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We generalize the noncommutative relations obeyed by the guiding centers in the two-dimensional quantum
Hall effect to those obeyed by the projected position operators in three-dimensional (3D) topological band
insulators. The noncommutativity in 3D space is tied to the integral over the 3D Brillouin zone of a Chern-
Simons invariant in momentum-space. We provide an example of a model on the cubic lattice for which the
chiral symmetry guarantees a macroscopic number of zero-energy modes that form a perfectly flat band. This
lattice model realizes a chiral 3D noncommutative geometry. Finally, we find conditions on the density-density
structure factors that lead to a gapped 3D fractional chiral topological insulator within Feynman’s single-mode
approximation.
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I. INTRODUCTION

The integer quantum Hall effect (IQHE)1 is the first known
example of a fermionic phase of matter characterized by a
topological index that is directly connected to a physical
observable. The index in this case is the sum of the (first)
Chern numbers obtained for each of the fully filled Landau
bands and the associated physical observable is the Hall
conductance.2–4 The fractional quantum Hall effect (FQHE)5

results from the effects of electron-electron interactions when
the Landau levels are partially filled with electrons, for certain
rational filling fractions.6 More examples of topological states
of matter that are comprised of noninteracting fermions
have been discovered recently7–16 and have been classified
according to discrete symmetries they respect or not and the
dimensionality of space in which the particles propagate.17–19

Such classification is sometimes referred to as the “periodic
table” of topological insulators.18 Among these states are Z2

topological ones associated with the presence of time-reversal
symmetry (TRS) in two-dimensional (2D) as well as three-
dimensional (3D) systems. It is natural to then question what
the “fractional” version of these phases should be and how they
could be described. In particular, it is interesting to ask what
are the possible fractional topological phases of interacting
fermionic systems in three spatial dimensions.

One approach to capture universal physics arising from
topological interacting electron systems in (2 + 1)20–27 and
(3 + 1)28–30 dimensions of space and time is via the parton
construction. A fractional phase of electrons is obtained by
constructing integer-filled bands of “partons”, which are then
“glued” together by very strong gauge-mediated interactions
so as to assemble together the physical electron. This approach
is a generalization of theories that capture the universal physics
of the FQHE and yields, for instance, wave functions describ-
ing states that support fractional magneto-electric effects28–30

in the case of the Z2 topological insulators. The parton
construction is one way to obtain an effective topological
quantum field theory (TQFT) to describe fractional topological
insulators.

However, TQFTs do not capture the dynamics of the
systems beyond their topological properties. As emphasized
by Haldane,31 TQFTs are incomplete theories of the FQHE,
for while they characterize the quantum numbers of the
elementary excitations (topological defects), such as their
charges and statistics, they do not contain any information
about their energies. The information about the fundamental
length scale in the FQHE, the magnetic length, is lost in its
TQFT treatment. Recently, Haldane has proposed in Refs. 31
and 32 a geometric description of the FQHE based on the
algebra obeyed by the density operators projected to the
lowest Landau level that was originally introduced by Girvin,
MacDonald, and Platzman (GMP) in Ref. 33.

When projected to the lowest Landau level, the density
operators do not commute. However, the algebra closes in that
the commutation of two density operators is proportional to
a third one. Using this algebra, GMP were able to employ
an approach that parallels that of Feynman and Bijl in their
study of excitations in 4He.34 Their approach allows one to
place a variational estimate on the excitation gap, if the static
structure factor is known. The algebraic approach to the FQHE
pioneered by GMP has also been useful to understand the
hydrodynamic description of the edge states in the IQHE and
FQHE.35–37 More recently, Parameswaran, Roy, and Sondhi
in Ref. 38 have initiated a study of the algebra obeyed by the
density operators in two-dimensional Chern band insulators
(see also Refs. 39 and 40). Our work in 3D is motivated by
this successful approach in 2D.

The main objective of this work is to identify the noncom-
mutative geometry that can emerge from 3D topological insu-
lators, its relation to topological invariants, and its relevance
to possible interaction-driven topological fractional phases
in fermionic 3D systems. Armed with this noncommutative
geometry, one can forge ahead in trying to construct a
dynamical theory of 3D fractional topological insulators that
could, perhaps, parallel the solid understanding of the FQHE
in 2D. In particular, the approach might suggest which types
of interactions can give rise to incompressible gapped phases
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and support the counterparts to the magneto-roton collective
excitation in the FQHE.33

There are important symmetry considerations that need to
be carefully taken into account when searching for interacting
topological insulators in 3D. The FQHE descends from the
IQHE when Landau or Chern bands are partially filled. In
turn, the 2D IQHE is a stable class of states characterized
by a Z index (symmetry class A in the terminology of
Ref. 17), which has no symmetry left out to be broken. If
the logic is that we are also to start from a noninteracting
topological insulator in 3D when constructing the interacting
fractional counterpart, we need to look at systems which are
topologically nontrivial in 3D space. One possibility is to start
with Z2 topological insulators. This has been the choice in
most works so far. Here, instead, we shall start from systems
that have chiral symmetry, but lack TRS (symmetry class
AIII in the terminology of Ref. 17). The rational for this
choice is twofold. First, from experience working on strongly
interacting 2D Z2 topological insulators, we have observed
that TRS is easily broken in favor of magnetized states due
to the Stoner instability, which is enhanced in bands with
nonzero topological invariant.41–43 Second, because 3D chiral
systems are characterized by a Z-valued topological invariant,
they might share similarities with the FQHE. Indeed, we shall
show that the noncommutative geometry for this 3D model
does depend on this Z-valued topological invariant.

The approach of GMP is ideally suited to the situation
where density operators are projected into a dispersionless
band (for example the lowest Landau level in the case of
the FQHE). Here, we shall give a concrete lattice model
with chiral symmetry that contains an exactly flat topological
band, on which we construct the projected density operators.
The resulting operator product expansions will depend on the
nonzero integral over the 3D Brillouin zone of a Chern-Simons
action in momentum space. For this lattice model, the average
Berry curvature over the entire Brillouin zone is zero. Hence,
the type of 3D fractional topological insulator that we discuss
is qualitatively different from the FQHE, where the average
Berry curvature over the Brillouin zone is nonzero. The nature
of the fractional states we discuss are intrinsically 3D and not
layered 2D (i.e., weak topological insulators).

The main results of this paper are the following:
In Sec. II, we relate algebraic and topological properties

of noninteracting fermions assuming a translation-invariant
insulating ground state. Although we are mostly interested in
either 2D or 3D space, our method applies to any dimension d

of space. We show in Sec. II A that the position operators for
noninteracting fermions, if projected onto the occupied bands
that make up the insulating Fermi sea, obey a noncommutative
geometry that is tied to the single-particle band topology. More
precisely, for any 3D translation-invariant and noninteracting
fermionic Hamiltonian with an insulating Fermi sea as ground
state, Eq. (2.54) relates the ground state expectation value
of the 3 bracket for the projected position operators to
Chern-Simons invariants in 1D and 3D momentum space.
If we impose chiral symmetry, Eq. (2.55) dictates that it
is only the Chern-Simons invariant in 3D momentum space
that controls this ground state expectation value. Imposing
chiral symmetry is thus a mean by which intrinsic 3D physics
marries noncommutative geometry with band topology. We

show in Sec. II B with the help of Eq. (2.65) how to relate the
noncommutative geometry obeyed by the position operator
to that obeyed by the translation operator in momentum
space by means of an operator product expansion, whenever
chiral symmetry holds. The results of Sec. II A are applied
to the case of a 3D Dirac Hamiltonian in Sec. II C. This
3D Dirac Hamiltonian can be thought of as playing the
role of the Landau Hamiltonian in 2D space. So far, the
position operators under consideration are always unbounded
operators. Hence, Eqs. (2.55) and (2.65) are not applicable
to tight-binding (lattice) models. Sec. II D treats the operator
product expansion for the Fourier modes in momentum space
of the fermion density operator when projected onto a single
band. As opposed to the unbounded position operators from
Sec. II A, there is no direct relation between the 3 bracket of
the projected density operators and band topology. Instead, the
interplay between algebra and band topology is captured by
Eq. (2.88) for any 3D lattice model with chiral symmetry.

A minimal microscopic 3D noninteracting lattice Hamil-
tonian that realizes the conditions necessary to marry the
noncommutative geometry to the band topology of Sec. II
is presented in Sec. III. A noninteracting fermionic 3 band (of
which one is flat) Hamiltonian is defined in Sec. III A. The
band topology is characterized by three distinct topological
numbers defined in Sec. III B by Eqs. (3.7), (3.10), and
(3.12), respectively. They are related by Eq. (3.14). Bulk band
topology implies the existence of boundary states that disperse
across the bulk band gap in open geometries and to which we
devote Sec. III C.

The role of density-density interactions for screened
Coulomb interactions is discussed in Sec. IV for tight-binding
models on d-dimensional lattices within the single-mode
approximation (SMA) under the assumption that there exists
at least one flat band in the noninteracting limit. We follow
GMP and construct a family of variational states labeled by
momentum through the application of the Fourier modes in
momentum space of the projected (on the flat band) fermion
density operator on the exact interacting many-body ground
state. The corresponding variational energy dispersion then
delivers, within this approximation, the condition(s) for or
against the existence of a gap or the existence of collective
modes, as was achieved assuming a Laughlin state for the exact
ground state in the FQHE by GMP. If we denote the variational
excitation energy by the fraction �(k) = f (k)/s(k), where
both the denominator and numerator are expectation values
with a variational state such that the denominator turns out to
be the static structure factor of the exact interacting many-body
ground state, we show with the help of Eq. (4.10) the conditions
under which f (k) ∼ k2 for 2D and 3D lattice models. A
variational gap then requires that the static structure factor
s(k) of the exact many-body ground state scales like s(k) ∼ k2

within the SMA. The condition s(k) ∼ k2 for a SMA gap can
be tested numerically given any ansatz for the many-body
ground state.

II. NONCOMMUTATIVE GEOMETRY

We begin by recalling some elementary facts about the
quantum motion of a spinless electron confined to move in
the plane spanned by the orthonormal unit vectors e1 and e2
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perpendicular to an applied uniform magnetic field B = Be3,
whereby e3 = e1 ∧ e2.

Its quantum dynamics is governed by the single-particle
(Landau) Hamiltonian

Ĥ := 1

2me

[
P̂ + e

c
A(R̂)

]2

, B = ∇ ∧ A(r), (2.1)

where the momentum P̂
T ≡ (P̂1,P̂2) and position R̂

T ≡
(R̂1,R̂2) operators obey the canonical commutation relation

[R̂μ,P̂ν] = ih̄δμ,ν, (2.2)

with μ,ν = 1,2.
Hence, neither do the components of the covariant deriva-

tive in position space

�̂ := ime

h̄
[Ĥ,R̂] = P̂ + e

c
A(R̂), (2.3a)

nor do the components of the conserved guiding center

X̂ := R̂ − �2
B

h̄
e3 ∧ �̂ (2.3b)

commute, for

[�̂1,�̂2] = −i
h̄2

�2
B

(2.4a)

and

[X̂1,X̂2] = +i�2
B, (2.4b)

with �B = √
h̄c/(eB) being the magnetic length.

An orthonormal basis of energy eigenstates of the Landau
Hamiltonian (2.1) is made of the kets

|n,m〉 := 1√
n!m!

(̂a†)n(̂b†)m|0〉, (2.5a)

with

â† := �B√
2h̄

(�̂1 + i�̂2), b̂† := 1√
2�B

(X̂1 + iX̂2), (2.5b)

and where n = 0,1,2, . . . labels the Landau levels with energy
εn = h̄ωc (n + 1/2) and m = 0,1,2, . . . ,[(	/	0) − 1] labels
the orbital angular momentum. Here, 	 = AB is the magnetic
flux threading the area A of the system, 	0 = hc/e is the flux
quantum, and ωc = eB/mec is the cyclotron frequency.

Defining the projector on the nth Landau level

P̂n :=
∑
m

|n,m〉〈n,m|, (2.6)

one finds that the guiding center defined in Eq. (2.3b) is the
position operator projected on any single Landau level

X̂ = �B√
2

(
b̂ + b̂†

ib̂ − ib̂†

)
= �B√

2
P̂n

[(
b̂ + b̂†

ib̂ − ib̂†

)
−
(

iâ† − iâ

â† + â

)]
P̂n = P̂n R̂P̂n,

(2.7)

since P̂nâP̂n = 0 and P̂nâ
†P̂n = 0, while P̂nb̂P̂n = b̂ and

P̂nb̂
†P̂n = b̂†. Thus, the position operators projected to any

given Landau level satisfy the noncommutative geometry
(2.4b).

This noncommutative geometry is at the heart of both the
IQHE and the FQHE. For example, it is intimately related to
the quantized Hall conductivity σ H. The Kubo formula for the
contribution of the nth Landau level (n = 0,1,2, . . .) to the
Hall conductivity is

σ H
n := e2h̄

im2
e

1

A

∑
n′ 	=n

∑
m

〈n,m|�̂1P̂n′�̂2|n,m〉 − (1 ↔ 2)

(εn − εn′ )2
,

(2.8)

where A is the area of the Hall droplet. This can be rewritten
using Eq. (2.3a) as

σ H
n = ie2

Ah̄

∑
n′ 	=n

∑
m

[〈n,m|R̂1P̂n′R̂2|n,m〉 − (1 ↔ 2)]

= − ie2

Ah̄

∑
m

[〈n,m|R̂1P̂nR̂2|n,m〉 − (1 ↔ 2)]

= − ie2

Ah̄

∑
m

〈n,m|[X̂1,X̂2]|n,m〉 = e2

h
, (2.9)

where we used that A = 2π
∑

m �2
B . The role of the non-

commutative position-operator algebra is apparent in the
penultimate line.

To quadratic order in �B , the algebra of the projected
position operators (2.3b) is maintained if a coordinate trans-
formation rμ → fμ(r), μ = 1,2, that varies on length scales
larger than �B , is area preserving. Indeed, we can then expand

[f1(X̂),f2(X̂)] = +i�2
B{f1,f2}P(X̂) + O

(
�4

B

)
, (2.10a)

where the classical Poisson bracket is defined as

{f1,f2}P(r) := εμν

(
∂f1

∂rμ

∂f2

∂rν

)
(r). (2.10b)

The condition for this coordinate transformation to locally
preserve area is that its Jacobian equals unity or, equiv-
alently, that {f1,f2}P(r) = 1. In this case, it follows that
[f1(X̂),f2(X̂)] = +i�2

B + O(�4
B).

From the projected coordinate algebra, one can obtain a
(projected) density algebra, by defining the projected density

ρ̂(r) := P̂n�̂(r)P̂n, (2.11a)

where the unprojected density operator is

�̂(r) := δ(r − R̂). (2.11b)

One can also construct the guiding center operators (2.3b) from
the projected density operators through

X̂μ =
∫

d2rrμP̂n�̂(r)P̂n, μ = 1,2. (2.12)

In momentum space, the projected normal ordered density
operators

ρ̂(q) := e�2
B q2/4P̂0 : eiq·R̂ : P̂0 = eiq·X̂ (2.13)
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in the lowest Landau level n = 0 satisfy the commutation
relations33

[ρ̂(q1),ρ̂(q2)] = −2i sin

(
�2

B

2
(q1 ∧ q2) · e3

)
ρ̂(q1 + q2)

(2.14a)

or, in the limit of small momenta q1 and q2,

[ρ̂(q1),ρ̂(q2)] ≈ −i�2
B(q1 ∧ q2) · e3ρ̂(q1 + q2), (2.14b)

or, equivalently, to lowest order in the q,[
∂q

μ

1
ρ̂(q1),∂qν

2
ρ̂(q2)

] ≈ −i�2
Bεμνρ̂(q1 + q2). (2.14c)

This algebra, the GMP algebra,44–48 plays two crucial roles.
First, within the SMA approximation,33 it dictates under what
conditions interactions open a spectral gap between the many-
body interacting ground state and its excitations upon lowering
the chemical potential within the first Landau level. Second,
it also dictates the universal properties of the low-energy and
long-distance dynamics at the edge in an open geometry.35–37

The goal of the work presented in the remainder of this
section is to generalize the noncommutative geometry encoded
by Eqs. (2.4b) and (2.14c) to noninteracting many-body
fermionic Hamiltonians in 3D space. Before carrying out this
program, let us motivate what it is to come by first presenting
what would constitute a natural extension of the algebra in the
QHE to 3D problems.

First, instead of the commutator, consider the case where
the 3 bracket of the 3D projected position operators equals a
C number

[X̂1,X̂2,X̂3] = i�3, (2.15a)

where, following Nambu,49 we have defined the 3 bracket

[Â1,Â2,Â3] := εijkÂiÂj Âk

= [Â1,Â2]Â3 + [Â2,Â3]Â1 + [Â3,Â1]Â2.

(2.15b)

The characteristic length scale � of the 3D noninteracting
many-body Hamiltonian, not to be confused with the magnetic
length �B of the 2D Landau Hamiltonian, is the signature of
a spectral gap separating the ground state from the excited
states. Similarly to the 2D case, for which area preserving
coordinate transformations leave the commutation relations
unchanged, we would like volume preserving transformations
not to change the 3 bracket. Under generic transformations
rμ → fμ(r), μ = 1,2,3, that vary on length scales larger
than �,

[f1(X̂),f2(X̂),f2(X̂)] = i�3{f1,f2,f3}N(X̂) + O(�5),

(2.16a)

where the classical Nambu bracket is defined as49

{f1,f2,f3}N(r) := εμνλ

(
∂f1

∂rμ

∂f2

∂rν

∂f3

∂rλ

)
(r). (2.16b)

The condition for this coordinate transformation to locally
preserve volume is that its Jacobian equals unity or, equiv-
alently, that {f1,f2,f3}N(r) = 1. In this case, it follows that
[f1(X̂),f2(X̂),f3(X̂)] = i�3 + O(�5).

Second, we claim (and show in this paper) that the 3D
counterpart to the operator product expansion (2.14) of the
projected densities is, to lowest order in the q’s,[

∂q
μ

1
ρ̂(q1),∂qν

2
ρ̂(q2),∂qλ

3
ρ̂(q3)

] ≈ εμνλ�
3ρ̂(q1 + q2 + q3).

(2.17)

The algebra defined by Eqs. (2.15) and (2.17), if it can
be realized by a 3D fermionic noninteracting many-body
Hamiltonian, might then deliver two results. First, within the
SMA approximation, it might dictate under what conditions
interactions open a spectral gap between the many-body
interacting ground state and its excitations upon lowering the
chemical potential below the single-particle gap. Second, it
might also dictate the universal properties of the low-energy
and long-distance dynamics at the boundary in an open
geometry.

The key idea to realize the algebra defined by Eqs. (2.15)
and (2.17) is to replace the effect of the magnetic field in
the Landau Hamiltonian by that of the projection of suitable
operators on a suitable subspace of the fermionic Fock space.
The construction of this suitable subspace presumes the
existence of fermionic Bloch bands as occurs in condensed
matter physics and assumes that a subset of these bands are
fully occupied, while the complementary set are empty and
separated from the filled subset by an energy gap.

Now, carrying out this program for some Bloch bands will
not yield immaculately the 3 brackets (2.15) and (2.17). It will
yield these relations approximately in the long-wavelength
limit. The situation here is similar to the case of the quantized
Hall effect in flat Chern bands of 2D models.50–53 As
discussed by Parameswaran, Roy, and Sondhi in Ref. 38
(see also Refs. 39 and 40), the algebra (2.14b) follows if
the fluctuations in the Berry curvature over the Brillouin
zone are neglected or, equivalently, if the local curvature is
approximated by its average over the entire Brillouin zone.
Without this approximation, however, the noncommutative
relations obeyed by the projected position operator will not
be as simple as in Eq. (2.4b) and may instead be represented
as

[X̂1,X̂2] = i�2 + · · · , (2.18)

where · · · stands for operators that appear as a result of the
inhomogeneities in the Berry curvature. The central question
is how to distinguish universal from nonuniversal contributions
to the right-hand side of Eq. (2.18). To answer this question,
we propose to consider the ground state expectation value
〈[X̂1,X̂2]〉, that encodes the quantized Hall conductivity, as
seen in Eq. (2.9). We show in Sec. II A that

1

Np
〈[X̂1,X̂2]〉 = 2πi

ρ̄
C(1). (2.19)

Here, C(1) is the first Chern number of the topological band
that sustains the IQHE in the lattice, and will be defined in
Eq. (2.53), while Np is the total particle number and ρ̄ is
the average particle density. This suggests that the universal
physical properties are captured by the C-number contribution
to the right-hand side of Eq. (2.18).
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As with the commutator (2.18), the 3 bracket (2.15) will
also acquire extra terms in 3D space

[X̂1,X̂2,X̂3] = i�3 + · · · . (2.20)

We are thus lead to consider its normal ordered expectation
value instead, which, as we show in Sec. II A, is given by

1

Np
〈: [X̂1,X̂2,X̂3] :〉 = 12π2i

ρ̄
P(3). (2.21)

Here, the symbol P(3) stands for the 3D Chern-Simons invariant
defined in Eq. (2.51b). If the discrete chiral symmetry or
time-reversal symmetry holds, P(3) is a quantized topological
invariant that takes half-integer values. It is related to the
dimensionless coupling

θ = 2π (P(3)mod 1) (2.22a)

that enters the effective action

Leff
θ := θe2

4π2
E · B (2.22b)

obtained from integrating out noninteracting fermions of a 3D
topological insulator in the background of external electric
E and magnetic B fields within linear response theory.
This electro-magnetic coupling was derived by Xi, Hughes,
and Zhang in Ref. 14 by dimensional reduction from a
topological insulator in 4D displaying an integer quantum
Hall effect to a 3D Z2 topological insulator (see also Ref. 54
for a generalization that accounts for moderate interactions).
For a 3D Z2 topological insulator, time-reversal symmetry
holds. In turn, time-reversal symmetry restricts θ to the two
values θ = 0 and θ = π that distinguish “ordinary” from
topological 3D insulators, respectively.14 Several derivations
of the magneto-electric response, of which the θ term (2.22b)
is an example, have been proposed without time-reversal
symmetry.55–59

Equation (2.21) relates a nonvanishing P(3) to the noncom-
mutative algebra obeyed by the components of the projected
position operator through the noninteracting ground-state
expectation value of their 3 bracket. Because the position
operator and its projection are unbounded operators and be-
cause Wannier states may not be exponentially localized if the
Bloch states have a topological character,60,61 a regularization
procedure is needed to compute Eq. (2.21). We shall choose
a regularization that preserves gauge invariance under pure
gauge transformation of the Bloch states, but that breaks a
discrete translation symmetry. In doing so, we shall make a
connection with Ref. 57, where a representation of the θ term
is given in terms of expectation values of the position operators
in the Wannier basis.

