≡
∫

I k(d5/2)dE∫
I k(d5/2)dE + ∫

I k(d3/2)dE
. (34)

According to the spin-orbit sum rule, the branching ratio Bk

is proportional to wh, which is the angular part of the 5f

spin-orbit interaction per hole.7 For the d → f transition, this
sum rule gives

B1 = 3
5 + 2

5wh, (35a)

B3 = 3
5 + 3

20wh, (35b)

B5 = 3
5 − 3

10wh, (35c)

where

wh ≡ − 1

	sh

h∑
i=1

	i · si = 1

h

(
−	 + 1

	
hf 5/2 + hf 7/2

)
,

(36)

with h = hf 5/2 + hf 7/2 the total number of f holes in the
initial state, and hf 5/2 and hf 7/2 the number of f5/2 and f7/2

holes, respectively.
Calculated values of wh for the actinides can be found in

Ref. 34. The absence of 5f spin-orbit interaction in Th f 0

gives that all its k spectra have a branching ratio equal to the
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FIG. 3. (Color online) Actinide O4,5 multipole spectra without
5d-5f electrostatic interactions (g = 0, z = 1), showing calculations
with k = 1 (dashed black line), k = 3 (drawn blue line), and k = 5
(dotted red line) for the transitions 5f n → 5d95f n+1. The line spectra
were convoluted with a Lorentzian of 
 = 0.5 eV and Gaussian of
σ = 0.3 eV.

statistical ratio of 3/5. The hole states in the f n shell prefer a
parallel coupling of 	 and s, giving a ground state with negative
spin-orbit energy and hence positive wh. Thus, according to
Eq. (35), for the ground state the branching ratio is higher
for k = 1 than for k = 3, which on its turn is higher than for
k = 5. Equation (36) shows that the value of wh increases for
decreasing the number of holes h. Therefore, the differences
in B1, B3, and B5 become larger for heavier elements, as can
be verified by inspecting the spectra in Fig. 3.

C. Final state in intermediate coupling

The O4,5 multipole spectra calculated in intermediate
coupling are shown in Fig. 4. It is seen that for the dipole
spectra the calculations in intermediate coupling are quite
similar to those in the LS-coupling limit, shown in Fig. 2,
with Am f 6 as the main exception. The dramatic energy shift
in the dipole spectrum between Pu f 5 and Am f 6 is confirmed
by the experimental EELS spectra (Fig. 12 in Ref. 8). Overall,
the LS-coupling limit is a reasonable approximation for the
dipole spectrum. In fact, the large exchange integral G1 makes
LS coupling a good approximation for the lighter elements.
Furthermore, as first pointed out by Sugar,31 the interaction G1

preserves the d9f 1 parentage, from which we may infer that
LS coupling is appropriate for dipole spectra up to halfway
the series.

FIG. 4. (Color online) Actinide O4,5 NIXS in intermediate cou-
pling. Calculated multipole spectra with k = 1 (dashed black line),
k = 3 (drawn blue line), and k = 5 (dotted red line) for the transitions
5f n → 5d95f n+1. The scaling factor for the Slater parameters is
g = 0.7. The line spectra were convoluted with a Lorentzian of

 = 0.5 eV and Gaussian of σ = 0.3 eV.

In the k = 3 and 5 spectra, the 5d spin-orbit splitting,
which plays such a prominent role in 5f 0, clearly keeps up
its appearance till f 3, while in the 5d3/2 region the intensity
gradually diminishes. For higher f counts, these spectra regain
intensity at high photon energies.

Figure 4 shows that for heavier elements, the overall
peak intensity in the low-energy region is smaller for k = 5
than for k = 3, with the opposite in the high-energy region
(∼15 eV in Pu-Cf). This intensity balance is a consequence
of the spin-orbit sum rule, fueled by the prominence of the
5d spin-orbit splitting. In other words, the low-energy states
have predominantly 5d5/2 core-hole character, whereas the
high-energy states have more 5d3/2 character.