We start by deriving the conditions under which Eq. (2.21)
holds in Sec. II A for any Hamiltonian that is endowed with
translation invariance, a spectral gap, and describes the motion
of noninteracting fermions in flat Euclidean space R

3. We
draw a connection between the 3 bracket and the (classical)
Nambu bracket in Sec. II B. We then specialize in Sec. II C
to the case of massive noninteracting Dirac Hamiltonians
for which some analytical results can be obtained in the
long-wavelength limit. Finally, Sec. II D is devoted to the
operator product expansion of single-particle density operators

in 3D lattice models and the conditions under which Eq. (2.17)
holds.

A. Noncommutative geometry for projected position operators

We shall consider noninteracting fermions whose dynamics
are governed by the translation invariant Bloch Hamiltonian

Ĥ =
∫

��
BZ

dd k
N∑

a=1

χ̂ †
a (k)εa(k)χ̂a(k). (2.23a)

We are reserving the latin index a = 1, . . . ,N for the band
label. The momentum k = (kμ) belongs to the Brillouin zone

��
BZ :=

{
(kμ) ∈ R

d

∣∣∣∣− π

a
� kμ <

π

a
, μ = 1, . . . ,d

}
,

(2.23b)

with π/a playing the role of the upper momentum cutoff.
Each band a = 1, . . . ,N is characterized by the single-particle
energy dispersion εa(k), a real-valued function over the
Brillouin zone. The creation and annihilation operators obey
the fermionic algebra

{χa(k),χa′ (k′)} = {χ †
a (k),χ †

a′(k′)} = 0,
(2.23c)

{χa(k),χ †
a′ (k′)} = δa,a′δ(k − k′),

for all pairs of bands and for all pairs of momenta in
the Brillouin zone. Finally, for any band a = 1, . . . ,N , for
any momentum k from the Brillouin zone, and for any
Cartesian unit vector eμ from R

d , we impose twisted boundary
conditions across the Brillouin zone through

χa(k + (2π/a)eμ) = e+i(2πθμ)χa(k). (2.23d)

These twisted boundary conditions are parametrized by the
real numbers 0 � θμ < 1 with μ = 1, . . . ,d.

We shall also assume that (i) there are Ñ lower bands out
of the N bands that are separated by an energy gap from the
N − Ñ remaining upper bands and (ii) the chemical potential
lies in this spectral gap (see Fig. 1). We denote with

P̂Ñ ≡
∫

��
BZ

dd k
Ñ∑

ã=1

χ̂
†
ã (k)χ̂ã(k) (2.24)

µc

ε

ga
p

N
 b

an
ds

N
ba

nd
s

filled

~

FIG. 1. (Color online) Assumed spectral gap in the single-particle
energy spectrum. Here, μc denotes the chemical potential and the
insulating noninteracting many-body ground state |	〉 is obtained by
filling all the states in the Ñ bands below the spectral gap.
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the projection operator on the single-particle states spanned
by these gapped lower bands. We are reserving the latin index
with a tilde sign ã = 1, . . . ,Ñ for the lower band labels.

In analogy to the guiding center coordinates (2.12) from the
IQHE, we would like to define projected position operators.
However, projected position operators are associated with
gauge fields, as we now explain.62

On the one hand, we may define the Wannier creation
operator through the Fourier transform

Ŵ
†
a;R :=

∫
��

BZ

dd k
(2π/a)d/2

e−ik·Rχ̂ †
a (k), (2.25a)

or, equivalently, the inverse Fourier transform

χ̂ †
a (k) =:

1

(2π/a)d/2

∑
R∈�R

e+ik·RŴ
†
a;R, (2.25b)

for any band index a = 1, . . . ,N and for any lattice point
R = (Rμ) ∈ �R whereby

�R :=
{

(Rμ) ∈ R
d

∣∣∣∣Rμ

a
= θμ mod 1, μ = 1, . . . ,d.

}
.

(2.25c)

The length scale a can thus be interpreted as a lattice spacing.
Consequently, creation and annihilation Wannier operators
obey the fermionic algebra

{Ŵa;R,Ŵa′;R′ } = {Ŵ †
a;R,Ŵ

†
a′;R′ } = 0,

(2.26)

{Ŵa;R,Ŵ
†
a′;R′ } = δa,a′δR,R′ ,

for all pairs of bands and for all pairs of lattice sites. Moreover,
the projection operator (2.24) remains diagonal in the Wannier
representation (2.25),

P̂Ñ =
∑

R∈�R

Ñ∑
ã=1

Ŵ
†
ã;RŴã;R. (2.27)

Hence, the Wannier position operator defined by

R̂ :=
∑

R∈�R

N∑
a=1

Ŵ
†
a;R RŴa;R (2.28a)

is projected onto the lower bands by restricting the band index
to the lower ones,

X̂R := P̂Ñ R̂P̂Ñ =
∑

R∈�R

Ñ∑
ã=1

Ŵ
†
ã;R RŴã;R. (2.28b)

Hamiltonian (2.23a) in the Wannier basis is represented by

Ĥ =
∑

R,R′∈�R

N∑
a=1

Ŵ
†
a;RHa;R−R′Ŵa;R′ . (2.29a)

The single-particle matrix elements,

Ha;R−R′ :=
∫

��
BZ

dd k
(2π/a)d

e+ik·(R−R′)εa(k) (2.29b)

may decay slower than exponentially with the separation |R −
R′| on the lattice �R for some of the bands; that is, locality in
position space is not manifest in the Wannier basis.60,61

On the other hand, for any Hamiltonian describing the
electronic band structure of crystalline phases of matter, there
must exist a basis in which the Hamiltonian is local in position
space, for electrons all originate from atomic orbitals. We can
enforce locality of the Hamiltonian (2.23a) as follows: We shall
assume that, for any momentum k from the Brillouin zone,
there exists a unitary transformation from the band creation
operators to the so-called orbital creation operators; namely,

ψ̂†
α(k) :=

N∑
a=1

u(a)∗
α (k)χ̂ †

a (k), (2.30a)

where we have reserved the greek index α = 1, . . . ,N for the
orbital label. For any k from the Brillouin zone, the N × N

matrix elements between the band a = 1, . . . ,N and orbital
α = 1, . . . ,N labels obey (i) the periodic boundary conditions

u(a)
α (k) = u(a)

α (k + (2π/a)eμ), (2.30b)

for any μ = 1, . . . ,d, in order for ψ̂α(k) to share with χ̂a(k)
the same twisted boundary condition (2.23d) and (ii) the
orthonormality conditions

N∑
α=1

u(a)∗
α (k)u(a′)

α (k) = δa,a′
, a,a′ = 1, . . . ,N, (2.30c)

in order for the pair ψ̂†
α(k) and ψ̂α′ (k′) to share the same

fermionic algebra (2.23c) as the pair χ̂ †
α(k) and χ̂α′(k′) does.

Finally, we assume that the representation

Ĥ =
∑

r,r ′∈�r

N∑
α,α′=1

ψ̂†
α;rHα,α′;r−r ′ψ̂α′;r ′ (2.31a)

in terms of the Fourier transform

ψ̂†
α;r :=

∫
��

BZ

dd k
(2π/a)d/2

e−ik·rψ̂†
α(k) (2.31b)

or, equivalently, the inverse Fourier transform

ψ̂†
α(k) =:

1

(2π/a)d/2

∑
r∈�r

e+ik·rψ̂†
α;r , (2.31c)

for any orbital index α = 1, . . . ,N and for any lattice point
r = (rμ) ∈ �r , has the single-particle matrix elements

Hα,α′;r−r ′ :=
∫

��
BZ

dd k
(2π/a)d

e+ik·(r−r ′)

×
N∑

a=1

u(a)
α (k)εa(k)u(a)∗

α′ (k), (2.31d)

that decay exponentially with increasing distance |r − r ′| for
any pair of orbitals. Thus, locality on the lattice

�r :=
{

(rμ) ∈ R
d

∣∣∣∣ rμ

a
= θμ mod 1, μ = 1, . . . ,d

}
(2.31e)

is manifest in the orbital basis. The lattices �r and �R share
the same unit cell, however the two lattices can be shifted
relative to each other in their embedding space R

d by any
vector

∑d
μ=1 eμeμ with −1 � eμ < 1 from their unit cell.

The projection operator (2.24) is not diagonal with respect
to the orbital index while the projection operator (2.27) is
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neither diagonal with respect to the orbital index nor with
respect to the lattice sites from �r . Hence, the orbital position
operator, defined by

r̂ :=
∑
r∈�r

N∑
α=1

ψ̂†
α;r rψ̂α;r , (2.32a)

turns after projection into (see Appendix A)

X̂ r := P̂Ñ r̂P̂Ñ =
∑

R,R′∈�R

Ñ∑
ã,ã′=1

Ŵ
†
ã;RX ã,ã′;R,R′Ŵã′;R′ ,

(2.32b)

where we have introduced the single-particle kernel

X ã,ã′;R,R′

:=
∫

��
BZ

dd k
(2π/a)d

e+ik·(R−R′)[δã,ã′ R′ + i Aãã′ (k)]. (2.32c)

This kernel depends on the U(Ñ ) gauge field A(k), an anti-
Hermitian Ñ × Ñ matrix whose components

Aãã′(k) :=
N∑

α=1

u(ã)∗
α (k)

(
∂u(ã′)

α

∂k

)
(k), (2.32d)

are labeled by the lower band indices ã,ã′ = 1, . . . ,Ñ and
obey periodic boundary conditions across the Brillouin zone.

The gauge field (2.32d) does not need to be a pure gauge as
it originates from projecting the pure gauge field

Aaa′ (k) :=
N∑

α=1

u(a)∗
α (k)

(
∂u(a′)

α

∂k

)
(k) (2.33)

by restricting the band indices a,a′ = 1, . . . ,N to the lower
band indices ã,ã′ = 1, . . . ,Ñ . Furthermore, the decomposi-
tion (2.30a) is not unique. Indeed, for any pair of orbital and
band labels α,a = 1, . . . ,N , the simultaneous transformations

u(a)
α (k) =:

N∑
a=1

u(a)
α (k)G∗

aa(k), (2.34a)

on the one hand, and

χ̂a(k) =:
N∑

a=1

Gaa(k)χ̂a(k), (2.34b)

on the other hand, leaves ψ̂α(k) unchanged. The N × N

matrix G(k) with the matrix elements Gaa(k) is unitary and
obeys periodic boundary conditions across the Brillouin zone.
The sans-serif font for the index a = 1, . . . ,N conveys that
the vector u(a)(k) with the N components u(a)

α (k) labeled by
the orbitals α = 1, . . . ,N need not be anymore an eigenstate
of the single-particle Bloch Hamiltonian.

Observe that for any triplet a,α,a = 1, . . . ,N , for any
momentum k from the Brillouin zone, and any Cartesian unit
vector eμ from R

d , had we imposed the twisted boundary
conditions

Gaa(k + (2π/a)eμ) = e−i(2πφμ)Gaa(k), (2.35)

parametrized by the real numbers 0 � φμ < 1 with μ =
1, . . . ,d, it would then follow that

ua
α(k + (2π/a)eμ) = e−i(2πφμ)ua

α(k), (2.36)

obeys twisted boundary conditions instead of periodic ones,
while

χa(k + (2π/a)eμ) = e+i[2π(θμ+φμ)]χa(k) (2.37)

obeys new twisted boundary conditions. As a corollary, the
gauge field Aaa′ obtained from Eq. (2.33) by substituting the
band indices for the sans-serif ones would not be a pure gauge
anymore as a result of this large gauge transformation. An
example of a large gauge transformation is

GR0 = e+i P̂ ·R0 , (2.38a)

for some R0 ∈ �R where P̂ is the operator defined by the
algebra

[R̂, P̂] = iQ̂, (2.38b)

with Q̂ the fermion number operator. It acts on the single-
particle states |χa(k)〉 := χ̂

†
a (k)|0〉, where |0〉 is the state an-

nihilated by any band annihilation operator, by multiplication
with the phase e+ik·R0 . Thus, the action of the large gauge
transformation (2.38) on |χa(k)〉 is to change the boundary
condition obeyed by |χa(k)〉 from twisted to periodic. In turn,
the large gauge transformation (2.38) acts on the single-particle
states |Wa

R〉 := Ŵ
†
a;R|0〉 by shifting R to R − R0 (i.e., as a

global translation of the lattice �R).
Let the insulating noninteracting many-body ground state

|	〉 be obtained by filling all the single-particle states from the
Ñ bands below the spectral gap depicted in Fig. 1. The ground
state |	〉 is an SU(Ñ) singlet under the U(Ñ ) gauge transfor-
mation defined by restricting the band index in Eq. (2.34b) to
the subset of occupied band indices. Consequently, the ground
state expectation value of any polynomial P of the components
of the projected position operator X̂ r is, if it exists, invariant
under the simultaneous U(Ñ ) gauge transformation defined
by restricting the band index in Eq. (2.34) to the subset of
occupied band indices; namely,

χ̂ †(k) → χ̂ †(k)G†(k), χ̂(k) → G(k)χ̂ (k), (2.39a)

on the one hand, and

Aμ(k) → G(k)Aμ(k)G†(k) − (∂μG)(k)G†(k), (2.39b)

on the other hand. Here, G(k) is any unitary Ñ × Ñ matrix
for any k ∈ ��

BZ, including one that changes the boundary
conditions across the Brillouin zone, and matrix multiplication
is implied in Eq. (2.39) with the operator-valued column-
vectors χ̂ (k) and row-vectors χ̂ †(k) that have the compo-
nents χ̂ã(k) and χ̂

†
ã (k), ã = 1, . . . ,Ñ , respectively. Existence

of 〈	|P (X̂ r )|	〉 amounts to constructing a gauge-invariant
regularization of 〈	|P (X̂ r )|	〉. As we now prove, although
not all polynomials P are compatible with a gauge-invariant
regularization of 〈	|P (X̂ r )|	〉, we do find polynomials P that
admit such a gauge-invariant regularization.

To see this, we are going to momentarily dispense with
complications arising from many-body terms and work solely
in the single-particle Hilbert space. We define the pair of
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single-particle states∣∣Wa
R

〉
:= Ŵ

†
a;R|0〉, |χa(k)〉 := χ̂ †

a (k)|0〉, (2.40a)

with a = 1, . . . ,N , R ∈ �R , k ∈ ��
BZ, and the pair of single-

particle states∣∣ψα
r

〉
:= ψ̂†

α;r |0〉, |ψα(k)〉 := ψ̂†
α(k)|0〉, (2.40b)

with α = 1, . . . ,N and r ∈ �r . The single-particle counter-
parts to the projected position operators (2.28b) and (2.32b)
are defined to be

X̂R :=
∑

R∈�R

Ñ∑
ã=1

∣∣Wã
R

〉
R
〈
Wã

R

∣∣ (2.41a)

and, with the help of the single-particle kernel defined in
Eq. (2.32c),

X̂ r :=
∑

R,R′∈�R

Ñ∑
ã,ã′=1

∣∣Wã
R

〉
X ã,ã′;R,R′

〈
Wã′

R′
∣∣, (2.41b)

respectively. Evidently, the trace over the (unprojected) single-
particle Hilbert space of either X̂R or X̂ r is ill defined because
of the ill-conditioned sum over the lattice �R .

The situation is much better with the commutator between
X̂

μ
r and X̂ν

r for any μ,ν = 1, . . . ,d owing to the identity[
X̂μ

r ,X̂ν
r

] = −
∫

��
BZ

dd k
(2π/a)d

|χã(k)〉F ãb̃
μν (k)〈χb̃(k)|,

(2.42a)

where the summation convention over the repeated band labels
ã,b̃ = 1, . . . ,Ñ is implied and

Fμν(k) := (∂μAν)(k) − (∂νAμ)(k) + [Aμ,Aν](k). (2.42b)

We refer the reader to Appendix A for the proof of
Eq. (2.42). Evidently, the components of X̂ r are noncommuta-
tive if the non-Abelian gauge field Aμ(k) has a nonvanishing
field strength Fμν(k).63 We can now safely take the trace of
the commutator (2.42) over the single-particle Hilbert space,

1

Np
Tr
[
X̂μ

r ,X̂ν
r

] = − 1

ρ̄

∫
��

BZ

dd k
(2π/a)d

trFμν(k)

= − 1

ρ̄

∫
��

BZ

dd k
(2π/a)d

tr(∂μAν − ∂νAμ)(k),

(2.43)

provided we multiply the functional trace Tr by the inverse
of the total number of particles Np in the insulating ground
state |	〉 to obtain an intensive quantity. Then, the ratio of
the number of particles Np to the single-particle Bloch wave
function normalization constant is nothing but the average
particle density ρ̄. The symbol tr denotes the trace over the
lower Ñ bands. Equation (2.43) is well defined and invariant
under both pure and large gauge transformations of the form
(2.39b).

For any integer n = 2,3, . . . , we define the n bracket of the
n symbols B1, B2, . . ., Bn equipped with the product × to be
their fully antisymmetrized product

[B1,B2, . . . ,Bn] ≡ εi1i2···inBi1 × Bi2 × · · · × Bin, (2.44)

where the summation convention over repeated indices is
implied and the symbol εi1i2···in implies antisymmetrization.
For convenience, we also introduce the terminology of the 1
bracket of the symbol B to be the symbol B itself.

Observe that any odd bracket can be rewritten as

[B1,B2, . . . ,B2m+1]

= ( 1
2

)m
εi1i2···i2m+1

[
Bi1 ,Bi2

]× · · · [Bi2m−1 ,Bi2m

]× Bi2m+1 ,

(2.45a)

while any even bracket can be rewritten as

[B1,B2, . . . ,B2m+2] = (
1
2

)m+1
εi1i2···i2m+2

[
Bi1 ,Bi2

]
× · · · [Bi2m+1,Bi2m+2

]
(2.45b)

for m = 0,1,2, . . .. For any integer m = 0,1,2, . . . such that
2m + 2 � d, it then follows that

1

Np
Tr
[
X̂μ1

r , . . . ,X̂μ2m+1
r ,X̂μ2m+2

r

]
= −

(
−1

2

)m+1 1

ρ̄

∫
��

BZ

dd k

(2π/a)d
εi1···i2m+1i2m+2

× tr
(
Fi1i2 · · · Fi2m+1i2m+2

)
(k), (2.46)

with i1, . . . ,i2m+2 = μ1, . . . ,μ2m+2. Equation (2.46) is well
defined and invariant under both pure and large gauge
transformations of the form (2.39b). The right-hand side of
Eq. (2.46) is proportional to the (m + 1)st Chern number.

For any integer n such that 2 � n � d, the single-particle
trace over any n bracket of the components X̂

μ1
R , . . . ,X̂

μn

R

vanishes owing to the fact that (i) X̂R is diagonal in the
Wannier basis and (ii) performing the antisymmetrization
εi1i2···inR

i1Ri2 · · ·Rin = 0 before taking the sum over the lattice
�R .

In contrast to these brackets, neither is the single-particle
trace over the 1 bracket of the component X̂

μ
r nor that of

the 1 bracket of the component X̂
μ

R with μ = 1, . . . ,d well
defined. More generally, for any integer m = 0,1,2, . . . such
that 2m + 1 � d, the single-particle trace over any (2m + 1)
bracket of the components X̂

μ1
r , . . . ,X̂

μ2m+1
r is ill defined

because there always remain ill-conditioned sums over the
lattice �R . We are going to construct explicitly a suitable
regularization of the single-particle trace over any (2m + 1)
bracket of the components X̂

μ1
r , . . . ,X̂

μ2m+1
r for m = 0 and

m = 1 that can be nonvanishing and is invariant under any
pure gauge transformation of the form (2.39b).