The dipole spectrum splits into several peaks, which for
the lighter elements coincide with the giant resonance, as can
be seen from, e.g., the experimental EELS spectra (Fig. 12
in Ref. 8). The calculations do not include any decay
channels which cause the Fano broadening in the high-energy
region.35,36 The high-energy states of the experimental dipole
spectrum are broadened because their energy coincides with
interacting continuum states. The lifetime broadening of
the different LS states can vary strongly depending on the
availability of LS states to which decay is allowed.37,38 This
means for Th f 0 that while the 1P1 peak is broad, the 3P1

and 3D1 prepeaks are much narrower. However, going more
towards the jj -coupling limit, the LS states will strongly mix,
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so that all peaks obtain a similar lifetime broadening, which
would occur in the higher multipole spectra.

D. Comparison to experimental data

Figure 5 shows a comparison of the calculated spectra for
U 5f 1, 5f 2, and 5f 3 with the experimental O4,5 NIXS spectra
of UO2 measured at q = 1.68 and 9.74 Å−1.5 At low q, the
NIXS spectrum is dominated by dipole transitions, whereas at
high q the NIXS spectrum consists mainly of octupole (k = 3)
and triacontadipole (k = 5) transitions. Figure 5 shows the
calculated NIXS as simulated spectra with an intensity ratio
of I 5/I 3 = 1.18, which is the ratio expected for q = 9.74 Å−1

derived by using the Bessel functions in Eq. (7).5

The high-q spectra clearly show a pronounced splitting
due to the 5d spin-orbit interaction with the electrostatic
interaction giving detailed structure at each edge. The multiplet
structure due to the electrostatic interaction is partly resolved
for the higher multipole spectra of the actinide O4,5, despite
the relatively large core-level width of 
 = 0.5 eV. It is the
electrostatic interaction that gives rise to the characteristic
multiplet structure, such as for the localized 3d transition-
metal L2,3 XAS,24,39 and rare-earth M4,5 XAS.26 In other
cases, such as for the actinide N4,5 and M4,5 XAS, the multiplet
structure disappears in the linewidth broadening.

The best agreement with the NIXS from UO2 is obtained
for U f 2 in Fig. 5. For uranium it might seem that the
dependence on the valence state (or element specificity) is
modest. However, there are some quite remarkable changes
across the actinide series. The k = 3 spectrum from Pu f 5 in
Fig. 4 shows a well-resolved doublet structure, whereas the
same k spectra from the adjacent f 4 and f 6 elements have
only a single peak.

FIG. 5. (Color online) Uranium O4,5 NIXS. (a) Experimental
spectra of UO2 for q = 1.68 Å−1 (drawn olive line) and q = 9.74 Å−1

(drawn magenta line) from Ref. 5. (b) Calculated multipole spectra
I k with k = 1 (dashed black line), k = 3 (drawn blue line), and
k = 5 (dotted red line) for Hund’s rule ground state U 5f 1, 5f 2,
and 5f 3 with scaling factor g = 0.7 for the Slater parameters. The
calculated spectra were convoluted with a Lorentzian of 
 = 0.5 eV
and Gaussian of σ = 0.5 eV. The simulated NIXS spectrum (thick
dark cyan line) is equal to 1.18 I 5 + I 3.

V. RARE-EARTH N4,5 SPECTRA

Measurements for rare earths show a strong N4,5 NIXS, in
excellent agreement with the calculated multiplet structure.6,40

The spectra for Ce 4f 1, Pr 4f 2, and Nd 4f 3 can be found
elsewhere.6 Here, we will present only some results that serve
as a comparison with the actinide O4,5 NIXS.

Since the treatment of the d → f transition in Sec. III is
completely general, it can be directly applied to La f 0 by using
the appropriate physical parameters for the radial part of the
spin-orbit interaction ζ	 and the Slater integrals Fk and Gk

(cf. Table III). The electrostatic interaction is more important
in the rare-earth N4,5 than in the actinide O4,5 edge since ζd

is larger in the latter. Figure 6 shows the N4,5 spectra for the
La 4f 0 → 4d94f 1 transition. The intrinsic linewidth for the
rare earths is expected to be narrower than for the actinides.
Evidence for this arises from the experimental XAS and EELS
spectra,8,16,27 where 
 ≈ 0.1 eV in the pre-edge structure. The
linewidth does not directly depend on the rank of the multipole
transition, although it depends on the particular LS states.

In the La 4f 0 dipole spectrum, the purity of the final state
is very high (99.7% for the 1P1 and 96% for the 3P1 and 3D1

states). However, this is not the case in the k = 3 and 5 spectra,
where the spin-orbit splitting ( 5

2ζd ≈ 2.8 eV) is of the same
order as the electrostatic splitting in the allowed states. It is
seen in Fig. 6 that the scaling factor g gives a strong energy
shift of the 1P1 peak in the dipole spectrum, but a much smaller
shift of the peaks in the k = 3 and 5 spectra. This shift is of
course governed by the final-state energy sum rule in Eq. (33).

Finally, we demonstrate the strong dependence on the
initial-state angular momentum. Figure 7 shows a comparison
between the multipole spectra of Ce 4f 1 for the J = 5/2
Hund’s rule ground state and the J = 7/2 state. For all
k spectra, the pre-edge structure is very different between
J = 5/2 and 7/2 and provides a unique fingerprint. Note
that the dipole spectrum has been multiplied by a factor 100

FIG. 6. (Color online) La N4,5 NIXS. Calculated multipole
spectra with k = 1 (dashed black line), k = 3 (drawn blue line), and
k = 5 (dotted red line) for the transitions La 4f 0 → 4d94f 1. The
scaling factor for the Slater parameters is (a) g = 0.7 and (b) g = 0.8.
The calculated spectra have been convoluted with a Lorentzian of

 = 0.1 eV and Gaussian of σ = 0.1 eV.
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FIG. 7. (Color online) Cerium N4,5 NIXS. Calculated multipole
spectra with k = 1, k = 3, and k = 5 for the transition Ce 4f 1 →
4d94f 2 with J = 5/2 (drawn blue line) and J = 7/2 (dotted red line).
The scaling factor for the Slater parameters is g = 0.8. The calculated
spectra have been convoluted with a Lorentzian of 
 = 0.1 eV and
Gaussian of σ = 0.1 eV.

compared to the k = 3 and 5 spectra. Using high-resolution
EELS, Bradley et al.6 measured the detailed structure of the
k = 1 pre-edge, which was shown to be in excellent agreement
with the calculated multiplet structure.

VI. CONCLUSIONS

The 5d → 5f multipole spectra of the actinide series rep-
resent a compelling case for investigating spectral structures.
While the electric-dipole spectrum can be described rather
well using LS coupling, for the higher multipole spectra,
jj coupling is more appropriate. The exchange integral
G1(5d,5f ) pushes the 1P state in d9f 1 to very high energy.
From an initial state 1S0 this is the only allowed state in LS

coupling for the dipole spectrum. This spectrum is ∼15 eV

higher in energy than the configuration average, and the
strong interaction with continuum states results in linewidth
broadening.

In contrast to the dipole spectrum, in the higher multipole
spectra the core spin-orbit splitting is larger than the electro-
static energy splitting. This leads to a spin-orbit-split doublet
with a broad first peak and a narrower second peak. In the 5d5/2

region, the energy of the k = 5 peak is a few eV below that of
the k = 3 peak. In the 5d3/2 region, the peaks are roughly at the
same energy because spin-orbit and electrostatic interactions
lead to opposite energy shifts.

The calculated NIXS spectra for the actinide series show
large changes as a function of f count. This element or valence
specificity will be useful in cases where the f count is under
dispute, such as in δ-Pu metal or Pu oxides.8,41

For the f 0 → d9f 1 transition, we gave a sum rule which
relates the average energy of each k spectrum to the first
moment of the spectral distribution. For this transition we
also found that in jj coupling, the jdjf levels have a fixed
intensity ratio in the different k spectra, which finds its origin
in the spin-orbit sum rule. According to this sum rule, the
initial-state spin-orbit interaction per hole is linearly related to
the core-level branching ratio. This leads to strong changes in
the branching ratio of the k = 3 and 5 spectra, especially for
heaver elements. For the ground state with lowest spin-orbit
energy, higher k spectra have a lower branching ratio. Hence,
in the low-energy region, the overall intensity of the k = 3
spectrum is higher than that of the k = 5 spectrum, whereas
this is opposite in the high-energy region.

The rare-earth 4d → 4f spectra for k = 3 and 5 exhibit
a different behavior than the actinide 5d → 5f spectra since
the electrostatic and core spin-orbit splitting are comparable in
size. However, the k = 5 peaks are still at lower energies than
the k = 3 peaks. The calculated multipole spectra for different
J levels show a strong variation in the pre-edge region.

The results of this study are expected to be very promising
for performing NIXS measurements in a wide range of
applications for actinides and rare-earth materials, such as
under extreme conditions.
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