To this end, we need the important identity

X̂ r − X̂R =
∫

��
BZ

dd k
(2π/a)d

|χã(k)〉i Aãb̃(k)〈χb̃(k)|, (2.47)

which is proved in Appendix A. We can now safely take the
trace of Eq. (2.47) over the single-particle Hilbert space as we
did in Eq. (2.43). We find

1

Np
Tr(X̂ r − X̂R) = i

ρ̄

∫
��

BZ

dd k
(2π/a)d

trA(k). (2.48)

Equation (2.48) is invariant under pure (but not large) gauge
transformations of the form (2.39b). The loss of the invariance
under the large gauge transformations of the form (2.39b) is
to be attributed to the fact that the regularization (2.48) breaks
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translation invariance in that there are gauge nonequivalent
ways of defining eigenstates of the projected position operator
at short distances. In other words, it is not possible to construct
a wave packet that can resolve distances smaller than the
lattice spacing a. This fuzziness survives the limit a → 0
as the breakdown of gauge symmetry under large gauge
transformations of the form (2.39b).

The regularization (2.48) is not unique. For example, we
could have chosen a regularization of the single-particle trace
over any (2m + 1) bracket of the components X̂

μ1
r . . . X̂

μ2m+1
r

that preserves this translation invariance through the heat
kernel method.64 The heat kernel regularization yields zero for
all odd brackets, a manifestly gauge-invariant result! However,
we reject this regularization because enforcing invariance
under large gauge transformations of the form (2.39b) is not
required by general symmetry arguments.

Yet another example of a regularization of the single-
particle trace over any n bracket of the components X̂

μ1
r . . . X̂

μn
r

is to do the replacement X̂μ1
r → X̂

μ1
r − X̂

μ1
R · · · X̂μn

r → X̂
μn
r −

X̂
μn

R . With this substitution, the single-particle trace is well
defined, for it does not contain anymore ill-conditioned sums
over the lattice �R . However, whenever the single-particle
trace over this n bracket is nonvanishing, it breaks the
invariance under pure SU(Ñ ) gauge transformations of the
form (2.39b) for any n � 2. For this reason, we reject this
regularization.

We are now in position to state the main result of Sec. II A.
When d � 3 and for any choice of the triplet μ1, μ2, μ3 =
1, . . . ,d, we define the regularized 3 bracket of the components
X̂

μ1
r , X̂

μ2
r , and X̂

μ3
r of the projected position operator (2.32b)

to be65,66

2
[
X̂μ1

r ,X̂μ2
r ,X̂μ3

r

]
reg

:= [X̂μ1
r ,X̂μ2

r ,
(
X̂μ3

r − X̂
μ3
R

)]+ [X̂μ1
r ,
(
X̂μ2

r − X̂
μ2
R

)
,X̂μ3

r

]
+[(X̂μ1

r − X̂
μ1
R

)
,X̂μ2

r ,X̂μ3
r

]
−[(X̂μ1

r − X̂
μ1
R

)
,
(
X̂μ2

r − X̂
μ2
R

)
,
(
X̂μ3

r − X̂
μ3
R

)]
. (2.49)

We have introduced the multiplicative factor 2 on the left-hand
side in order to preserve the number of 3 brackets under
regularization; namely, one prior to regularization. Indeed,
since we add 3 brackets that include one substitution X r →
X r − XR and remove one 3 bracket that include 3 substitutions
X r → X r − XR on the right-hand side, we are left with
3 − 1 = 2 3 brackets on the right-hand side. It is shown in
Appendix A that we can safely take the single-particle trace
over the regularized 3 bracket (2.49) after accounting for the
same normalization as for the 1 and 2 brackets,

1

Np
Tr
[
X̂μ1

r ,X̂μ2
r ,X̂μ3

r

]
reg = −3

4
× i

ρ̄

∫
��

BZ

dd k
(2π/a)d

εi1i2i3 tr

×
(

Fi1i2Ai3 − 2

3
Ai1Ai2Ai3

)
(k),

(2.50)

where i1, i2, i3 = μ1, μ2, μ3. As was the case with Eq. (2.48)
and for the same reason, Eq. (2.50) is invariant under pure (but
not large) gauge transformations of the form (2.39b).

The generalization to the case of any integer m such that
2m + 1 � d consists in defining the regularized (2m + 1)

bracket [X̂μ1
r ,X̂

μ2
r , · · · ,X̂μ2m

r ,X̂
μ2m+1
r ]reg by replacing the (2m +

1) bracket [X̂μ1
r ,X̂

μ2
r , · · · ,X̂μ2m

r ,X̂
μ2m+1
r ] with the sum of all

(2m + 1) brackets obtained by doing all the possible substitu-
tion X̂

μi
r → X̂

μi
r − X̂

μi

R (2l + 1) times with l = 0,1, . . . ,m and
adding all resulting (2m + 1) brackets weighted with the sign
(−)l . We then define a normal ordering by which all X̂

μi
r are

placed to the left of all X̂
μi
r − X̂

μi

R as if they were commuting
numbers. Finally, we divide the resulting linear combination
of (2m + 1) brackets by the integer equal to the absolute value
of the alternating sum of the binomials coefficients(

2m + 1
1

)
−
(

2m + 1
3

)
± · · · .

The single-particle trace over the regularized (2m + 1) bracket
after accounting for the same normalization as for the even
brackets and the 1 and 3 brackets is intensive and proportional
to the Chern-Simons invariant obtained from integrating over
the d-dimensional Brillouin zone with d � 2m + 1 the Chern-
Simons (2m + 1) form.

It is time to draw a precise connection between the
single-particle traces over the (regularized) brackets of the
components of the position operator X̂ r and topological
invariants.

We define the d Chern-Simons invariants built from Chern-
Simons 1 forms in d-dimensional momentum space for any
choice of μ = 1, . . . ,d as

P(1)
μ := i

∫
dd k

(2π )d
trAμ. (2.51a)

We also define the d(d − 1)(d − 2)/6 Chern-Simons invari-
ants built from Chern-Simons 3 forms in d-dimensional
momentum space for any choice of μ,μ, λ = 1, . . . ,d as

P(3)
μνρ := εIJK

4

∫
dd k

(2π )d−1
tr

(
AIFJK − 2

3
AIAJ AK

)
,

(2.51b)

where I, J,K = μ, ν, ρ. The integral on the right-hand side
of Eqs. (2.51a) and (2.51b) is quantized to half-integer values
if the single-particle Hamiltonian obeys the chiral symmetry
and the domain of integration is that of a d-dimensional torus
T d with the volume (2π )d (i.e., a = 1).14 The 1D and 3D
Chern-Simons invariants in d-dimensional momentum space
carry the engineering dimensions of length raised to the powers
(1 − d) and (3 − d), respectively. They are thus dimensionless
if and only if d = 1 and d = 3, respectively.

The Chern-Simons invariants (2.51a) and (2.51b) are only
well-defined modulo integer values under the U(Ñ ) gauge
transformations (2.39b) since the latter can change the former
by their winding numbers, namely the numbers

i

∫
dd k

(2π )d
trG†∂μG, μ = 1, . . . ,d, (2.52a)

and

iεIJK

6

∫
dd k

(2π )d−1
tr[(G†∂IG)(G†∂J G)(G†∂KG)],

(2.52b)

with I, J,K = μ, ν, ρ and μ, ν, ρ = 1, . . . ,d, respectively.
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In contrast, the d(d − 1)/2 first Chern numbers defined in
d-dimensional momentum space as

C(1)
μν := i

∫
dd k

(2π )d−1
trFμν, μ,ν = 1, . . . ,d, (2.53)

can only take integer values if the domain of integration is that
of a d-dimensional torus T d with the volume (2π )d in momen-
tum space,67 irrespective of whether or not the single-particle
Hamiltonian obeys the chiral symmetry. However, when chiral
symmetry holds, the 1D Chern-Simons invariants (2.51a) are
quantized.19 Therefore, derivatives of these quantities vanish,
which in turn implies that all first Chern numbers (2.53) vanish.
Furthermore, the first Chern numbers (2.53) are invariant
under the U(Ñ ) gauge transformations (2.39b). The first Chern
numbers defined in d-dimensional momentum space carry the
engineering dimensions of (2 − d).

In closing, we reexpress our main result using second
quantization and for the case of d = 3 dimensions. We shall use
the standard notation : (· · ·) : for normal ordering under which
it is understood that creation operators are to be moved to the
left of annihilation operators within the symbol (· · ·) as if they
were Grassman numbers. After identifying the single-particle
states defined in Eq. (2.40a) with the single-particle holes
resulting from annihilating a single-particle state from the
insulating ground state |	〉, we find that

1

Np
〈	| :

[
X̂1

r ,X̂
2
r ,X̂

3
r

]
reg : |	〉

= − (2π )2i

ρ̄

[
(2π )3

2

Np

ρ̄
εμνρP(1)

μ C(1)
νρ + 3P(3)

]
. (2.54)

Again, it should be noted that the right-hand side of Eq. (2.54)
is entirely determined by its quantized topological numbers
if the single-particle Hamiltonian obeys the chiral symmetry,
and if the equality is understood modulo contributions from
large U(Ñ ) gauge transformations (2.39b) in which case

1

Np
〈	| :

[
X̂1

r ,X̂
2
r ,X̂

3
r

]
reg : |	〉 = −3(2π )2i

ρ̄
P(3), (2.55)

owing to C(1)
νρ = 0 for any ν,ρ = 1, . . . ,d.

B. Regularized 3 bracket and Nambu bracket

On the one hand, we may define for any momentum q from
the Brillouin zone the projected operator

T̂R(q) := e−iq·X̂R , (2.56)

with X̂R defined in Eq. (2.41a) that acts on the single-particle
Hilbert space defined in Eq. (2.40a). This operator is a
projected translation operator in the Brillouin zone,

T̂R(q)|χa(k)〉 =
Ñ∑

ã=1

δa,ã|χã(k + q)〉, (2.57)

for any a = 1, . . . ,N . Its algebra under composition closes,

T̂R(q1)T̂R(q2) = T̂R(q1 + q2), (2.58)

for any pair of momenta from the Brillouin zone.

On the other hand, we may also want to define for any
momentum q from the Brillouin zone the projected operator

T̂r (q) := e−iq·X̂ r , (2.59)

with X̂ r defined in Eq. (2.41b) that acts on the single-particle
Hilbert space defined in Eq. (2.40b).

Be aware that T̂r (q) differs from the projection

ρ̂(q) :=
∫

��
BZ

dd k
(2π/a)d

N∑
α=1

Ñ∑
ã,ã′=1

u(ã)∗
α (k)u(ã′)

α (k + q)

×|χã(k)〉〈χã′
(k + q)|

≡ 1

(2π/a)d
P̂Ñ e−iq ·̂r P̂Ñ (2.60a)

on the Ñ lower bands of the momentum-resolved density
operator �̂(q) defined through the Fourier expansion

�̂r =:
∫

��
BZ

dd qe+iq·r �̂(q) ≡
∫

��
BZ

dd q
(2π/a)d

e+iq·(r−r̂)

(2.60b)

of the unprojected density operator

�̂r :=
N∑

α=1

∣∣ψα
r

〉〈
ψα

r

∣∣ (2.60c)

defined for any site r of lattice �r .
The task of computing the regularized n bracket of

the operators T̂r (q1), . . . ,T̂r (qn) is formidable for arbitrary
momenta q1, . . . ,qn from the Brillouin zone. However, an
expansion in the momenta up to order n is feasible in the limit
of small momenta. We undertake such an expansion for the 3
bracket with the help of the (classical) Nambu bracket.

To simplify notation, we work with d = 3. Let fi(x) with
i = 1, 2, 3 denote three functions with the Taylor expansions

fi(x) = fi(0) +
3∑

μ=1

(∂μfi)(0)xμ + · · · (2.61)

at the origin of x ∈ R
3. For any pair of functions f1 and f2,

or for any triplet of functions f1, f2, and f3 their classical
Poisson and Nambu brackets were defined in Eqs. (2.10b) and
(2.16b), respectively. For any pairs μ,ν = 1, 2, 3 and fi,fj ,
with i,j = 1, 2, 3, we shall also need the variant

{fi,fj }μν

P (0) :=
∑

I,J=μ,ν

εIJ (∂Ifi)(∂
J fj )(0) (2.62)

of the Poisson bracket, respectively. From the operator identity
(A76) follows that the single-particle trace over the regularized
3 bracket of f1(X̂), f2(X̂), and f3(X̂) admits the Taylor
expansion

Tr[f1(X̂ r ),f2(X̂ r ),f3(X̂ r )]reg

= εijkfi{fj ,fk}μν

P (0)Tr
[
X̂μ

r ,X̂ν
r

]
+{f1,f2,f3}N(0)Tr

[
X̂1

r ,X̂
2
r ,X̂

3
r

]
reg + · · · (2.63)

(A summation convention is implied over the repeated indices
μ,ν = 1, 2, 3 and i, j, k = 1, 2, 3 on the right-hand side.)
This expansion preserves the invariance under the pure gauge
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transformations of the form (2.39b). Moreover, in the chiral
class,

Tr[f1(X̂ r ),f2(X̂ r ),f3(X̂ r )]reg

= {f1,f2,f3}N(0)Tr
[
X̂1

r ,X̂
2
r ,X̂

3
r

]
reg + · · · (2.64)

and

Tr[T̂r (q1),T̂r (q2),T̂r (q3)]reg

= +i(q1 ∧ q2) · q3Tr
[
X̂1

r ,X̂
2
r ,X̂

3
r

]
reg + · · · . (2.65)

Equation (2.64) admits the following interpretation: The
functions f1, f2, and f3 may represent a coordinate transfor-
mation in 3D space. If this transformation preserves volume, its
Jacobian (i.e., the Nambu bracket) equals 1. If chiral symmetry
holds, the trace over the regularized 3 bracket of the projected
position operator X̂ r is to lowest order in the Taylor expansion
invariant under volume preserving diffeomorphisms, while
quantum corrections appear at higher order.

Had we restricted ourselves to d = 2, the transformation
property of the 2 bracket (commutator) under the smooth
coordinate transformation

(x1,x2) → (f1(x),f2(x)), x ≡ (x1,x2) ∈ R
2 (2.66)

is

[f1(X̂ r ),f2(X̂ r )] = {f1,f2}P(0)
[
X̂1

r ,X̂
2
r

]+ · · · . (2.67)

Except for the quantum corrections contained in · · ·, the 2
bracket of the projected position operator X̂ r is thus invari-
ant under area-preserving diffeomorphisms. The difference
between the 2 bracket and the regularized 3 bracket is,
according to Eq. (A76), that for the latter it is necessary to
invoke chiral symmetry and taking the single-particle trace
in order to guarantee invariance under volume-preserving
diffeomorphisms.

The algebra obeyed by the set of diffeomorphisms of
the Euclidean plane that leave the Poisson bracket invariant
realizes the so-called classical w∞ algebra. Thus, Eq. (2.67)
draws the connection to a quantum version of the w∞ algebra.
For the quantum Hall effect the relevant quantum version is
the W∞ algebra (see Refs. 45–48) obeyed by the projected
density operators in a Landau level.33,35–37 A manifestation of
the connection between the w∞ and W∞ algebras is found
in the nondissipative Hall viscosity, which can be viewed as
the response function of the quantum fluid to an infinitesimal
area-preserving deformation.68 In turn, an incompressible 2D
classical fluid may be described in terms of a one-form gauge
field, as appears in the Chern-Simons theory relevant to the
quantum Hall effect (QHE).69–71

In 3D and for Bloch Hamiltonians belonging to the chiral
symmetry class, the invariance under volume-preserving dif-
feomorphisms of 3D Euclidean space displayed in Eq. (2.64)
to lowest order in the Taylor expansion draws a similar
connection to a quantum algebra that generalizes the classical
algebra obeyed by volume-preserving diffeomorphisms. In
the description of ideal 3D classical fluids a two-form gauge
field naturally arises as a consequence of volume preserving
diffeomorphisms. Such a two-form gauge field also appears
in the 3D BF theory that is believed to be relevant to 3D
topological insulators.72

C. Massive Dirac fermions

In Sec. II A, we have related the ground state expectation
values of the commutator and of the regularized 3 bracket of
the projected position operators X̂ r to quantized topological
numbers, namely the Chern numbers and Chern-Simons
invariants. By contrast, we have recalled in Eq. (2.4b) that
a Landau level has the special property that the commutator of
projected position operators itself is nothing but an imaginary
number

[X̂μ,X̂ν] = −Fμν = iεμν�
2
B, (2.68)

where μ, ν = 1, 2. In other words, the Berry curvature is
constant in a Landau level.

Here, we are going to show that the same is true for massive
Dirac electrons in 2D, if the limit of small momenta k → 0
is considered. We then extend the discussion to massive Dirac
electrons in 3D, where we consider the 3 bracket of projected
position operators in the same limit of small momenta.

In 2D Euclidean flat space, a single flavor of Dirac fermions
with mass m and in the fundamental representation of the
Lorentz group is governed by the single-particle Hamiltonian
in momentum space

H2D(k) := k1σ1 + k2σ2 + mσ3. (2.69)

As usual, we use σ0 for the 2 × 2 unit matrix, while σ1, σ2,
and σ3 are the three Pauli matrices.

This Hamiltonian supports two bands with the Bloch states
|χ±(k)〉, the nondegenerate energy eigenvalues

ε(±)(k) = ±
√

k2 + m2, (2.70)

and the Berry curvatures

F (±)
μν (k) = iεμν

m

2[ε(±)(k)]3
, (2.71)

for μ, ν = 1, 2. Upon projection to the lower band ε(−)(k), we
can combine Eq. (2.42a) with Eq. (2.71) to deduce that

〈χ−(k)|[X̂μ
r ,X̂ν

r

]|χ−(k)〉
= −F (−)

μν (k) = iεμν�
2
Dsgn m + O(k2) (2.72a)

for μ, ν = 1, 2. The Dirac counterpart to the magnetic length
in the QHE is here

�D := 1√
2m

. (2.72b)

As announced, the algebra (2.72) reproduces the algebra (2.68)
in the limit k → 0. The first Chern number of the lower band
is given by

C(1) := i

2π

∫
R2

d2ktrF (−)
12 = sgn m

2
. (2.73)

In 3D Euclidean flat space, a single flavor of Dirac fermions
with mass m and in the fundamental representation of the
Lorentz group is governed by the single-particle Hamiltonian
in momentum space

H3D(k) :=
3∑

μ=1

kμαμ − imβγ5, (2.74a)
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where we have defined the Hermitian 4 × 4 matrices

αμ =
(

0 σμ

σμ 0

)
, β =

(
σ0 0

0 −σ0

)
, γ5 =

(
0 σ0

σ0 0

)
.

(2.74b)

Observe that this Hamiltonian has the chiral symmetry

γ5H3D(k)γ5 = −H3D(k) (2.75)

for all k ∈ R
3. The spectrum of Hamiltonian (2.74a) consists of

two doubly degenerate bands with the Bloch states |χ±,a(k)〉,
the energy eigenvalues

ε(±)(k) = ±
√

k2 + m2, (2.76)

and the non-Abelian Berry field strengths

F (±)
μν (k) = ±i�2

Dεμνλγ
λ + O(|k|) (2.77)

for μ, ν = 1, 2, 3, where γ T = (−σ1, σ2, σ3). Upon projection
to the lower band ε(−)(k), we can combine Eq. (2.42a) with
Eq. (2.77) to deduce that

tr(〈χ−,a(k)|[X̂μ
r ,X̂ν

r

]|χ−,b(k)〉) = 0 + O(|k|) (2.78)

for μ, ν = 1, 2, 3, as expected for a system with chiral
symmetry. In contrast, Eq. (2.50) delivers

tr(〈χ−,a(k)|[X̂1
r ,X̂

2
r ,X̂

3
r

]
reg|χ−,b(k)〉) = i3

√
2�3

D + O(|k|).
(2.79)

The definition (2.72b) of �D has carried over.

D. Operator product expansions for projected single-particle
density operators

Until now, we have considered the noncommutative re-
lations obeyed by the projected position operator assuming
translation invariance in Euclidean flat spaces. This non-
commutative geometry encodes topological properties of the
noninteracting many-body ground state in view of the expec-
tation values (2.43), (2.48), and (2.50). Moreover, according
to Eq. (2.32), it is also predicated on some underlying
noncommutative relations obeyed by the second-quantized
fermion density operator projected onto the occupied bands
of the insulating ground state.

On the other hand, GMP were able to derive for the 2D QHE
the closed algebra obeyed by the single-particle electronic
density projected onto the lowest Landau level. Can we do the
same for the single-particle fermionic density projected onto
one band, say, of a 3D topological band insulator?

To answer this question, we resort to a tight-binding model
defined on a lattice � with a Brillouin zone BZ, and on which
we impose periodic boundary conditions. We assume, without
loss of generality, that the lattice is three-dimensional. In this
spirit, we turn our attention to the single-particle electronic
density defined on a given site r of a lattice � as

�̂r :=
N∑

α=1

|r,α〉〈r,α|, (2.80a)

where α = 1, . . . ,N labels degrees of freedom on every lattice
site (e.g., spin or orbitals). These operators obey the closed

algebra

�̂r1 �̂r2 = δr1,r2 �̂r1 , (2.80b)

owing to the orthonormality of the single-particle states

〈r1,α1|r2,α2〉 = δr1,r2δα1,α2 (2.80c)

for any pair of sites r1 and r2 from the lattice � and for
any pair of orbitals α1,α2 = 1, . . . N . As a consequence, these
operators commute pairwise.

The Fourier transform of �̂r in terms of the orthonormal
Bloch states |k,α〉 labeled by the momentum k from the BZ
and orbital index α = 1, . . . ,N reads

�̂q =
∑
k∈BZ

N∑
α=1

|k,α〉〈k + q,α| (2.81a)

for any q ∈ BZ. These operators obey the closed algebra

�̂q1
�̂q2

= �̂q1+q2
, (2.81b)

owing to the orthonormality of the single-particle states

〈q1,α1|q2,α2〉 = δq1,q2
δα1,α2 (2.81c)

for any pair of momentum q1 and q2 from the BZ and for
any pair of orbitals α1,α2 = 1, . . . N . As a consequence, these
operators commute pairwise.

Consider now a basis transformation in the α degrees of
freedom for every k ∈ BZ that is parametrized by the N × N

complex-valued numbers u
(b)
k,α with α,b = 1, . . . ,N ; namely,

∣∣u(b)
k

〉
:=

N∑
α=1

u
(b)
k,α|k,α〉, b = 1, . . . ,N. (2.82)

The ket |uk,b〉 labeled by k ∈ BZ for any given b = 1, . . . ,N

should be thought of as Bloch state of the bth band of a single-
particle Hamiltonian. This Hamiltonian shares the translational
symmetry of � and periodic boundary conditions are imposed.
For any q ∈ BZ, we define the density operator projected on a
single (nondegenerate) band b̃ by

ρ̂q :=
∑
k∈BZ

N∑
α=1

u
(b̃)∗
k,α u

(b̃)
k+q,α

∣∣u(b̃)
k

〉〈
u

(b̃)
k+q

∣∣. (2.83)

The projected operators ρ̂q with q ∈ BZ are invariant under
the simultaneous local U(1) gauge transformations defined by

u
(b̃)
k,α → eiϕku

(b̃)
k,α (2.84a)

on the one hand, and ∣∣u(b̃)
k

〉→ eiϕk
∣∣u(b̃)

k

〉
(2.84b)

on the other hand, for all α = 1, . . . ,N , k ∈ BZ, and any real-
valued function ϕk. They do not obey anymore the algebra
(2.81b). In the long-wavelength limit q1,q2 � 1 (the lattice
spacing of � is set to unity), their commutation relation is38–40

[
ρ̂q1

,ρ̂q2

] = q
μ

1 qν
2

∑
k∈BZ

Fμν,k

∣∣u(b̃)
k

〉〈
u

(b̃)
k+q1+q2

∣∣ (2.85a)

to leading order in an expansion in powers of the components
of q1 and q2, where

Fμν,k := ∂μAν,k − ∂νAμ,k (2.85b)
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and

Aμ,k :=
N∑

α=1

u
(b̃)∗
k,α ∂μu

(b̃)
k,α (2.85c)

for μ, ν = 1, 2, 3 are the Abelian Berry curvature and the
Abelian Berry connection, respectively, and ∂μ is understood
as the derivative with respect to the momentum component kμ.
The operator product expansion (2.85a) closes only if Fμν,k is
independent of k, in which case[

ρ̂q1
,ρ̂q2

] = − i

2π
(q1 ∧ q2) · C ρ̂q1+q2

(2.86a)

to leading order in an expansion in powers of the components
of q1 and q2, where

Cλ := 2πi

L3

εμνλ

2

∑
k∈BZ

Fμν,k, (2.86b)

with λ = 1, 2, 3 are the components of the vector C made of the
three first Chern numbers characterizing any nondegenerate
band in 3D space.73 (A summation convention is implied for
the repeated indices μ, ν = 1, 2, 3.) In the thermodynamic
limit by which the linear size L over which the periodic
boundary conditions are imposed is taken to infinity or,
equivalently, the lattice spacing is taken to zero, each first
Chern number is quantized.

The IQHE is an example in 2D for which the condition
of constant Berry curvature Fμν,k is met. In this context,
the closed operator product expansion (2.86a) was found by
GMP (in fact, the operator product expansion for the projected
density operators closes to all orders in q in this case, and thus
delivers a closed algebra for the projected density operators).33

With the help of this algebra, GMP argue, within a single-mode
approximation, that FQH states are incompressible.

Recently, it was shown that lattice models with flat bands
and nonzero Chern number also support incompressible FQH
ground states,50–53 even though their Berry curvature is not
constant over the BZ. This result suggests to approximate the
commutator (2.85a) by the closed algebra (2.86a); that is, to
replace Fμν,k with its average value over the BZ.38,39

We will now consider the 3 bracket of three projected
density operators, and expand it to third order in the momenta[

ρ̂q1
,ρ̂q2

,ρ̂q3

]
= εijk 1

2

∑
k∈BZ

{
q

μ

i qν
j Fμν,k + q

μ

i qν
j qλ

k Fμν,kAλ,k

+ q
μ

i qν
j qλ

j

[
∂μ

(
N∑

α=1

u
(b̃)∗
k,α ∂ν∂λu

(b̃)
k,α

)

− (∂ν + 2Aν)∂λAμ

]}∣∣u(b̃)
k

〉〈
u

(b̃)
k+q1+q2+q3

∣∣, (2.87)

where the summation convention over the repeated in-
dices i, j, k = 1, 2, 3 and μ, ν,λ = 1, 2, 3 is implied. Equa-
tion (2.87) is invariant under the local gauge transformation
(2.84), up to contributions of fourth order in q. The term of
second order in q comes multiplied by the Berry curvature;
that is, the density associated with the topological invariants
Cλ for λ = 1, 2, 3 defined in Eq. (2.86b). As for the second

term on the right-hand side, we recognize the integrand of the
Abelian Chern-Simons form.

The term that dominates the 3 bracket of projected density
operators at long wavelength is thus not equal to the 3 bracket
of the position operator X̂ r . According to Eq. (2.50), the
latter was determined by the Chern-Simons 3 form and not
by the Chern number density. This stands in contrast to
the long-wavelength limit of the 2 bracket (commutator) of
projected density operators which coincides with the 2 bracket
of position operators. However, the connection between the
projected density and position operators is recovered on the
level of the 3 brackets, if one considers the derivative of
the density operator with respect to momentum instead. This
choice is motivated by the fact that the Fourier components of
the density operator in momentum space are the generators of
translations in momentum space [recall Eq. (2.60)]. Indeed, it
follows from Eq. (2.87) that[

∂qα
1
ρ̂q1

,∂
q

β

2
ρ̂q2

,∂q
γ

3
ρ̂q3

]
= εαβγ

2

∑
k∈BZ

εμνλAμ,kFνλ,k

∣∣u(b̃)
k

〉〈
u

(b̃)
k+q1+q2+q3

∣∣ (2.88a)

holds to lowest order in the momenta q1, q2, and q2 and is thus
determined by the Chern-Simons 3 form (the Chern-Simons
density in 3D). We define its average over the BZ to be

θ := π2

L3

∑
k∈BZ

εμνλFμν,kAλ,k, (2.88b)

which is only invariant under the local gauge transforma-
tions (2.84a) that leave the boundary conditions in the BZ
unchanged. If the Chern-Simons density is nearly constant and
thus independent of k in the entire BZ, we may approximate
Eq. (2.88a) by[

∂qα
1
ρ̂q1

,∂
q

β

2
ρ̂q2

,∂q
γ

3
ρ̂q3

] ≈ εαβγ

a3θ

2π2
ρ̂q1+q2+q3

, (2.88c)

where a is the lattice spacing.
Insulators for which the invariants Cλ with λ = 1, 2, 3 are

nonvanishing can be viewed as a 3D extension of an IQHE
or a layered system of 2D Chern insulators. In this case, Cλ

with λ = 1, 2, 3 parametrizes the quantized off-diagonal part
of the conductivity tensor.73 The physics of such insulators is
not intrinsically 3D and they are thus not our primary interest
here.

Even if the Berry curvature vanishes on average in the
BZ so that C = 0, θ can be nonzero and may take any real
value in general. The value of θ has measurable consequences
as it contributes to the magneto-electric coupling in a 3D
band insulator.57 For 3D band insulators with either spin-
orbit coupling that are time-reversal symmetric (symmetry
class AII) or with chiral symmetry (symmetry class AIII),
θ is restricted to integer multiples of π and represents a
topological invariant.19 The 3 bracket (2.88a) shows that for
3D tight-binding Hamiltonians within the symmetry classes
AII or AIII, the 3 bracket of the momentum derivatives of
projected density operators is dominated by the value of their
topological invariant θ , just as the 2 bracket (commutator)
of the momentum derivatives of projected density operators
is dominated by the value of the Chern number in 2D
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tight-binding models within the symmetry class A. We will
illustrate this statement with the help of a microscopic lattice
model belonging to the symmetry class AIII in the Sec. III.

III. NONINTERACTING THREE-BAND
TIGHT-BINDING MODEL

The goal of this section is to define a “simple” single-
particle Bloch Hamiltonian that supports a dispersionless
isolated band with nontrivial topological character, such that
the 3 bracket of the momentum derivatives of the projected
electronic density operators [Eq. (2.88a)] is nonvanishing and
the system displays intrinsically 3D physics (i.e., Cλ = 0 for
λ = 1, 2, 3 and θ = π ). Our model belongs to symmetry class
AIII and has three bands, which is the minimum number
required to realize the desired θ term.57 One of the three
bands is necessarily dispersionless as a consequence of chiral
symmetry. Therefore, it can be taken as the basis for the
construction of fractional topological states in 3D.

A. Definition

We consider spinless electrons hopping between the sites
rT ≡ (r1,r2,r3) of a 3D cubic lattice � and onsite orbitals,
whereby each site r can accommodate three orbital degrees
of freedom that we label with the Greek index α = 1, 2, 3.
To accommodate the hybridization between any of the three
orbitals, we need to choose a basis for all 3 × 3 Hermitian ma-
trices. We denote the unit 3 × 3 matrix by λ0 which, together
with the eight traceless Gell-Mann Hermitian matrices λn with
n = 1, . . . ,8, form the desired basis of all 3 × 3 Hermitian
matrices. The second-quantized tight-binding Hamiltonian is
then defined by

Ĥ := 1

2

∑
r∈�

3∑
j=1

[̂c †
r (iλ3+j − λ7)̂cr+ej

+ H.c.]

+M
∑
r∈�

ĉ †
r λ7ĉr , (3.1)

where we have introduced the 3-component operator ĉ
†
r ≡

(̂c †
r;1 ,̂c

†
r;2 ,̂c

†
r;3) with ĉ

†
r;α creating a spinless fermion at site

r in the orbital α = 1, 2, 3 and obeying periodic boundary
conditions under the translation r → r + Lej for any of the
three orthonormal unit vectors e1, e2, and e3 that span the
cubic lattice �. This single-particle Hamiltonian depends on
the real-valued parameter M .

Translation invariance allows to diagonalize Hamiltonian
(3.1) upon performing a Fourier transformation on the creation
and annihilation fermionic operators. If we denote with BZ the
Brillouin zone of the 3D cubic lattice and with k any Bloch
momentum from the BZ that is compatible with the periodic
boundary conditions, then

Ĥ =
∑
k∈BZ

ĉ
†
kHkĉk, (3.2a)

with the momentum-resolved single-particle 3 × 3 matrix

Hk =
4∑

j=1

λ3+j dk,j (3.2b)

that depends on the 4-component real-valued row vector

dT
k ≡ (dk,1,dk,2,dk,3,dk,4)

:=
(

sin k1, sin k2, sin k3,M −
3∑

i=1

cos ki

)
. (3.2c)

With the help of the explicit representation of the eight Gell-
Mann matrices from Appendix A, one verifies that

CHkC−1 = −Hk ∀ k ∈ BZ, (3.3a)

if and only if the 3 × 3 matrix C is given by

C := diag(1,1,−1). (3.3b)

The fact that Hk anticommutes with C implies that any pair of
eigenstates u

(+)
k and u

(−)
k of Hk with nonvanishing eigenvalues

is associated with the opposite single-particle eigenenergies
ε

(+)
k = −ε

(−)
k , respectively. Since Hk is a 3 × 3 Hermitian

matrix for any momentum k from the BZ, it then follows that
at least one eigenstate u

(0)
k must have the vanishing eigenvalue

ε
(0)
k = 0, (3.4a)

irrespective of the Bloch momentum k in the BZ. For any Bloch
momentum k in the BZ, the values taken by the nonvanishing
eigenvalues

ε
(+)
k = −ε

(−)
k = |dk| (3.4b)

follow immediately from the fact that the four Gell-Mann
matrices λ4, λ5, λ6, and λ7, anticommute pairwise while
any one of these 4 Gell-Mann matrices squares to either
diag(1,0,1) or diag(0,1,1). The minimum value reached by
the magnitude |dk| over the BZ thus determines the energy gap
between the dispersionless band of zero modes and the pair of
bands related by the chiral transformation C. This energy gap
depends parametrically on M and is nonvanishing if and only if
|M| 	= 1,3 (see Fig. 2). In turn, the corresponding Bloch states
are derived as follows: One observes that the 2-component

(a) M  = 0

X M R X R M
3
2
1
0
1
2
3

X M R X R M

X M R X R M
4

2

0

2

4
X M R X R M

X M R X R M

4
2
0
2
4

X M R X R M

X M R X R M
6
4
2
0
2
4
6

X M R X R M

(b) M  = 1

(c) M  = 2 (d) M  = 3

FIG. 2. Energy spectrum of the lattice model defined in Eq. (3.21)
for different values of the parameter M . Panels (b) and (d) show the
gap-closing topological transitions. Note the dispersionless band at
zero energy in each spectrum. The spectrum is plotted along the
straight path connecting the following points in the BZ: � = (0,0,0),
X = (0,π,0), M = (π,π,0), and R = (π,π,π ).
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complex-valued row vector

q
†
k := |dk|−1(dk;1 + idk;2,dk;3 + idk;4) (3.5a)

of unit length (q†
kqk = 1) enters Hk according to

Hk = |dk|

⎛⎜⎝ 0 0 qk,1

0 0 qk,2

q∗
k,1 q∗

k,2 0

⎞⎟⎠
≡ |dk|

(
02×2 qk

q
†
k 0

)
. (3.5b)

One then verifies that

u
(±)
k = 1√

2

⎛⎜⎝+qk,1

+qk,2

±1

⎞⎟⎠, u
(0)
k =

⎛⎜⎝+q∗
k;2

−q∗
k;1

0

⎞⎟⎠ (3.5c)

are orthonormal Bloch states of Hk for any Bloch momentum
k from the BZ. For any value of the parameter M entering the
single-particle Hamiltonian Ĥ , Eqs. (3.5c) and (3.4) define
globally over the entire BZ the desired Bloch states with their
dispersions. For generic values of M (i.e., whenever |dk| is
nonvanishing over the entire BZ), there are two dispersive
bands whose Bloch states u

(+)
k = Cu

(−)
k are related by the chiral

transformation and one dispersionless band u
(0)
k = Cu

(0)
k of

zero modes.
Hamiltonian (3.2) breaks time-reversal symmetry, for the

first three components of dk are odd while the fourth compo-
nent is even under k → −k for any value of M . This leaves no
room for a particle-hole symmetry by which Hamiltonian (3.2)
would anticommute with an anti-unitary operator. Adding to
Hamiltonian (3.2) any linear combination of the remaining
Gell-Mann matrices λ1, λ2, λ3, λ8, and the unit 3 × 3 matrix
λ0 breaks the chiral symmetry. Such perturbations change
the symmetry class of Hamiltonian (3.2) from AIII to A.
Although a chemical potential (a nonvanishing constant term
proportional to the unit matrix λ0) does break the chiral
symmetry, it does so by moving rigidly the entire energy
spectrum up or down in energy while leaving the Bloch states
unchanged. The topological attributes of the three Bloch bands
are thus untouched by the addition of a chemical potential.

B. Topological invariants

We shall take the thermodynamic limit L → ∞ with L the
linear extent over which periodic boundary conditions are im-
posed. In this limit sums over momenta in the BZ are replaced
by integrals over the BZ while the index k becomes the argu-
ment of functions. From now on, we shall identify the BZ with
T 3. We can then distinguish two related topological invariants
associated with the family of single-particle 3 × 3 matrices
H(k) labeled by the momentum k from a BZ with the topology
of the 3 torus T 3 owing to the periodic boundary conditions.

The first topological attribute characterizes the bundle of
Hamiltonians H(k) over the BZ T 3. For any momentum
k ∈ T 3, there is a one-to-one correspondence between the
3 × 3 Hermitian matrices H(k) and the vector d(k) ∈ R

4. For
any momentum k ∈ T 3, the magnitude |d(k)| measures the
momentum-resolved energy separation between the zero mode

u(0)(k) and the lower and upper modes u(−)(k) and u(+)(k),
respectively. The eigenstates u(0)(k), u(−)(k), and u(+)(k) are
independent of the magnitude of |d(k)| [i.e., they only depend
on the coordinate defined by the unit 3 vector d(k)/|d(k)| on
the 3 sphere S3]. It follows that the topological attributes of
the three Bloch bands of Hamiltonian (3.2) are determined
by the homotopy group Z of the map defined by

k ∈ T 3 → d(k)/|d(k)| ∈ S3 (3.6)

between the BZ T 3 and the 3 sphere S3. For each parameter
M 	= ±1,±3 entering in Hamiltonian (3.2), the integer value
taken by the topological invariant

ν (M) := 1

12π2

∫
T 3

d3kεijklεμνλ 1

|d|4 di∂μdj ∂νdk∂λdl, (3.7a)

determines which homotopy class the map (3.6) belongs to.
Here, we are using the short-hand notation ∂μdj ≡ ∂dj/dkμ,
with μ, ν, λ labeling the three coordinates of the momentum
k and i, j, k, l labeling the four components of the vector field
d, and the convention for summation over repeated indices.
Explicit computation of ν as a function of M delivers

ν (M) =

⎧⎪⎨⎪⎩
+2, |M| < 1

−1, 1 < |M| < 3

0, 3 < |M|.
(3.7b)

Whenever |M| = 1, 3, the gap over the BZ closes at the
discrete points (the lattice spacing is unity)

kT
lmn := π (l,m,n) , l,m,n = 0,1. (3.8)

These eight momenta change by a reciprocal wave vector
under the operation of time reversal, under which k → −k.
In this sense, they are time-reversal invariant. The touching of
the upper and lower dispersions at the momenta (3.8) occurs
at zero energy and delivers a Dirac dispersion in their close
vicinity when |M| = 1,3. Hence, we call the momenta (3.8)
Dirac points when |M| = 1,3. For small deviations away from
|M| = 1,3, a spectral gap opens up at the momenta (3.8) that
can be associated with a Dirac mass. Remarkably, the number
of Dirac points that change the sign of their mass across a
transition tuned by changing M through any one of the values
|M| = 1,3 is equal to the change in the topological invariants
(3.7). To see this, observe that the momentum resolved Dirac
masses are given by

dk000;4 = M − 3,

dk001;4 = dk010;4 = dk100;4 = M − 1,
(3.9)

dk110;4 = dk101;4 = dk011;4 = M + 1,

dk111;4 = M + 3.

With the help of these 8 integers, we define the integer

νD (M) := 1

2

∑
m,n,l=0,1

(−1)m+n+l sgn dkmnl ;4. (3.10)

The factor (−1)m+n+l assures that the mass sign is taken
relative to the chirality of the kinetic piece of the Dirac
operator. One verifies that (see also Appendix D)

νD (M) = ν (M) (3.11)

for any |M| 	= 1,3.
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The second topological attribute characterizes the bundle
of Bloch states u(ã)(k) over the BZ T 3 for any of the three
bands ã = −,0,+. Whenever |M| 	= 1,3, it is nothing but the
triplet of Berry phases74

θ (ã) (M) := 1

4π

∫
T 3

d3kεμνλA(ã)
μ ∂νA

(ã)
λ , (3.12a)

where we have introduced the Abelian Berry connection

A(ã)
μ (k) :=

(
u(ã)† ∂

∂kμ
u(ã)

)
(k) (3.12b)

for any of the three bands ã = −,0,+. With the help of
Eq. (3.5c), one deduces that

θ (0) (M) = 1

4π

∫
T 3

d3kεμνλ
(
q†∂μq∂νq

†∂λq
)

(k) (3.13a)

and

θ (−) (M) = θ (+) (M) = 1
4θ (0) (M) (3.13b)

when |M| 	= 1,3. Explicit evaluations of the Berry phase of
any of the three bands then yields

θ (−) (M) = θ (+) (M) = 1

4
θ (0) (M) = π

4
ν (M) (3.14)

when |M| 	= 1,3 (see Appendix C).
With this computation of the topological invariant θ , we

have also established that the projected electronic density in
any of the bands of 3-orbital model obeys the noncommutative
3 bracket defined in Eq. (2.88a) that is dominated by the value
of θ . Upon partial filling, the flat middle band thus provides
a manifold of many-body noninteracting ground states with
macroscopic ground state degeneracy, similar to the case of
a partially filled Landau level. Henceforth, one may expect
interesting many-body ground states to appear once electron-
electron interactions are added to the model. In that regard,
we observe that any many-body Hamiltonian that includes
an interaction build out of density operators projected to the
middle band is invariant under the chiral transformation (3.3a),
since the projected density operators themselves are invariant
under the chiral transformation (3.3a).

C. Surface states

We shall here provide an interpretation of the topological
invariant (3.10) as a manifestation of the surface states
associated with a spatially dependent mass parameter M in the
Hamiltonian (3.2). This observation applies when considering
the surface states that connect bands separated by a bulk
gap. Such surface states, connecting the upper and lower
band, appear only when the periodic boundary conditions are
replaced by open boundary conditions that implement a slab
geometry with the surface normal parallel to the r3 direction.

In order to study the surface modes, we consider the low-
energy description of the Hamiltonian (3.2) by linearizing it
around each of the 8 nodal points in the Brillouin zone kT

lmn =
π (l,m,n), with l, m, n = 0, 1. The Hamiltonian (3.2) in the
linearized approximation factorizes according to

H =
⊗

l,m,n=0,1

Hlmn. (3.15)

For example, the expansion H around kT
000 produces

H000 =

⎛⎜⎝ 0 0 k̂−
0 0 k̂3 − iM000

k̂+ k̂3 + iM000 0

⎞⎟⎠ , (3.16)

where k̂± ≡ k̂1 ± ik̂2, k̂j ≡ −i∂rj
, for j = 1, 2, 3 and M000 =

M − 3. For a uniform mass M000, the spectrum breaks
into three low-energy bands with eigenvalues 0 and
±
√

k2 + |M000|2.
We now regard M000 as a domain wall configuration along

the r3 direction, which we choose to parametrize as

M000 (r3) = M000 [� (r3) − � (−r3)] , (3.17)

where � is the Heaviside function. The choice of a sharp
domain wall in Eq. (3.17) facilitates the analytic treatment of
the eigenmode equations and does not affect the generality of
the following discussion. Due to the translational invariance
on the e1-e2 plane, we seek solutions of

H000ψ000,κ = εκψ000,κ , (3.18)

with ψ000,κ (ρ,r3) = eiκ ·ρφ000,k(r3), whereby ρ = (r1,r2) and
κ = (k1,k2) are, respectively, the coordinates and momenta
projected on the e1-e2 plane. The components of the spinor
wave function

φ000,κ (r3) = (fκ (r3) ,gκ (r3) ,hκ (r3))T (3.19)

satisfy

fκ (r3) = k−
εκ

hκ (r3) , (3.20a)

gκ (r3) = 1

εκ

[−i∂r3 − iM000 (r3)
]
hκ (r3) , (3.20b)

and[−∂2
r3

+ M2
000 (r3) − 2M000δ (r3)

]
hκ (r3) = (ε2

κ − κ2
)
hκ (r3).

(3.20c)

At r3 	= 0, the solution of Eq. (3.20c) yields

hκ (r3) = h0e
−|r3|/λ, (3.21)

where h0 is a normalization constant and λ−1 :=
(M

2
000 + κ2 − ε2

κ )1/2 > 0, while the δ function discontinuity
at r3 = 0 imposes the condition λ−1 = M000. Therefore, the
domain wall configuration (3.17) bounds surface states with
dispersion

ε±,κ = ±|κ |, (3.22)

provided M000 > 0. Evaluating the solution (3.21) in
Eqs. (3.20a) and (3.20b) yields the spinor wave function,
which, up to a normalization constant N , reads

ψ000,±,κ (ρ,r3) = Nϕ000,±,κe
iκ ·ρe−M000r3 , (3.23a)

ϕ000,±,κ = 2−1/2(±e−iακ ,0,1)T,
k±
|κ | ≡ e±iακ .

(3.23b)

The discussion of the boundary states of the low-energy
Hamiltonians with n = 0, Hlm0, is very similar to that of
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H000. In this case, the existence of gapless surface states
with dispersion as in Eq. (3.22) for sharp domain wall
configurations

Mlm0 (z) = Mlm0 [θ (r3) − θ (−r3)] (3.24)

requires Mlm0 > 0. The explicit form of the eigenspinors
(omitting the r3-dependent part) is

ϕ00n,±,κ = 2−1/2(±e−iαk ,0,1)T,

ϕ10n,±,κ = 2−1/2(∓e+iαk ,0,1)T,
(3.25)

ϕ11n,±,κ = 2−1/2(∓e−iαk ,0,1)T,

ϕ01n,±,κ = 2−1/2(±e+iαk ,0,1)T,

where n = 0. For the boundary states of the low-energy
Hamiltonians with n = 1, Hlm1, the extra minus sign coming
from the Taylor expansion around k3 = π implies that the
gapless surface states exist for domain wall configurations

Mlm1 (r3) = Mlm1 [θ (r3) − θ (−r3)] , (3.26)

provided Mlm1 < 0. The eigenspinors in this case are given by
Eq. (3.25) with n = 1.

In order to account for all the possible surface modes
in a finite size configuration, we now take, for the sake of
concreteness, our system to be a slab, infinite in the e1-e2 plane
and confined in the r3 direction by r

top
3 � r3 � rbottom

3 , with
r

top
3 − rbottom

3 assumed to be much larger than any other length
scale so as to regard the two surfaces as completely decoupled
from each other. Moreover, let us adopt the convention that
the vacuum is characterized by a positive value of the gap
parameter (Mvac > 0), which then changes to negative values
for r

top
3 < r3 < rbottom

3 . For this particular configuration, the
discussion above implies the presence of gapless surface
states associated with Hlm0 (Hlm1) at the surface r3 = r

top
3

(r3 = rbottom
3 ) for Mlm0 < 0 (Mlm1 < 0).

In order to make a connection with the topological invariant
(3.10) we now compute the winding number of the eigen-
spinors as

νlm0 = + 1

πi

∮
dκ · (ϕ†

lm0,±,κ∇κϕlm0,±,κ ), (3.27a)

νlm1 = − 1

πi

∮
dκ · (ϕ†

lm1,±,κ∇κϕlm1,±,κ ), (3.27b)

where the explicit overall sign difference between (3.27a) and
(3.27b) reflects the opposite orientation of the outward normal
vectors +e3 and −e3 at the surfaces r3 = r

top
3 and r3 = rbottom

3 ,
respectively. Direct computation using Eq. (3.25) gives

ν000 = ν110 = ν101 = ν011 = −1, (3.28a)

ν100 = ν010 = ν001 = ν111 = +1. (3.28b)

The total winding number of the surface states is encoded in
the quantity

ν̃ ≡
∑

Mlmn<0

νlmn, (3.29)

which acquires the following values:

ν̃ =

⎧⎪⎨⎪⎩
+2, |M| < 1

−1, 1 < |M| < 3

0, 3 < |M|.
(3.30)

Comparison between Eqs. (3.30) and (3.7b) thus establishes a
direct relationship between the topological index (3.10) and the
total winding number of the surface states ν̃. Similar analysis of
the finite size system spectrum for domain wall configurations
of the gap parameter along either the x or the y directions
reveals the nonexistence of surface states.

IV. INTERACTIONS WITHIN SINGLE-MODE
APPROXIMATION

We begin by reviewing the single-mode approximation
(SMA) to the FQHE from Ref. 33.

In the IQHE, the external magnetic field organizes
the single-particle spectrum into degenerate Landau levels,
whereby two consecutive Landau levels are separated by the
energy gap h̄ωc. The cyclotron frequency ωc = h̄/(me�

2
B) is

proportional to the magnitude B of the uniform magnetic field.
We consider the limit of very strong magnetic fields relative

to the characteristic energy scale V of the electron-electron
interactions (i.e., h̄ωc � V ). Moreover, we consider a filling
fraction ν ≡ 	/	0 < 1 (	 the magnetic flux and 	0 the flux
quantum) such that the exact many-body ground state |�0〉
does not break spontaneously any symmetry. The translation
invariant interacting Hamiltonian Ĥ describing a nonvanishing
density of spinless fermions moving in a plane perpendicular
to an external magnetic field of uniform magnitude B and
interacting pairwise with a (screened) Coulomb interaction is
then well approximated, as far as low-energy properties go,
by its projection ĤLLL onto the vector space spanned by the
single-particle lowest Landau level (LLL).

Upon imposing periodic boundary conditions in an area of
linear size L, ĤLLL is given by

ĤLLL =
∑

q

vqδρ̂−qδρ̂+q, (4.1a)

where

vq = v∗
q = v−q (4.1b)

is the Fourier transform of the screened Coulomb interaction,
while

δρ̂q := ρ̂q − 〈�0|ρ̂q |�0〉 (4.1c)

is the Fourier component of the fermion density operator after
projection into the LLL measured relative to its expectation
value in the exact many-body ground state |�0〉.

Inspired by the early work of Feynman and Bijl in their
study of excitations in 4He,34 GMP in Ref. 33 consider the
variational state

|φk〉 := δρ̂k|�0〉, (4.2)

whose energy expectation value �k, measured relative to the
exact ground-state energy E0, sets a variational upper bound on
the low excitation spectrum of the LLL-projected Hamiltonian
(4.1).
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Assuming the inversion symmetry

�+k = �−k, (4.3a)

a direct calculation using Eqs. (4.1) and (4.2) leads to

�k = fk

sk
, (4.3b)

where

fk = 1
2 〈�0|[δρ̂−k,[ĤLLL,δρ̂+k]]|�0〉 (4.3c)

and

sk = 〈�0 |δρ̂−kδρ̂+k| �0〉 . (4.3d)

One recognizes on the right-hand side of Eq. (4.3d) the static
structure factor. The insight of GMP in Ref. 33 was to realize
that the density operators projected onto the lowest Landau
level close the exact algebra

[ρ̂q,ρ̂k] = 2i sin
(

1
2 (q × k) · e3�

2
B

)
ρ̂q+k (4.4)

(�B is the magnetic length). In turn, the algebra (4.4) implies
that

fk ∼ |k|4 (4.5)

in the small-|k| limit. Hence, in the FQHE, a necessary (but
not sufficient) condition for the existence of a finite gap in the
thermodynamic limit is to have

sk ∼ |k|4 (4.6)

also hold in the small-|k| limit. In fact, Eq. (4.6) was shown in
Ref. 33 to be satisfied when |�0〉 is chosen to be any Laughlin
state with filling fraction ν = 1/m, where m is an odd integer.

In the spirit of GMP, our starting point is a single-particle
Hamiltonian defined on a d-dimensional Bravais lattice and
sharing its point group symmetry. We also assume that
there exists at least one band that is independent of the
lattice momentum (i.e., a flat band) and, furthermore, that
is separated from the other bands by a single-particle gap
�. We constructed a 3D example thereof in Sec. III. We
then imagine switching on adiabatically a pairwise interaction
that preserves the Bravais lattice point-group symmetry, say
a (screened) Coulomb interaction. We shall denote with V

the corresponding characteristic interaction energy scale. In
the regime for which � � V , Hamiltonian (4.1) can be
reinterpreted as the interacting Hamiltonian projected onto this
flat band, provided we identify vq with the Fourier transform
at the lattice momentum q of the pairwise fermion interaction,
δρ̂q with the Fourier transform at lattice momentum q of
the projected operator describing density fluctuation measured
relative to the fermion density with lattice momentum q of the
exact many-body ground state |�0〉, whereby we assume that
|�0〉 does not break spontaneously any point-group symmetry
of the lattice.

The projected density operator on a flat band reads

ρ̂k =
∑

p

u†
p · u p+kχ̂

†
p χ̂ p+k ≡

∑
p

M p,kχ̂
†
p χ̂ p+k, (4.7)

where uk ∈ C
N is vector valued (its components range over

the number N of orbitals per site of the Bravais lattice),
while χ̂k and χ̂

†
k are the annihilation and creation operators,

respectively, of single-particle fermionic eigenstates on the

isolated flat band with lattice momentum k. Hence, they satisfy
the canonical fermionic anticommutation relations

{χ̂k,χ̂k′ } = {χ̂ †
k ,χ̂

†
k′ } = 0, {χ̂k,χ̂

†
k′ } = δk,k′ , (4.8)

for any pair k and k′ of lattice momenta. In carrying out the
program laid out in Eq. (4.3) for a general lattice Hamiltonian
with a flat band, one notices two immediate obstacles.

The first one arises from the fact that the commutator of
two (projected) density operators does not satisfy the algebra
(4.4) found by GMP for the FQHE in a uniform magnetic field.
However, it was noticed in Ref. 38 that, in the limit of small
lattice momenta k and k′, the commutation relation between
two projected density operators reads

[ρ̂(k),ρ̂(k′)]

=
∫

p
[i(k ∧ k′) · B( p) + · · ·]χ̂ †( p)χ̂( p + k + k′) (4.9a)

in the thermodynamic limit L → ∞, whereby the short-hand
notation ∫

p
≡
∫

dd p

(2π/L)d
(4.9b)

is used,

B ( p) := −i (∇ ∧ A) ( p) (4.9c)

is the (real-valued) Berry field strength of the flat band, and

A( p) := (u† · ∇u)( p) (4.9d)

is the (imaginary-valued) Berry connection of the flat band,
while · · · in Eq. (4.9a) accounts for higher-order terms in
powers of k and k′. Consequently, it was proposed in Ref. 38
that the numerical observation of the FQHE without an external
magnetic field in 2D Chern insulators in Refs. 50–53 can be
understood on the account that, because in a 2D Chern band
insulator the integral of the Berry curvature on the Brillouin
zone equals the (nonzero) Chern number, replacing B( p) in
Eq. (4.9) by its average implies the GMP algebra (4.4) in
the long-wavelength limit. However, we would like to stress
that, contrary to the 2D Chern band insulators for which
one can associate the notion of an average Berry curvature
due to the nonzero Chern number, for the 3D lattice models
studied in Secs. II and III, the integral of the Berry curvature
vanishes so that replacing B( p) by its average is meaningless.
Even for 2D Chern band insulators, the Berry curvature is
generically nonuniform; a fact that should be reflected in the
exact many-body wave function.

The second obstacle to applying the SMA to an interacting
lattice model is the fact that no good candidate wave function
is presently known with which one can compute the static
structure factor sk and compare its small k dependence with
that of fk, as was done by GMP in Ref. 33. Nevertheless,
information about the behavior of fk for small k and the
requirement of a finite gap in the thermodynamic limit (i.e.,
�k → �0 	= 0 for k → 0), puts a constraint on the static
structure factor for small k and, correspondingly, on the
correlations of the exact many-body wave function.

In Appendix E we discuss in detail the evaluation of the
function fk defined in Eq. (4.3c) to lowest order in k. Our
main result is that, due to the nonclosure of the density algebra
for any d-dimensional lattice model, the leading contribution

035125-18



NONCOMMUTATIVE GEOMETRY FOR THREE-DIMENSIONAL . . . PHYSICAL REVIEW B 86, 035125 (2012)

to f (k) reads

f (k) =
∫

q

∫
p

∫
p′

v(q)[(k ∧ q) · δB( p)][(k ∧ q) · δB( p′)]〈n̂( p)n̂( p′)〉

+
∫

q

∫
p
v(q)

i

2
(k ∧ q) · (∂μB)( p)kμ[〈δρ̂(−q)χ̂ †( p)χ̂( p + q)〉 − 〈χ̂ †( p + q)χ̂ ( p)δρ̂(q)〉], (4.10a)

where
∫

q ≡ ∫ dd q/(2π/L)d and the summation convention is
implied over the repeated index μ = 1, . . . ,d. In Eq. (4.10a),

n̂ ( p) := χ̂ † ( p) χ̂ ( p) , (4.10b)

while

δB ( p) := B ( p) − B (4.10c)

denotes the deviations of the Berry curvature B( p) away from
the uniform background value B. This uniform background
value is defined in such a way that, when d = 3,

Cλ := 2π × 1

2

∫
T 3

d3 p
(2π )3

Bλ ( p) ≡ 2π

L3
× 1

2

∫
T 3

d3 p
(2π )3

Bλ

(4.11)

where λ = 1, 2, 3 is compatible with a generalization of the
2D Chern number to layered (quasi-2D) materials. The result
(4.10a) should be contrasted with the calculation in Ref. 33,
for which the order k2 term in f (k) vanishes identically as
a consequence of the algebra (4.4). The formula (4.10a) thus
establishes a direct relationship, within the SMA, between the
deviations of the Berry field strength away from a uniform
configuration and the order k2 contribution to f (k)

f (k) ∼ |k|2. (4.12)

Such a relation is relevant either for 2D fractional Chern band
insulators for which, despite a nonzero Chern number, B( p)
can be nonuniform throughout the Brillouin zone or for the
general classes of 3D lattice models studied in Secs. II and III
for which the integral of B( p) vanishes. The result (4.10a) also
indicates that a prerequisite for the existence of a nonvanishing
but finite many-body gap to excitations above the many-body
ground state is that the static structure factor s(k) has also to
vanish as k2 to allow for the possibility of a nonzero ratio
�(k) ≡ f (k)/s(k) and therefore a nonvanishing SMA gap in
Eq. (4.3b).

V. SUMMARY

The noncommutativity of coordinates and density operators
in a featureless liquid-like electronic state can be a local probe
of its topological character. In this paper, we have studied
how this fact, which is well established for quantum Hall
fluids in 2D, carries over to 3D topological states of itinerant
electrons. In the limit of long wavelength, we found that both
the noncommutative relations obeyed by projected position
and density operators are characterized by the topological
invariant of a 3D band structure with chiral symmetry. We
established a relation between the noncommutative relation
of the projected position operators and the classical Nambu
bracket of volume-preserving diffeomorphisms of 3D fluids,

that might bridge the description of classical ideal fluids and
that of topological incompressible states in 3D.

One experimental manifestation of band topology are
boundary states. Their existence is, in turn, tied to the topologi-
cal electromagnetic response of the system. On the basis of our
results that relate the expectation values of position operators
with band topology, we conclude that the noncommutative
geometry is observable via response functions. First, the ex-
pectation value of the regularized projected position operator
itself is the polarization; that is, a zeroth-order response, in
the sense that it exists without external perturbing fields.
The expectation value of the commutator and the 3 bracket
of projected position operators describe linear response via
the Hall conductivity and the magneto-electric polarizability,
respectively. The latter yields the polarization created by
application of a magnetic field and has a contribution from the
3D Chern-Simons invariant or, equivalently, the θ term.57,59
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APPENDIX A: GAUGE-INVARIANT REGULARIZATION
OF BRACKETS OF PROJECTED POSITION OPERATORS

1. Definition of single-particle Hilbert space

Define the three lattices

��
BZ :=

{
(kμ) ∈ R

d

∣∣∣∣kμ = 2π

a
nμ, nμ = 1, · · · ,N μ

}
,

(A1a)

�r := {(rμ) ∈ R
d |rμ = anμ, nμ = 1, . . . ,N μ}, (A1b)

�R := {(Rμ) ∈ R
d |Rμ = anμ, nμ = 1, . . . ,N μ},

(A1c)

each of which shares the same cardinality

N :=
d∏

μ=1

N μ. (A2)
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The lattices �r and �R share the same unit cell of linear extend
a but they might be shifted by the vector

d :=
d∑

μ=1

eμeμ, 0 � eμ < 1,

(A3)
eμ · eν = δμ,ν, μ,ν = 1, . . . ,d,

from the unit cell relative to each other.
The single-particle Hilbert space is defined through a basis

of orthonormal states. We introduce two such bases.
There is the orbital basis

11 = ∣∣ψα
r

〉 〈
ψα

r

∣∣ = ∣∣ψα
k

〉 〈
ψα

k

∣∣ ,〈
ψα

r

∣∣ψα′
r ′
〉 = δα,α′

δr,r ′ ,
(A4)〈

ψα
k

∣∣ψα′
k′
〉 = δα,α′

δk,k′ ,〈
ψα

r

∣∣ψα′
k

〉 = δα,α′ 1√
N

e+ik·r ,

with the summation convention implied over repeated indices
and for any pairs α,α′ = 1, . . . ,N or r,r ′ ∈ �r or k,k′ ∈ ��

BZ.
There is the band basis

11 = ∣∣Wa
R

〉 〈
Wa

R

∣∣ = ∣∣χa
k

〉 〈
χa

k

∣∣ ,〈
Wa

R

∣∣Wα′
R′
〉 = δa,a′

δR,R′ ,
(A5)〈

χa
k

∣∣χa′
k′
〉 = δa,a′

δk,k′ ,〈
Wa

R

∣∣χa′
k

〉 = δa,a′ 1√
N

e+ik·R,

with the summation convention implied over repeated indices
and for any pairs a,a′ = 1, . . . ,N or R,R′ ∈ �R or k,k′ ∈
��

BZ.
The orbital and band basis in momentum space are related

by the momentum resolved N × N unitary matrix Uk with the
matrix elements〈

ψα
k

∣∣χa
k

〉 = uαa
k , α,a = 1, . . . ,N. (A6a)

Hence, for any k ∈ ��
BZ, these matrix elements obey the

orthonormality conditions

uαa
k uα′a∗

k = δα,α′
, α,α′ = 1, . . . ,N, (A6b)

for row multiplication or

uαa∗
k uαa′

k = δa,a′
, a,a′ = 1, . . . ,N, (A6c)

for column multiplication.
The orbital basis in position space and the band basis in

momentum space are related by the Fourier component

〈
ψα

r

∣∣χa
k

〉 = 1√
N

uαa
k e+ik·r , α,a = 1, . . . ,N, (A7)

for any r ∈ �r and any k ∈ ��
BZ.

The orbital and band basis in position space are related by
the convolution∣∣Wa

R

〉 = 1√
N

e−ik·R∣∣χa
k

〉
= 1√

N
e−ik·R (∣∣ψα

r

〉〈
ψα

r

∣∣) ∣∣χa
k

〉
= 1√

N
e−ik·R (〈ψα

r

∣∣χa
k

〉) ∣∣ψα
r

〉
= 1

N e−ik·(R−r)uαa
k

∣∣ψα
r

〉
(A8)

for any R ∈ �R with the summation convention over repeated
indices on the right-hand side.

2. Projected lattice position operator

A lattice position operator generates infinitesimal transla-
tions in momentum space. There is an ambiguity when defining
a lattice position operator. We can either choose to define the
position operator on the lattice �r or on the lattice �R . In the
former case, we define

r̂ :=
∑
r∈�r

N∑
α=1

∣∣ψα
r

〉
r
〈
ψα

r

∣∣ ≡ ∣∣ψα
r

〉
r
〈
ψα

r

∣∣, (A9)

with the summation convention over the repeated indices α =
1, . . . ,N and r ∈ �r implied on the second line. In the latter
case, we define

R̂ :=
∑

R∈�R

N∑
a=1

|Wa
R

〉
R
〈
Wa

R

∣∣ = ∣∣Wa
R

〉
R
〈
Wa

R

∣∣, (A10)

with the summation convention over the repeated indices a =
1, . . . ,N and R ∈ �R implied on the second line.

We define the projection operator on the first Ñ occupied
bands by

p̂Ñ :=
∑

k∈��
BZ

Ñ∑
ã=1

∣∣χã
k

〉 〈
χã

k

∣∣ ≡ ∣∣χã
k

〉 〈
χã

k

∣∣ , (A11)

with the summation convention over the repeated indices
ã = 1, . . . ,Ñ and k ∈ ��

BZ implied on the second line. In the
sequel, it will always be understood that latin indices such as
ã run over the first Ñ occupied bands. The projection operator
on the first Ñ occupied bands is represented by

p̂Ñ = 1

N
∑

k∈��
BZ

e+ik·(R−R′)∣∣Wã
R

〉〈
Wã

R′
∣∣ = ∣∣Wã

R

〉〈
Wã

R

∣∣,
(A12)

in the Wannier basis (with the summation convention over
the repeated indices ã = 1, . . . ,Ñ and R ∈ �R on the second
line). The projection operator on the first Ñ occupied bands is
represented by

p̂Ñ = uαã
k uα′ã∗

k

∣∣ψα
k

〉〈
ψα′

k

∣∣ (A13)

in the momentum space orbital basis (with the summation
convention over the repeated indices ã = 1, . . . ,Ñ ; α,α′ =
1, . . . ,N , and k ∈ ��

BZ). It is not diagonal in the orbital indices
because of the truncation to the occupied band.
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The lattice position operator projected on the first Ñ

occupied bands can be either defined by

X̂ r := p̂Ñ r̂p̂Ñ (A14)

or by

X̂R := p̂Ñ R̂p̂Ñ . (A15)

3. Lattice discretization of single-particle trace over 1 bracket
of projected position operator

We are first going to show that

Tr(X̂ r − X̂R) =
Ñ∑

ã=1

(∑
r∈�r

r −
∑

R∈�R

R

)
. (A16)

We are then going to show that

Tr(X̂ r − X̂R) = i
∑

k∈��
BZ

trAk, (A17a)

where, in the thermodynamic limit N → ∞ and assuming
smoothness of the k dependence of the matrix elements (A6a),
Ak is the Ñ × Ñ antisymmetric matrix with the components

Aãb̃
k := uαã∗

k ∂ku
αb̃
k , ã,b̃ = 1, . . . ,Ñ . (A17b)

The summation convention over repeated indices is implied.
Comments: (i) Equation (A17) follows from the identity (the
proof of which is postponed to Sec. A 5)

X̂ r = X̂R + ∣∣χã
k

〉
i Aãb̃

k

〈
χb̃

k

∣∣. (A18)

(ii) Equation (A17) holds for any choice of the boundary
conditions. (iii) Equation (A16) is mathematically meaningless
in the thermodynamic limit N → ∞, for it involves the
subtraction of two ill-conditioned sums.

Proof. First, we make two observations. On the one hand,
from the definition (A14)

TrX̂ r = 〈
Wa

R

∣∣X̂ r

∣∣Wa
R

〉
= 〈

Wã
R

∣∣r̂∣∣Wã
R

〉
=
[

1

N e+ik·(R−r)uαã∗
k

〈
ψα

r

∣∣] r̂

×
[

1

N e−ik′ ·(R−r ′)uα′ã
k′
∣∣ψα′

r ′
〉]

=
[

1

N e+ik·(R−r)uαã∗
k

〈
ψα

r

∣∣] r

×
[

1

N e−ik′ ·(R−r ′)uα′ã
k′
∣∣ψα′

r ′
〉]

〈
ψα

r

∣∣ψα′
r ′
〉 = δα,α′

δr,r ′ =
∑
r∈�r

[
1

N e+ik·Ruαã∗
k

]

× r
[

1

N e−ik′ ·Ruαã
k′

]
. (A19)

The implied summation over R produces the factor N δk,k′ .
We are left with the implied summations over the orbital α =
1, . . . ,N , over the occupied bands ã = 1, . . . ,Ñ , and over the

momenta k ∈ ��
BZ,

TrX̂ r = 1

N
(
uαã∗

k uαã
k

) ∑
r∈�r

r

=
Ñ∑

ã=1

∑
r∈�r

r. (A20)

On the other hand, the definition (A15) immediately implies
that

TrX̂R = 〈
Wa

R

∣∣X̂R

∣∣Wa
R

〉
= 〈

Wã
R

∣∣R̂∣∣Wã
R

〉
=

Ñ∑
ã=1

∑
R∈�r

R. (A21)

Subtracting Eq. (A21) from Eq. (A20) delivers Eq. (A16).
Second, to prove Eq. (A17), we start from Eqs. (A14) and

(A11) to establish that

TrX̂ r = 〈
χa

k

∣∣X̂ r

∣∣χa
k

〉
= 〈

χã
k

∣∣r̂∣∣χã
k

〉
= 〈

χã
k

∣∣(∣∣ψα
r

〉〈
ψα

r

∣∣) r̂
∣∣χã

k

〉
= (〈

χã
k

∣∣ψα
r

〉) (
r
〈
ψα

r

∣∣χã
k

〉)
= (〈

χã
k

∣∣ψα
r

〉) (
r
e+ik·r
√
N

uαã
k

)
= (〈

χã
k

∣∣ψα
r

〉) [(−i∂k
e+ik·r
√
N

)
uαã

k

]
=
(
e−ik·r
√
N

uαã∗
k

)[
(−i)∂k

(
e+ik·r
√
N

uαã
k

)
−
(

e+ik·r
√
N

(−i) ∂ku
αã
k

)]
= 〈

χã
k

∣∣ψα
r

〉
(−i) ∂k

〈
ψα

r

∣∣χã
k

〉
+ iuαã∗

k ∂ku
αã
k . (A22)

To prove Eq. (A17), it suffices to recognize that

iuαã∗
k ∂ku

αã
k =

∑
k∈��

BZ

itrAk (A23)

and that, after insertion of the Fourier expansion within the
band basis (A5),〈

χã
k

∣∣ψα
r

〉
(−i)∂k

〈
ψα

r

∣∣χã
k

〉
=
(

e−ik·R′

√
N
〈
Wã

R′
∣∣ψα

r

〉)
(−i)∂k

(
e+ik·R
√
N
〈
ψα

r

∣∣Wã
R

〉)
=
(

e−ik·R′

√
N
〈
Wã

R′
∣∣ψα

r

〉)(
R

e+ik·R
√
N
〈
ψα

r

∣∣Wã
R

〉)
=
( ∑

k∈��
BZ

e−ik·(R′−R)

N

)〈
Wã

R′
∣∣R(∣∣ψα

r

〉〈
ψα

r

∣∣)∣∣Wã
R

〉
= 〈Wã

R

∣∣ R
∣∣Wã

R

〉
= TrX̂R. (A24)

�

035125-21



NEUPERT, SANTOS, RYU, CHAMON, AND MUDRY PHYSICAL REVIEW B 86, 035125 (2012)

4. Lattice discretization of 2 bracket of projected
position operator

We are going to establish that the 2 bracket of the projected
positions operator (A14) is

εμνX̂
μ
r X̂ν

r = ∣∣χã
k

〉(−F ãb̃
μν;k

)〈
χb̃

k

∣∣
= ∣∣Wã

R

〉 (−e+ik·(R−R′)

N F ãb̃
μν;k

) 〈
Wb̃

R′
∣∣, (A25a)

where

F ãb̃
μν;k = ∂μAãb̃

k;ν − ∂νA
ãb̃
k;μ + [Ak;μ,Ak;ν]ãb̃,

(A25b)
ã,b̃ = 1, . . . ,Ñ , k ∈ ��

BZ,

in the thermodynamic limit N → ∞ and assuming smooth-
ness of the k dependence of the matrix elements (A6a). The
summation convention over repeated indices is implied. In

contrast, the 2 bracket of the projected positions operator (A15)
vanishes

εμνX̂
μ

RX̂ν
R = 0. (A26)

Comments: (i) No regularization is needed here. (ii) Equation
(A25) holds for any choice of the boundary conditions.

Proof. We begin with the proof of Eq. (A25) which we
establish by computing the matrix elements of X̂

μ
r X̂ν

r in the
band basis (A5) in the Wannier representation (as opposed to
the momentum representation). For any triplet of pairs a,a′ =
1, . . . ,N , R,R′ ∈ �R , and μ,ν = 1, . . . ,d, we evaluate the
matrix element of X̂

μ
r X̂ν

r in the Wannier basis given by〈
Wa

R

∣∣X̂μ
r X̂ν

r

∣∣Wa′
R′
〉 = 〈

Wa
R|(p̂Ñ r̂μp̂Ñ )(p̂Ñ r̂ν p̂Ñ )|Wa′

R′
〉

= δa,ãδa′,ã′ 〈
Wã

R

∣∣r̂μp̂Ñ r̂ν
∣∣Wã′

R′
〉
. (A27)

With the help of Eqs. (A4) and (A5),

〈
Wã

R

∣∣r̂μp̂Ñ r̂ν
∣∣Wã′

R′
〉 = 〈

Wã
R

∣∣(∣∣ψα
r

〉〈
ψα

r

∣∣)r̂μ
(∣∣χb̃

p

〉〈
χb̃

p

∣∣)r̂ ν
(∣∣ψα′

r ′
〉〈
ψα′

r ′
∣∣)∣∣Wã′

R′
〉

Eq. (A9s) = rμr ′ν 〈Wã
R

∣∣ψα
r

〉〈
ψα

r

∣∣χb̃
p

〉〈
χb̃

p

∣∣ψα′
r ′
〉〈
ψα′

r ′
∣∣Wã′

R′
〉

Eqs. (A7) + (A8) = 1

N 3
rμr ′ν(uαã∗

k e+ik·(R−r)
)(

uαb̃
p e+i p·r)(uα′b̃∗

p e−i p·r ′)(
uα′ã′

k′ e−ik′ ·(R′−r ′))
= 1

N 3

(
uαã∗

k e+ik·R ∂

∂kμ
e−ik·r

) (
uαb̃

p e+i p·r)(uα′b̃∗
p e−i p·r ′) (

uα′ã′
k′ e−ik′ ·R′ ∂

∂k′ν e+ik′·r ′
)

. (A28)

We would like to perform the implicit sums over r ∈ �r and r ′ ∈ �r . To this end we use twice the product rule for
differentiation,

f (∂g)f ′(∂ ′g′) = [∂(fg) − (∂f )g][∂ ′(f ′g′) − (∂ ′f ′)g′]

= ∂(fg)∂ ′(f ′g′) − ∂(fg)(∂ ′f ′)g′ − (∂f )g∂ ′(f ′g′) + (∂f )g(∂ ′f ′)g′

= ∂∂ ′(fgf ′g′) − ∂[fg(∂ ′f ′)g′] − ∂ ′[(∂f )gf ′g′] + (∂f )g(∂ ′f )g′, (A29)

for any pair of functions f and g of one variable and for any pair of functions f ′ and g′ of another independent variable. We find〈
Wã

R

∣∣X̂μ
r X̂ν

r

∣∣Wã′
R′
〉 = + 1

N 3

∂

∂kμ

∂

∂k′ν
[(

uαã∗
k e+ik·R)(uαb̃

p e+i( p−k)·r)(uα′b̃∗
p e−i( p−k′)·r ′)(

uα′ã′
k′ e−ik′·R′)]

− 1

N 3

∂

∂kμ

{(
uαã∗

k e+ik·R)(uαb̃
p e+i( p−k)·r)(uα′b̃∗

p e−i( p−k′)·r ′)[
∂ ′
ν

(
uα′ã′

k′ e−ik′ ·R′)]}
− 1

N 3

∂

∂k′ν
{[

∂μ

(
uαã∗

k e+ik·R)](uαb̃
p e+i( p−k)·r)(uα′b̃∗

p e−i( p−k′)·r ′)(
uα′ã′

k′ e−ik′ ·R′)}
+ 1

N 3

[
∂μ

(
uαã∗

k e+ik·R)](uαb̃
p e+i( p−k)·r)(uα′b̃∗

p e−i( p−k′)·r ′)[
∂ ′
ν

(
uα′ã′

k′ e−ik′ ·R′)]
. (A30)

We perform the implicit sum over r ∈ �r on lines 1 and 2. We perform the implicit sum over r ′ ∈ �r on line 3. We perform
the implicit sum over the pair r,r ′ ∈ �r on line 4. The implicit sum over r ∈ �r yields the multiplicative factor N δk, p, while
the implicit sum over r ′ ∈ �r yields the multiplicative factor N δk′, p. Thus,

〈
Wã

R

∣∣X̂μ
r X̂ν

r

∣∣Wã′
R′
〉 = + 1

N 2

∂

∂kμ

∂

∂k′ν
[
(e+ik·Rδãb̃)

(
uα′b̃∗

k e−i(k−k′)·r ′)(
uα′ã′

k′ e−ik′ ·R′)]
− 1

N 2

∂

∂kμ

{
(e+ik·Rδãb̃)

(
uα′b̃∗

k e−i(k−k′)·r ′)[
∂ ′
ν

(
uα′ã′

k′ e−ik′ ·R′)]}
− 1

N 2

∂

∂k′ν
{[

∂μ

(
uαã∗

k e+ik·R)](uαb̃
k′ e

+i(k′−k)·r)(δb̃ã′
e−ik′ ·R′)}

+ 1

N
{[

∂μ

(
uαã∗

k e+ik·R)]uαb̃
k

}{[
uα′b̃∗

k ∂ν

(
uα′ã′

k e−ik·R′)]}
. (A31)

035125-22



NONCOMMUTATIVE GEOMETRY FOR THREE-DIMENSIONAL . . . PHYSICAL REVIEW B 86, 035125 (2012)

Performing the implicit sum over the projected band index b̃ = 1, · · · ,Ñ on lines 1, 2, and 3 gives〈
Wã

R

∣∣X̂μ
r X̂ν

r

∣∣Wã′
R′
〉 = + 1

N 2

∂

∂kμ

∂

∂k′ν
[
uα′ã∗

k e+ik·Re−ik−k′)·ruα′ã′
k′ e−ik′ ·R′]− 1

N 2

∂

∂kμ

{
uα′ã∗

k e+ik·Re−i(k−k′)·r[∂ ′
νu

α′ã′
k′ e−ik′·R′]}

− 1

N 2

∂

∂k′ν
{[

∂μuαã∗
k e+ik·R]e−i(k−k′)·ruαã′

k′ e−ik′·R′}+ 1

N
{[

∂μ

(
uαã∗

k e+ik·R)]uαb̃
k

}{[
uα′b̃∗

k ∂ν

(
uα′ã′

k e−ik·R′)]}
. (A32)

For further simplification, we apply the identity

∂k∂k′[f (k)h(k,k′)g(k′)]

= +∂k[f (k)h(k,k′)∂k′g(k′)] + ∂k′[g(k′)h(k,k′)∂kf (k)] + f (k)g(k′)∂k∂k′h(k,k′) − h(k,k′)[∂kf (k)][∂kg(k′)], (A33)

for the smooth function f , g, and h to the first three lines of Eq. (A32). We find〈
Wã

R

∣∣X̂μ
r X̂ν

r

∣∣Wã′
R′
〉 = + 1

N 2

[
∂

∂kμ

∂

∂k′ν e−i(k−k′)·r
]
uαã∗

k e+ik·Ruαã′
k′ e−ik′ ·R′ − 1

N 2
e−i(k−k′)·r[∂μ

(
uαã∗

k e+ik·R)][∂ ′
ν

(
uαã′

k′ e−ik′ ·R′)]
+ 1

N
[
∂μ

(
uαã∗

k e+ik·R)]uαb̃
k

[
uα′b̃∗

k ∂ν

(
uα′ã′

k e−ik·R′)]
. (A34)

We perform the derivatives on lines 2 and 3 first, which we then follow up with the implicit sum over r ,〈
Wã

R

∣∣X̂μ
r X̂ν

r

∣∣Wã′
R′
〉 = + 1

N 2

[
∂

∂kμ

∂

∂k′ν e−i(k−k′)·r
]
uαã∗

k e+ik·Ruαã′
k′ e−ik′ ·R′

− 1

N e+ik·(R−R′)[iRμuαã∗
k + ∂μuαã∗

k

][−iR′
νu

αã′
k + ∂ ′

νu
αã′
k

]
+ 1

N e+ik·(R−R′)[iRμuαã∗
k + ∂μuαã∗

k

]
uαb̃

k uα′b̃∗
k

[−iR′
νu

α′ã′
k + ∂νu

α′ã′
k

]
. (A35)

By making use of the orthonormality (A6b) and (A6c) and the definition (A17b) for the gauge connection, we can expand the
product of the bracketed terms on line 2 and 3 according to〈

Wã
R

∣∣X̂μ
r X̂ν

r

∣∣Wã′
R′
〉 = + 1

N 2

[
∂

∂kμ

∂

∂k′ν e−i(k−k′)·r
]
uαã∗

k e+ik·Ruαã′
k′ e−ik′ ·R′

− eik·(R−R′)

N
[
RμR′

νδ
ãã′ + iRμAãã′

ν;k + iR′
νA

ãã′
μ;k + (∂μuαã∗

k

)(
∂νu

αã′
k

)]
+ eik·(R−R′)

N
(
iRμδãb̃ − Aãb̃

μ;k)
(−iR′

νδ
b̃ã′ + Ab̃ã′

ν;k

)
. (A36)

Terms that have been underlined on line 2 cancel with line 3, leaving us with〈
Wã

R

∣∣X̂μ
r X̂ν

r

∣∣Wã′
R′
〉 = + 1

N 2

[
∂

∂kμ

∂

∂k′ν e−i(k−k′)·r
]
uαã∗

k e+ik·Ruαã′
k′ e−ik′ ·R′ − eik·(R−R′)

N
[(

∂μuαã∗
k

)(
∂νu

αã′
k

)+ Aãb̃
μ;kA

b̃ã′
ν;k

]
. (A37)

Here we would have to stop if we do not want to antisymmetrize the indices μ = 1, . . . ,d and ν = 1, . . .; doing so, however,
yields

εμν

〈
Wã

R

∣∣X̂μ
r X̂ν

r

∣∣Wã′
R′
〉 = −eik·(R−R′)

N
[
εμνεμν∂μAb̃ã′

ν;k + Aãb̃
μ;kA

b̃ã′
ν;k

] = −e+ik·(R−R′)

N F ãã′
μν;k. (A38)

We continue with the proof of Eq. (A26), which we establish by computing the matrix elements of X̂
μ
r X̂ν

r in the
projected band basis (A5) in the Wannier representation (as opposed to the momentum representation). For any triplet
of pair a,a′ = 1, . . . ,N , R,R′ ∈ �R , and μ,ν = 1, . . . ,d, we evaluate the matrix element of X̂

μ

RX̂ν
R in the Wannier basis

given by 〈
Wa

R

∣∣X̂μ

RX̂ν
R

∣∣Wa′
R′
〉 = δa,ãδa′,ã′ 〈

Wa
R

∣∣(p̂Ñ R̂μp̂Ñ )(pÑ R̂νpÑ )
∣∣Wa′

R′
〉 = δa,ãδa′,ã′ 〈

Wã
R

∣∣R̂μpÑ R̂ν
∣∣Wã′

R′
〉

= δa,ãδa′,ã′ 〈
Wã

R

∣∣R̂μ
(∣∣Wã′′

R′′
〉〈
Wã′′

R′′
∣∣)R̂ν

∣∣Wã′
R′
〉

= δa,ãδa′,ã′
RμRν

〈
Wã

R

∣∣Wã′′
R′′
〉〈
Wã′′

R′′
∣∣Wã′

R′
〉 = δa,ãδa′,ã′

RμRνδã,ã′
δR,R′ . (A39)

Antisymmetrization yields Eq. (A26). �
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5. Lattice discretization of 1 and 3 bracket of projected position operator

We are going to show that, in the thermodynamic limit N → ∞ and assuming smoothness of the k dependence of the matrix
elements (A6a),

X̂ r = ∣∣χã
k

〉(e−i(k−k′)·r

N ruαã∗
k uαã′

k′

)〈
χã′

k′
∣∣ = ∣∣χã

k

〉(e−i(k−k′)·R

N Rδãã′ + i Aãã′
k δk,k′

)〈
χã′

k′
∣∣

= ∣∣χã
k

〉[e−ik·R′

√
N
(
δã,ã′

R′ + i Aãã′
k

)]〈
Wã′

R′
∣∣ = ∣∣Wã

R

〉[e
+ik·
(

R−R′
)

N
(
δã,ã′

R′ + i Aãã′
k

)]〈
Wã′

R′
∣∣, (A40a)

while

εμνλX̂
μ
r X̂ν

r X̂
λ
r = ∣∣Wã

R

〉 {1

2
εμνλ e+ik·(R−R′)

N
[
(−)F ãb̃

μν;k

(
δb̃,ã′

R′
λ + iAb̃ã′

λ;k

)]} 〈
Wã′

R′
∣∣. (A40b)

The summation convention over repeated indices is implied. Comments: (i) A regularization is needed to dispose of the explicit
R dependence in the position representation of the covariant derivative. (ii) Equation (A 5) holds for any choice of the boundary
conditions. The equality between the first and second right-hand sides of Eq. (A40a) implies that we can make the identification

−i∂k′

(∑
r∈�r

e−i(k−k′)·r

N uαã∗
k uαã′

k′

)
+
(∑

r∈�r

e−i(k−k′)·r

N uαã∗
k uαã′

k′

)
i∂k′ ←→ e−i(k−k′)·R

N Rδãã′
, (A41)

which will become handy to go back to a formulation in the continuum for both position and momentum that does not assume
the vanishing of boundary terms. (iii) Had we chosen to represent the 3 bracket in the Bloch basis, we could have either written

εμνλX̂
μ
r X̂ν

r X̂
λ
r = ∣∣χã

k

〉(1

2
εμνλ(−)F ãb̃

μν;k
e−i(k−k′)·r

N rλu
αb̃∗
k uαã′

k′

)〈
χã′

k′
∣∣, (A42a)

had we opted not to use the product rule for differentiation, or

εμνλX̂
μ
r X̂ν

r X̂
λ
r = ∣∣χã

k

〉[1

2
εμνλ(−)F ãb̃

μν;k

(
e−i(k−k′)·R

N Rλδ
ãã′ + iAãã′

k;λδk,k′

)]〈
χã′

k′
∣∣, (A42b)

had we opted to use the product rule for differentiation. However, the representation on the first line of Eq. (A40a) as well
as Eq. (A42a) are meaningless in the thermodynamic limit N → ∞. They fail to separate a finite and physically meaningful
contribution to the trace of n brackets.

Proof. Needed is 〈
Wa

R

∣∣(εμνλX̂
μ
r X̂ν

r X̂
λ
r

)∣∣Wa′
R′
〉 = 1

2εμνλ

〈
Wa

R

∣∣([X̂μ
r ,X̂ν

r

]
X̂λ

r

)∣∣Wa′
R′
〉

(A43)

for any pair a,a′ = 1, . . . ,N and any pair R,R′ ∈ �R . With the Fourier expansion within the band basis (A5) and the matrix
elements (A25), there follows〈

Wa
R

∣∣[X̂μ
r ,X̂ν

r

]
X̂λ

r

∣∣Wa′
R′
〉 = 〈

Wa
R

∣∣[∣∣χb̃
k

〉(− F b̃b̃′
μν;k

)〈
χb̃′

k

∣∣]X̂λ
r

∣∣Wa′
R′
〉 = δa,ãδa′,ã′ 〈

Wã
R

∣∣χã
k

〉(− F ãb̃
μν;k

)〈
χb̃

k

∣∣X̂λ
r

∣∣Wã′
R′
〉

(A44)

for any pair a,a′ = 1, . . . ,N and for any pair R,R′ ∈ �R . With the Fourier expansion within the band basis (A40a),〈
Wa

R

∣∣χã
k

〉 = δa,ã e+ik·R
√
N

. (A45)

Equations (A40a), (A44), and (A45) imply Eq. (A40).
The proof of Eq. (A40a) is done along the same lines as in Sec. A 3. We choose the pair a,a′ = 1, . . . ,N and the pair k ∈ ��

BZ,
R ∈ �R . With the help of Eqs. (A14) and (A11)〈

χa
k

∣∣X̂ r

∣∣Wa′
R

〉 = δa,ãδa′,ã′ 〈
χã

k

∣∣r̂∣∣Wã′
R

〉
. (A46)

In turn, for any pair ã,ã′ = 1, . . . ,Ñ ,〈
χã

k

∣∣r̂∣∣Wã′
R

〉 = 〈
χã

k

∣∣(∣∣ψα
r

〉〈
ψα

r

∣∣)r̂
∣∣Wã′

R

〉
= (

r
〈
χã

k

∣∣ψα
r

〉)(〈
ψα

r

∣∣Wã′
R

〉)
=
(

r
e−ik·r
√
N

uαã∗
k

)(
e−ik′ ·(R−r)

N uαã′
k′

)
=
[
+i∂k

(
e−ik·r
√
N

uαã∗
k

)
+ e−ik·r

√
N
(−i∂ku

αã∗
k

)](e−ik′ ·(R−r)

N uαã′
k′

)
. (A47)
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To proceed, we reexpress the first term on the right-hand side as a product of two overlaps to be differentiated with respect to
momentum, while we perform the implicit sum over r ∈ �r on the second term on the right-hand side. This implicit sum over
r ∈ �r produces the multiplicative factor N δk,k′ . Thus,〈

χã
k

∣∣r̂∣∣Wã′
R

〉 = [
+ i∂k

(〈
χã

k

∣∣ψα
r

〉〈
ψα

r

∣∣Wã′
R

〉)+ e−ik·R
√
N
(−i∂ku

αã∗
k

)
uαã′

k

]
. (A48)

The implicit sums over r ∈ �r and α = 1, . . . ,N in the first
term on the right-hand side delivers the resolution of the
identity, while we can use the orthonormality (A6b) and (A6c)
to move the momentum gradient in the second term on the
right-hand side. This manipulation gives〈

χã
k

∣∣r̂∣∣Wã′
R

〉 = [
+i∂k

(〈
χã

k

∣∣Wã′
R

〉)+ e−ik·R
√
N

uαã∗
k

(
i∂ku

αã′
k

)]
.

(A49)

Equations (A7) and (A17b) deliver〈
χã

k

∣∣r̂∣∣Wã′
R

〉 = [
+i∂k

(
e−ik·R
√
N

)
δã,ã′ + e−ik·R

√
N

i Aãã′
k

]
.

(A50)

We conclude with〈
χã

k

∣∣r̂∣∣Wã′
R

〉 = e−ik·R
√
N
(
Rδã,ã′ + i Aãã′

k

)
. (A51)

The proof of Eq. (A42) starts from suitably modifying
Eq. (A44) according to〈

χa
k

∣∣[X̂μ
r ,X̂ν

r

]
X̂λ

r

∣∣χa′
k′
〉 = 〈χa

k

∣∣[∣∣χb̃
p

〉(−F b̃b̃′
μν; p

)〈
χb̃′

p

∣∣]X̂λ
r

∣∣χa′
k′
〉

= δa,b̃δa′,ã′(−F ãb̃
μν;k

)〈
χb̃

k

∣∣X̂λ
r

∣∣χã′
k′
〉
, (A52)

where we can either choose the representation〈
χã

k

∣∣X̂ r

∣∣χã′
k′
〉 = e−i(k−k′)·r

N ruαã∗
k uαã′

k′ (A53)

if we opt not to use the product rule for differentiation or〈
χã

k

∣∣X̂ r

∣∣χã′
k′
〉 = (e−i(k−k′)·R

N Rδãã′ + i Aãã′
k δk,k′

)
(A54)

if we opt to use the product rule for differentiation as we did
in Eqs. (A22) and (A24). �

6. Gauge invariant regularization of trace of 1 and 3 brackets

Equation (A40) is the main result that we need to draw
a connection between the expectation value of the 3 bracket
in the noninteracting filled Fermi sea and the U(N ) Chern-
Simons action in three-dimensional space.

We have shown in Sec. II A the “symbolic” gauge invariance
of the expectation value of the 1, 2, and 3 bracket of the
projected many-body position operator in the Fermi sea filling
up Ñ Bloch bands. The qualifier “symbolic” must be used
since this symmetry presumes the existence of the expectation
value. There is no ambiguity for the 2 bracket. The 1 and 3
brackets are however ill defined. They need to be regularized
(i.e., made finite).

It is well known in quantum field theory that regularizations
can break a classical symmetry. Regularizations know about
quantum mechanics, for they involve expectation values of
operators made of additive pieces that do not commute.
In a path integral formalism, quantum mechanics is traded
for coherent states at the price of a measure that requires
a regularization. Here, we need to trace over an operator
that can be decomposed into two additive operators that do
not commute. The resulting quantum fluctuations require a
regulation of ill-conditioned sums.

However, in the process of regularization the symbolic
gauge invariance can disappear. The question thus becomes
the following. Is it possible to regulate the 1 and 3 bracket in a
gauge invariant way whereby the gauge invariance only applies
to pure gauge transformation since large gauge transformations
change the boundary conditions and thus the very nature of the
Hilbert space over which the trace is to be performed?

Our answer is positive and relies on the observation that
we already made in Eq. (A18) and follows from Eq. (A40);
namely, that

X̂ r − X̂R = i Â, (A55a)

where we have introduced the operator

Â := ∣∣χã
k

〉
Aãb̃

k

〈
χb̃

k

∣∣ (A55b)

through its spectral decomposition.
One verifies by direct computation with the help of

Eqs. (A40) and (A55) that

F
(3)
finite[A] := 1

N
〈
Wa

R

∣∣[εμνλX̂
μ
r X̂ν

r

(
X̂λ

r − X̂λ
R

)]∣∣Wa
R

〉
= − 1

N
i

2

∑
k∈��

BZ

εμνλF ãb̃
μν;kA

b̃
λ;k (A56)

breaks SU(Ñ ) pure gauge symmetry. This regularization is
thus not the one we seek. (The summation convention over
repeated indices is implied.)

However, we immediately see that there is an ambiguity
when choosing the space index for which we will do the re-
placement X̂

μ

r → X̂
μ

r − X̂
μ

R . There are three possible choices
that would have all lead to the same right-hand side (A56);
namely,

F
(3)
finite[A] = 1

N
〈
Wa

R

∣∣[εμνλX̂
μ
r X̂ν

r

(
X̂λ

r − X̂λ
R

)]∣∣Wa
R

〉
= 1

N
〈
Wa

R

∣∣[εμνλX̂
μ
r

(
X̂ν

r − X̂ν
R

)
X̂λ

r

]∣∣Wa
R

〉
= 1

N
〈
Wa

R

∣∣[εμνλ

(
X̂μ

r − X̂
μ

R

)
X̂ν

r X̂
λ
r

]∣∣Wa
R

〉
. (A57)

(The summation convention over repeated indices is implied.)
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Proof. We can first insert and then remove the resolution of
the identity as〈

Wa
R

∣∣[X̂μ
r

(
X̂ν

r − X̂ν
R

)
X̂λ

r

]∣∣Wa
R

〉
= 〈Wa

R

∣∣X̂μ
r

(
X̂ν

r − X̂ν
R

)∣∣Wa′
R′
〉〈
Wa′

R′
∣∣X̂λ

r

∣∣Wa
R

〉
= 〈Wa′

R′
∣∣X̂λ

r

∣∣Wa
R

〉〈
Wa

R

∣∣X̂μ
r

(
X̂ν

r − X̂ν
R

)∣∣Wa′
R′
〉

= 〈Wa′
R′
∣∣X̂λ

r X̂
μ
r

(
X̂ν

r − X̂ν
R

)∣∣Wa′
R′
〉
, (A58)

for the second line of Eq. (A57) and〈
Wa

R

∣∣[(X̂μ
r − X̂

μ

R

)
X̂ν

r X̂
λ
r

]∣∣Wa
R

〉
= 〈Wa

R

∣∣(X̂μ
r − X̂

μ

R

)∣∣Wa′
R′
〉〈
Wa′

R′
∣∣X̂ν

r X̂
λ
r

∣∣Wa
R

〉
= 〈Wa′

R′
∣∣X̂ν

r X̂
λ
r

∣∣Wa
R

〉〈
Wa

R

∣∣(X̂μ
r − X̂

μ

R

)∣∣Wa′
R′
〉

= 〈Wa′
R′
∣∣X̂ν

r X̂
λ
r

(
X̂μ

r − X̂
μ

R

)∣∣Wa′
R′
〉
, (A59)

for the third line of Eq. (A57). The space labels μ,ν,λ =
1, . . . ,d have been reordered in cyclic fashion so that contrac-
tion with εμνλ delivers Eq. (A57). �

The subtraction that we performed in Eq. (A56) does
regulate the expectation value of the 3 bracket but not in a
gauge invariant way. Instead of Eq. (A56), we use the more
symmetric definition

F
(3)
gauge invariant[A] := + 1

N
〈
Wa

R

∣∣[εμνλX̂
μ
r X̂ν

r

(
X̂λ

r − X̂λ
R

)]∣∣Wa
R

〉
+ 1

N
〈
Wa

R

∣∣[εμνλX̂
μ
r

(
X̂ν

r − X̂ν
R

)
X̂λ

r

]∣∣Wa
R

〉
+ 1

N
〈
Wa

R

∣∣[εμνλ

(
X̂μ

r − X̂
μ

R

)
X̂ν

r X̂
λ
r

]∣∣Wa
R

〉
− 1

N
〈
Wa

R

∣∣[εμνλ

(
X̂μ

r − X̂
μ

R

)(
X̂ν

r − X̂ν
R

)
× (X̂λ

r − X̂λ
R

)]∣∣Wa
R

〉
. (A60)

One verifies by direct computation with the help of Eqs. (A40)
and (A55) that

F
(3)
gauge invariant[A]

= −i
3

2

1

N
∑

k∈��
BZ

εμνλtr

(
Fμν;kAλ;k − 2

3
Aμ;kAν;kAλ;k

)
(A61)

is proportional to the integral over the Brillouin zone of the
Chern-Simons 3 form.

The operator over which the trace is taken on the right-hand
side of Eq. (A60) can be rewritten in a way that brings it to a
linear combination of 3 brackets, thereby justifying the upper
index (3) for the functional F

(3)
gauge invariant[A] over the manifold

of su(Ñ ) gauge fields. Indeed, we are allowed to reorder the
3 × 6 = 18 operators over which the trace is taken on the first
three lines of the right-hand side of Eq. (A60) as follows:

εIJK

[
X̂I

r X̂
J
r

(
X̂K

r − X̂K
R

)
+ X̂I

r

(
X̂J

r − X̂J
R

)
X̂K

r + (X̂I
r − X̂I

R

)
X̂J

r X̂K
r

]
= [X̂μ

r ,X̂ν
r ,
(
X̂λ

r − X̂λ
R

)]+ [X̂μ
r ,
(
X̂ν

r − X̂ν
R

)
,X̂λ

r

]
+ [(X̂μ

r − X̂
μ

R

)
,X̂ν

r ,X̂
λ
r

]
, (A62)

where I,J,K = μ,ν,λ. One also verifies that[(
X̂μ

r − X̂
μ

R

)
,
(
X̂ν

r − X̂ν
R

)
,
(
X̂λ

r − X̂λ
R

)]
= εIJK

(
X̂I

r − X̂I
R

) (
X̂J

r − X̂J
R

) (
X̂K

r − X̂K
R

)
, (A63)

where I,J,K = μ,ν,λ. We may then define the regularized 3
bracket to be the linear combination[

X̂μ
r ,X̂ν

r ,X̂
λ
r

]
reg

:= 1

2

{ [
X̂μ

r ,X̂ν
r ,
(
X̂λ

r − X̂λ
R

)]+ [X̂μ
r ,
(
X̂ν

r − X̂ν
R

)
,X̂λ

r

]
+ [(

X̂μ
r − X̂

μ

R

)
,X̂ν

r ,X̂
λ
r

]
− [(X̂μ

r − X̂
μ

R

)
,
(
X̂ν

r − X̂ν
R

)
,
(
X̂λ

r − X̂λ
R

)] }
. (A64)

Here, we have multiplied the curly braces by the normalization
1/2 as we demand that the regularization preserves the number
of 3 brackets to be regularized. To regularize a single 3 bracket,
we added three 3 brackets and subtracted one 3 bracket. the
number 3 − 1 = 2 is thus the integer by which we choose to
divide the curly bracket on the right-hand side of Eq. (A64).
Because the regularized 3 bracket is a linear superposition of
3 brackets, it remains odd under the exchange of any pair of
its consecutive arguments,[

X̂σ (μ)
r ,X̂σ (ν)

r ,X̂σ (λ)
r

]
reg = (−)sgn(σ ) [X̂μ

r ,X̂ν
r ,X̂

λ
r

]
reg , (A65)

with σ denoting any permutation of 3 objects and sgn(σ ) = 0,1
with 0 if the permutation is even and 1 if the permutation is
odd. The regularized 3 bracket also vanishes whenever two of
its arguments are equal,[

X̂μ
r ,X̂ν

r ,X̂
λ
r

]
reg = 0 (A66)

if μ = ν or ν = λ or μ = λ. Finally, the regularized 3 bracket is
invariant under pure gauge transformations of the form (2.39b)
since[

X̂μ
r ,X̂ν

r ,X̂
λ
r

]
reg

= −i
3

4

1

N
∑

k∈��
BZ

εIJK tr

(
FIJ ;kAK;k − 2

3
AI ;kAJ ;kAK;k

)
,

(A67)

where I,J,K = μ,ν,λ.

7. Regularized 3 bracket and Nambu bracket

We are going to prove Eq. (2.63) to which we refer the
reader for the notation and definitions.

To perform a Taylor expansion on Tr[f1(X̂ r ),f2(X̂ r ),
f3(X̂ r )]reg, we need to start with a Taylor expansion on

[f1(X̂ r ),f2(X̂ r ),f3(X̂ r )]reg

:= + [f1(X̂ r ),f2(X̂ r ),f3(X̂ r − X̂R)]

+ [f1(X̂ r ),f2(X̂ r − X̂R),f3(X̂ r )]

+ [f1(X̂ r − X̂R),f2(X̂ r ),f3(X̂ r )]

− [f1(X̂ r − X̂R),f2(X̂ r − X̂R),f3(X̂ r − X̂R)]. (A68)

To this end, we recall that

[A,B,C] = A[B,C] + B[C,A] + C[A,B]. (A69)
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Thus,

[f1(X̂ r ),f2(X̂ r ),f3(X̂ r )]reg

= + f1(X̂ r )[f2(X̂ r ),f3(X̂ r − X̂R)]

+ f1(X̂ r )[f2(X̂ r − X̂R),f3(X̂ r )]

+ f1(X̂ r − X̂R)[f2(X̂ r ),f3(X̂ r )]

− f1(X̂ r − X̂R)[f2(X̂ r − X̂R),f3(X̂ r − X̂R)]

+ cyclic permutations of 1,2,3. (A70)

We are now ready to insert the Taylor expansions

fi (x) = fi (0) +
3∑

μ=1

(∂μfi)(0)xμ + · · · , (A71)

for i = 1,2,3 after substituting x with the corresponding
projected position operator. Because fi(0) with i = 1,2,3 are
C numbers, the commutators in Eq. (A70) must necessarily be
of second order in the projected position operators if they are
to be nonvanishing. This means that the insertion of Eq. (A71)
into Eq. (A70) can be organized into the expansion

[f1(X̂ r ),f2(X̂ r ),f3(X̂ r )]reg

= [f1(X̂ r ),f2(X̂ r ),f3(X̂ r )](2)
reg

+ [f1(X̂ r ),f2(X̂ r ),f3(X̂ r )](3)
reg + · · · , (A72a)

where

[f1(X̂ r ),f2(X̂ r ),f3(X̂ r )](2)
reg

= +[f1(∂μf2)(∂νf3)](0)
[
X̂μ

r ,X̂ν
r − X̂ν

R

]
+ [f2(∂μf3)(∂νf1)](0)

[
X̂μ

r − X̂
μ

R,X̂ν
r

]
+ [f3(∂μf1)(∂νf2)](0)

[
X̂μ

r ,X̂ν
r

]
−[f1(∂μf2)(∂νf3)](0)

[
X̂μ

r − X̂ν
R,X̂ν

r − X̂ν
R

]
+ cyclic permutations of 1,2,3, (A72b)

while

[f1(X̂ r ),f2(X̂ r ),f3(X̂ r )](3)
reg

= (∂μf1)(∂νf2)(∂λf3)(0)
[
X̂μ

r ,X̂ν
r ,X̂

λ
r

](3)
reg. (A72c)

The summation convention over the repeated indices μ,ν,λ =
1,2,3 is understood. If we take advantage of the fact
that [

X̂
μ

R,X̂ν
R

] = 0, μ,ν = 1,2,3, (A73)

we find the remarkable simplification

[f1(X̂ r ),f2(X̂ r ),f3(X̂ r )](2)
reg

= +2[f1(∂μf2)(∂νf3)

+ cyclic permutations of 1,2,3](0)
[
X̂μ

r ,X̂ν
r

]
= εijkfi{fj ,fk}μν

P (0)
[
X̂μ

r ,X̂ν
r

]
. (A74)

Another simplification due to the full antisymmetry of the 3
bracket delivers

[f1(X̂ r ),f2(X̂ r ),f3(X̂ r )](3)
reg = {f1,f2,f3}N(0)

[
X̂1

r ,X̂
2
r ,X̂

3
r

]
reg.

(A75)

We thus arrive at the operator identity

[f1(X̂ r ),f2(X̂ r ),f3(X̂ r )]reg

= εijkfi{fj ,fk}μν

P (0)
[
X̂μ

r ,X̂ν
r

]
+{f1,f2,f3}N (0)

[
X̂1

r ,X̂
2
r ,X̂

3
r

]
reg + · · · . (A76)

APPENDIX B: GELL-MANN MATRICES

The Gell-Mann matrices are 3×3 Hermitian matrices that
are a representation of generators of SU(3). They are defined
as

λ1 =
⎛⎝0 1 0

1 0 0
0 0 0

⎞⎠ , λ2 =
⎛⎝0 −i 0

i 0 0
0 0 0

⎞⎠ ,

λ3 =
⎛⎝1 0 0

0 −1 0
0 0 0

⎞⎠ , λ4 =
⎛⎝0 0 1

0 0 0
1 0 0

⎞⎠ ,

λ5 =
⎛⎝0 0 −i

0 0 0
i 0 0

⎞⎠ , λ6 =
⎛⎝0 0 0

0 0 1
0 1 0

⎞⎠ ,

λ7 =
⎛⎝0 0 0

0 0 −i

0 i 0

⎞⎠ , λ8 = 1√
3

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠ . (B1)

APPENDIX C: TOPOLOGICAL INVARIANTS IN
3-ORBITAL MODEL

In this Appendix, we evaluate the Chern numbers

Cλ = i

(2π )2

εμνλ

2

∫
BZ

d3kFμν(k) ∈ Z, (C1)

for λ = 1,2,3 and the Chern-Simons invariant

θ := εμνλ

8π

∫
BZ

d3kFμν(k)Aλ(k), (C2)

for the projection on the dispersionless middle band of the
3-orbital model defined by Eq. (3.1) in the thermodynamic
limit. (We have dropped the symbol referring to the projection
for notational simplicity.) For the three-orbital model defined
in Eq. (3.1), the block off-diagonal projector q(k) defined in
Eq. (3.5a) delivers a natural choice of gauge for the Berry
connection of the flat band

A(k) = q†(k)∇q(k). (C3a)

In this case, A can be decomposed as

A(k) =
⎛⎝A′ (k1,k2,k3) + A′′ (k1,k2,k3)

A′ (k2,k1,k3) − A′′ (k2,k1,k3)
A3 (k1,k2,k3)

⎞⎠ , (C3b)

where

A′(k) = −i
sin k1 sin k3

G(k)
, (C3c)

A′′(k) = +i
cos k1 sin k2

G(k)
, (C3d)

A3(k) = −i
1 + cos k3 (cos k1 + cos k2 − M)

G(k)
, (C3e)
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and

G(k) = 3 +
⎛⎝M −

3∑
μ=1

cos kμ

⎞⎠−
3∑

μ=1

cos2 kμ. (C3f)

It follows that

A′ (k1,k2,k3) = −A′(−k1,k2,k3)

= +A′(k1,−k2,k3) (C4a)

= −A′(k1,k2,−k3),

as well as

A′′(k1,k2,k3) = +A′′(−k1,k2,k3)

= −A′′(k1,−k2,k3)

= +A′′(k1,k2,−k3), (C4b)

while A3(k) is an even function of k1, k2, and k3.
As a consequence, all terms appearing in F13(k) and F23(k)

are an odd function of either k1 or k2. Thus,

C1 = C2 = 0. (C5)

Furthermore,

C3 ∝
∫

BZ
d3kF12

=
∫

BZ
d3k{∂1[A′(k2,k1,k3) − A′′(k2,k1,k3)]

− ∂2[A′(k1,k2,k3) + A′′(k1,k2,k3)]}
= −2

∫
BZ

d3k∂2A
′′(k2,k1,k3)

= −2[A′′(2π,k1,k3) − A′′(0,k1,k3)]

= 0, (C6)

since ∂2A
′′(k2,k1,k3) is a continuous function of k2 with

periodicity 2π . We conclude that the Chern numbers C defined
in Eq. (C1) vanish identically.

To calculate θ defined in Eqs. (C2) we consider integrals of
the form ∫

BZ
d3kAμ∂νAλ, μ 	= ν 	= λ, (C7)

which are nonvanishing in general. On one hand, defining

+θ ′ := 1

8π

∫
BZ

d3kA1∂2A3

= 1

8π

∫
BZ

d3kA′′ (k1,k2,k3) ∂2A3 (k1,k2,k3) , (C8a)

partial integration delivers

−θ ′ = 1

8π

∫
BZ

d3kA3∂2A1, (C8b)

and using the identity A3(k1,k2,k3) = A3(k2,k1,k3) one obtains

+θ ′ = 1

8π

∫
BZ

d3kA3∂1A2,

(C8c)

−θ ′ = 1

8π

∫
BZ

d3kA2∂1A3.

On the other hand, defining

+θ ′′ := 1

8π

∫
BZ

d3kA2∂3A1, (C8d)

partial integration delivers

−θ ′′ = 1

8π

∫
BZ

d3kA1∂3A2. (C8e)

Finally, numerical evaluation of

θ = 4θ ′ + 2θ ′′ (C9)

reveals that θ is quantized in units of π as announced, while
θ ′ and θ ′′ are not quantized and are not equal in general (see
Fig. 3).

APPENDIX D: EQUIVALENCE OF CHERN-SIMONS AND
DIRAC INVARIANTS

The purpose of this Appendix is to prove that the Abelian
Chern-Simons invariant, defined by

θ := 1

4π

∫
T 3

d3kεμνλAμ∂νAλ, (D1)

with the Abelian Berry connection Aμ(k) is equivalent to the
Dirac invariant νD defined in Eq. (3.10) for the case of a
Bloch Hamiltonian with chiral symmetry and three bands. The
topological attributes of such a Hamiltonian are characterized
by its normalized off-diagonal part q(k) from Eq. (3.5a) in
terms of which the Abelian Berry connection reads

Aμ(k) = q−1(k)∂μq(k). (D2)

Here, q(k) represents a map from T3 (the BZ) to S3 and θ/π is
the associated winding number. As a member of S3, q(k) can

2θ '

2θ"

θ 2

4 2 2 4
M

4

2

2

4

6

θ

FIG. 3. (Color online) Numerical evaluation of the topological
invariant θ (0) = πν(M) (solid line) for the model (III A) The
parameters θ ′ and θ ′′ that sum up to the topological invariant θ are
defined in Eqs. (C8a) and(C8d), respectively.
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be parametrized by three angular coordinates

q =:

(
cos αeiϕ

sin αeiϑ

)
, (D3)

and the Berry connection reads accordingly

Aμ = i cos2 α∂μϕ + i sin2 α∂μϑ, (D4)

where we suppress the variable k for the moment. As we
shall see, contributions to the winding number (D1) arise from
vortex lines in ϕ(k) and ϑ(k). Rewriting

θ = −εμνλ

4π

∫
T 3

d3k sin 2α(∂μα)(∂νϑ)∂λϕ

= εμνλ

4π

{∮
d2kμ cos2 α(∂νϑ)∂λϕ

−
∫

T 3
d3k cos2 α[(∂μ∂νϑ)∂λϕ + (∂μ∂λϕ)∂νϑ]

}
, (D5)

the antisymmetric double derivatives in the last term contribute
a delta-function for k on the vortex lines times the winding of
the vortex.

Let us now specialize on the model given by Eq. (3.1) in
which case

ϕ = arg(sin k1 + i sin k2), (D6)

ϑ = arg

[
sin k3 + i

(
M −

3∑
i=1

cos ki

)]
, (D7)

and cos α = 1 in the vortex lines of ϕ, while cos α = 0 in the
vortex lines of ϑ . Observe also that the first term in Eq. (D5)
vanishes, since the either of the partial derivatives ∂νϑ and ∂λϕ

vanishes on each surface with the normal kμ. The four vortex
lines of ϕ are parametrized by

kT
mn := (mπ,nπ,k3) , m,n ∈ {0,1} , (D8)

and their winding numbers are (−1)m+n. Equation (D5) then
simplifies to

θ/π = − 1

2π

1∑
m,n=0

(−1)m+n

∫
T 3

d3kδ (k − kmn) ∂3ϑ

= 1

2

1∑
m,n,l=0

(−1)m+n+l signdkmnl ;4, (D9)

where we have written the number of phase windings of ϕ in
the vortex line of ϑ as

−
∫ 2π

0

dk3

2π
∂3ϑ (kmn) = sign dkmn0;4 − sign dkmn1;4

2

=
1∑

l=0

(−1)l

2
sign dkmnl ;4, (D10)

and kmnl is defined as in Eq. (3.8). In writing Eq. (D9), we
have recovered the Dirac invariant (3.10).

APPENDIX E: SINGLE-MODE APPROXIMATION FOR
FLAT BAND

We present some of the intermediate steps needed to derive
Eq. (4.10a). (For ease of presentation, we use Latin instead

of Greek indices for the momentum components in what
follows. Summation convention over repeated indices is also
implied.)

Our aim is to evaluate Eq. (4.3c) up to order q2k2. The
commutator in Eq. (4.3c) can be conveniently broken into four
contributions,

fk = f1,k + f2,k + f3,k + f4,k, (E1a)

each of which read

f1,k := 1

2

∑
q

vq〈[δρ̂−k,δρ̂−q][δρ̂+q,δρ̂+k]〉, (E1b)

f2,k := 1

2

∑
q

vq〈[δρ̂−q,δρ̂+k][δρ̂−k,δρ̂+q]〉, (E1c)

f3,k := 1

2

∑
q

vq〈δρ̂−q[δρ̂−k,[δρ̂+q,δρ̂+k]]〉, (E1d)

and

f4,k := 1

2

∑
q

vq〈[δρ̂−k,[δρ̂−q,δρ̂+k]]δρ̂+q〉. (E1e)

The commutator of two projected density operators can be
expressed, with the aid of Eq. (4.8), as

[ρ̂q,ρ̂k] =
∑

p

R p,q,kχ̂
†
p χ̂ p+q+k, (E2a)

where

R p,q,k := M p,qM p+q,k − M p+k,qM p,k. (E2b)

The nested commutators of three projected density operators
can be expressed, with the aid of Eq. (4.8), as

[ρ̂k,[ρ̂q,ρ̂k]] =
∑

p

� p,q,kχ̂
†
p χ̂ p+q, (E3a)

where

� p,q,k := R p−k,q,kM p,−k − R p,q,kM p+q+k,−k. (E3b)

Observe here that the identity

[ρ̂k,[ρ̂q,ρ̂k]]† = [ρ̂−k,[ρ̂−q,ρ̂−k]] (E4)

implies that

�∗
p,q,k = � p+q,−q,−k. (E5)

Needed is the expansion of R p,q,k and � p,q,k up to order
q2k2. We start with

M p,q = u†
p · u p+q

= u†
p · (u p + qi∂iu p + 1

2qiqj ∂i∂ju p + · · ·)
= 1 + qiu†

p · ∂iu p + 1
2qiqju

†
p · ∂i∂ju p + · · ·

= 1 + qiAi, p + 1
2qiqju

†
p · ∂i∂ju p + · · · (E6a)

where we have introduced the (imaginary-valued) Berry
connection

Ai, p ≡ u†
p · ∂iu p, (E6b)

035125-29



NEUPERT, SANTOS, RYU, CHAMON, AND MUDRY PHYSICAL REVIEW B 86, 035125 (2012)

and the summation convention over repeated indices i,j =
1, . . . ,d is implied. The symbol ∂i with i = 1, . . . ,d is to be
regarded as a derivative with respect to the argument of the
function on which it acts. Similarly,

M p+q,k = 1 + kiAi + qikj ∂iu
† · ∂ju

+ 1
2 (kikj + 2qikj )u† · ∂i∂ju

+ 1
2 (qiqj km + kikjqm)u† · ∂i∂j ∂mu

+ 1
2 (kikjqm + 2qmqikj )∂mu† · ∂i∂j ∂mu

+ 1
2qiqj km∂i∂ju

† · ∂mu

+ 1
4qiqj klkmu† · ∂i∂j ∂l∂mu

+ 1
2kikjqlqm∂lu

† · ∂i∂j ∂mu

+ 1
2qiqj klkm∂i∂ju

† · ∂l∂m∂mu + · · · (E7)

where the summation convention over the repeated indices
i,j,l,m = 1, . . . ,d is implied.

We multiply Eq. (E6a) by Eq. (E7) and antisymmetrize with
respect to the interchange of q and k. We obtain

R( p,q,k) = qikj
(
T

(2)
ij

)
( p) + (kikjqm − qiqj km)

× (T (3)
ij ;m

)
( p) + kikjqlqm

(
T

(4)
ij ;lm

)
( p), (E8a)

where the summation convention over the repeated indices
i,j,l,m = 1, . . . ,d is implied and we have introduced the
short-hand notation(

T
(2)
ij

)
( p) := (Fij )( p) ≡ (∂iAj − ∂iAj )( p), (E8b)(

T
(3)
ij ;m

)
( p) := 1

2 (∂mu† · ∂i∂ju − ∂i∂ju
† · ∂mu

− 2∂ju
† · ∂i∂mu − 2Aj∂iAm)( p), (E8c)(

T
(4)
ij ;lm

)
( p) := 1

4 [∂l∂mu† · ∂i∂ju − ∂i∂ju
† · ∂l∂mu

+ 2Al∂m(u† · ∂i∂ju) − 2Ai∂j (u† · ∂l∂mu)

+ 2∂lu
† · ∂i∂j ∂mu − 2∂iu

† · ∂l∂j ∂mu]( p)

(E8d)

for i,j,l,m = 1, . . . ,d. We evaluate

�( p,q,k) = R( p − k,q,k)M( p,−k) − R( p,q,k)M( p + q + k,−k)

= [R( p,q,k) − ka∂aR( p,q,k) + · · ·][1 − kbAb( p) + · · ·] − R( p,q,k)[1 − kaAa( p) − kaqb∂bAa( p) + · · ·]
= R( p,q,k) − ka∂aR( p,q,k) − kaAa( p)R( p,q,k) + · · · − R( p,q,k)

+ kaAa( p)R( p,q,k) + kaqb∂bAa( p)R( p,q,k) + · · ·
= −ka∂aR( p,q,k) + kaqb∂bAa( p)R( p,q,k) + · · ·
= −ka

[
qikj

(
∂aT

(2)
ij

)
( p) − qiqj km

(
∂aT

(3)
ij ;m

)
( p) + · · · ]+ kaqb∂bAa( p)

[
qikj

(
T

(2)
ij

)
( p) + · · · ]

= −qikj ka
(
∂aT

(2)
ij

)
( p) + qiqj kmka

(
∂aT

(3)
ij ;m

)
( p) + qbkaqikj ∂bAa( p)

(
T

(2)
ij

)
( p) + · · · , (E9)

where the summation convention over the repeated indices a,b,i,j,m = 1, . . . ,d is implied.
At last, we are in a position to evaluate the terms contributing to the function fk in Eq. (E1). We start with

f1,k = 1

2

∑
q

vq
〈 [

δρ̂−k,δρ̂−q
] [

δρ̂q,δρ̂k
] 〉

= 1

2

∑
q

vq

〈∑
p

R ( p,−k,−q) χ̂ †
pχ̂ p−k−q

∑
p′

R
(

p′,q,k
)
χ̂
†
p′ χ̂ p′+k+q

〉

= 1

2

∑
q

vq

∑
p, p′

R( p,−k,−q)R( p′,q,k)〈χ̂ †
p χ̂ p−k−q χ̂

†
p′ χ̂ p′+k+q〉

= 1

2

∑
q

∑
p, p′

vq
[
(−ka)(−qb)

(
T

(2)
ab

)
( p) + · · · ][qikj

(
T

(2)
ij

)
( p′) + · · · ]〈χ̂ †

p χ̂ p−k−q χ̂
†
p′ χ̂ p′+k+q

〉
= −1

2

∑
q

∑
p, p′

vq
[
kaqb(Fab) ( p)

] [
kiqj

(
Fij

) (
p′)] 〈χ̂ †

p χ̂ p−k−q χ̂
†
p′ χ̂ p′+k+q〉 + · · ·

= −1

2

∑
q

∑
p, p′

vq [(k ∧ q) · B( p)]
[
(k ∧ q) · B

(
p′)] 〈χ̂ †

p χ̂ p−k−q χ̂
†
p′ χ̂ p′+k+q〉 + · · · , (E10)

where we used that Bi = εijm∂jAm = 1
2εijmFjm or, equivalently, Fij = εijmBm. We now break the Berry field strength into two

contributions [i.e., B( p) = B + δB( p)]. If so,

f1,k = −1

2

∑
q

∑
p, p′

vq[(k ∧ q) · (B + δB( p))][(k ∧ q) · (B + δB( p′))]〈χ̂ †
p χ̂ p−k−q χ̂

†
p′ χ̂ p′+k+q〉 + · · ·

= −1

2

∑
q

∑
p, p′

vq[(k ∧ q) · B][(k ∧ q) · B]〈χ̂ †
p χ̂ p−k−q χ̂

†
p′ χ̂ p′+k+q〉
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− 1

2

∑
q

∑
p, p′

vq[(k ∧ q) · B][(k ∧ q) · δB( p′)]〈χ̂ †
p χ̂ p−k−q χ̂

†
p′ χ̂ p′+k+q〉

− 1

2

∑
q

∑
p, p′

vq[(k ∧ q) · δB( p)][(k ∧ q) · B]〈χ̂ †
pχ̂ p−k−q χ̂

†
p χ̂ p′+k+q〉

−1

2

∑
q

∑
p, p′

vq[(k ∧ q) · δB( p)][(k ∧ q) · δB( p′)]〈χ̂ †
p χ̂ p−k−q χ̂

†
p′ χ̂ p′+k+q〉 + · · ·

= −1

2

∑
q

vq[(k ∧ q) · B][(k ∧ q) · B]〈ρ̂−k−q ρ̂k+q〉 − 1

2

∑
q

∑
p′

vq[(k ∧ q) · B][(k ∧ q) · δB( p′)]〈ρ̂−k−q χ̂
†
p′ χ̂ p′+k+q〉

−1

2

∑
q

∑
p, p′

vq[(k ∧ q) · δB( p)][(k ∧ q) · B]〈χ̂ †
p χ̂ p−k−q ρ̂k+q〉

−1

2

∑
q

∑
p, p′

vq[(k ∧ q) · δB( p)][(k ∧ q) · δB( p′)]〈χ̂ †
p χ̂ p−k−q χ̂

†
p′ χ̂ p′+k+q〉 + · · · . (E11)

In a uniform liquid-like ground state we have 〈ρ̂k〉 ∝ δk,0 and, due to the relation kaqbFab = (k ∧ q) · B, we can replace ρ̂±k±q

by δρ̂±k±q . As a consequence, we can drop the first three terms on the last equality of (E11) up to order q2k2. We are then left with

f1,k = −1

2

∑
q

∑
p, p′

vq[(k ∧ q) · δB( p)][(k ∧ q) · δB( p′)]〈n̂ pn̂ p′ 〉 + · · · , (E12)

where n̂ p ≡ χ̂
†
p χ̂ p is the number operator projected on the lowest band. Similarly,

f2,k = 1

2

∑
q

vq〈[δρ̂−q,δρ̂k][δρ̂−k,δρ̂q]〉

= 1

2

∑
q

vq〈[δρ̂k,δρ̂−q][δρ̂q,δρ̂−k]〉

= f1,−k

= −1

2

∑
q

∑
p, p′

vq[(k ∧ q) · δB( p)][(k ∧ q) · δB( p′)]〈n̂ pn̂ p′ 〉 + · · · , (E13)

while

f3,k = 1

2

∑
q

vq〈δρ̂−q[δρ̂−k,[δρ̂q,δρ̂k]]〉

= 1

2

∑
q

vq〈δρ̂−q

∑
p

�( p,q,k)χ̂ †
p χ̂ p+q〉

= 1

2

∑
q

∑
p

vq�( p,q,k)〈δρ̂−q χ̂
†
p χ̂ p+q〉. (E14)

The matrix element 〈δρ̂−q χ̂
†
p χ̂ p+q〉 vanishes in the limit q → 0 and, therefore, the only term that contributes to f3,k up to order

q2k2 is

f3,k = 1

2

∑
q

∑
p

vq[−qikj ka(∂aFij )( p)]〈δρ̂−q χ̂
†
p χ̂ p+q〉

= 1

2

∑
q

∑
p

vq

[
(k ∧ q) ·

(
∂ B
∂pa

)
( p)

]
ka〈δρ̂−q χ̂

†
p χ̂ p+q〉. (E15)

The condition (E5) implies that f4,k = f ∗
3,k, which then delivers

f4,k = 1

2

∑
q

∑
p

vq

[
−(k ∧ q) ·

(
∂ B
∂pa

)
( p)

]
ka〈χ̂ †

p+q χ̂ pδρ̂q〉, (E16)

where we have used that (B( p))∗ = −B( p).
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Putting together all the contributions, we obtain

fk = −
∑

q

∑
p, p′

vq[(k ∧ q) · δB( p)][(k ∧ q) · δB( p′ )]〈n̂ pn̂ p′ 〉

+ ka

2

∑
q

∑
p

vq

[
(k ∧ q) ·

(
∂ B
∂pa

)
( p)〈δρ̂−q χ̂

†
p χ̂ p+q〉 − (k ∧ q) ·

(
∂ B
∂pa

)
( p)〈χ̂ †

p+q χ̂ pδρ̂q〉
]
, (E17)

where the summation convention over the repeated indices a = 1, . . . ,d is implied. Finally, the analytical continuation B ≡ −i B
delivers Eq. (4.10a).
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