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Theory of polarized neutron scattering in the loop-ordered phase of cuprates
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The collective modes observed in the loop-current ordered state in underdoped cuprates by polarized neutron
scattering require that the ground state is a linear combination in each unit cell of the four basis states that
are the possible classical magnetic moment configurations in each unit cell. The direction of such moments is
in the c axis of the crystals. The basis states are connected by both time reversal as well as spatial rotations about
the center of the unit cells. Several new features arise in the theory of polarized neutron scattering cross section
in this situation that appear not to have been encountered before. An important consequence of these is that a
finite component transverse to the classical magnetic moment directions is detected in the experiments. We show
that this transverse component is of purely quantum-mechanical origin and that its direction in the plane normal
to the c axis is not detectable, even in principle, in experiments, at least in the quantum-mechanical model we
have adopted. We estimate the direction of the “tilt” in the moment, i.e., the ratio of the transverse component
to the c-axis component, using parameters of the ground state obtained by fitting to the observed dispersion of
the collective modes in the ordered state. We can obtain reasonable agreement with experiments but only by
introducing a parameter for which only an approximate magnitude can be estimated. Approximate calculations
of the form factors are also provided.
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I. INTRODUCTION

Polarized elastic neutron scattering experiments1,2 and
dichroic ARPES3 have revealed that the pseudogap phase of
the cuprates have a long-range magnetic order that breaks time-
reversal symmetry without breaking translational symmetry of
the lattice. It is a Q = 0 staggered order with zero net moment
in each unit cell. Its geometric arrangement is consistent with
the order of a pair of oppositely directed fluxes due to current
loops formed in the O-Cu-O links in each unit cell.4 Classically
such an order has four possible domains as shown in Fig. 1.
These domains are specified by the directions (±1, ± 1) that
the order parameter � makes with respect to the x and y axes
of the crystal. The order parameter is an anapole5,6 given by

� =
∫

cell
dr[L(r) × r], (1)

where L(r) is the magnetic moment in the unit cell at the
point r. Such an order, for any of the four possible domains,
has orbital magnetic moments L pointed in directions along
or opposite the c axis of the crystals. However, polarization
analysis of the neutron scattering1 has shown that this is not
true. The direction of the moments, interpreted according to
the classic theory of polarized neutron scattering,7,8 makes a
large angle with respect to the c axis;9 the direction along the
plane is not revealed due to the multidomain nature of the
crystals and/or the multidomain nature of the order or as we
will show here due to its quantum-mechanical nature.

Polarized inelastic scattering was also discovered10,11 two
branches of weakly dispersive collective modes in the same
temperature region as the magnetic order and with an intensity
as a function of temperature compatible with it. Such collective
modes can only be understood as quantum fluctuations of the
observed order, just as is true for the one branch of collective
modes in the transverse field Ising model.12 In the paper
preceding this,13 hitherto referred to as I, we have introduced
a quantum-mechanical model for the observed order and

calculated the simplest quantum-mechanical ground state of
the model as well as the collective modes. The ground state is
a product over the unit cells of a sum over the four classical
configurations in each unit cell, depicted in Fig. 1 and given
with a particular choice of phases by

|G〉 =
∏

i

[
cos2 θ

2
|1,1〉i + cos

θ

2
sin

θ

2
(|1, − 1〉i + | − 1,1〉i)

+ sin2 θ

2
| − 1, − 1〉i

]
. (2)

θ is a parameter that has been determined by fitting the
calculated collective mode dispersions to the experiments.
|±1,±1〉i refer to the four configurations in a unit cell i.
As discussed in detail in I, and will be summarized below,
one can make unitary transformations consistent with the
symmetry of the problem, which introduce other operators in
the Hamiltonian, and give a corresponding ground state wave
function, which, in general, is a linear combination of the basis
states with complex coefficients. We show in this paper that
polarized neutron scattering from such a ground state requires
a quantum-mechanical description of scattering of neutron
of the quantum magnetic moments, whereas the traditional
method considers the problem as a quantum-mechanical
scattering of neutron from a classical magnetic field due to the
ordered magnetic moments, and in some cases, their zero-point
fluctuations, which only cause Debye-Waller-like corrections
in amplitudes. (The general expressions for polarized neutron
scattering in terms of the magnetic structure factor are still,
of course, valid. The issue is the approximations in which
the magnetic structure factor is calculated.) We show that in
this situation, the observed “tilting” of the moments can be
explained as a purely quantum phenomenon. One can only
deduce by neutron scattering, or by any other experiment, the
component of the magnetic moment along the c axis of the
crystal and that perpendicular to it but not the two orthogonal
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FIG. 1. (Color online) The four possible “classical” domains of the loop-ordered state are shown. In the classical ordered phase, one of
these configurations is found in every unit cell. In the quantum case, each unit-cell has an admixture of these four configurations.

components of the latter. We compare various aspects of the
experiment with our calculations. Aspects of the symmetry
of the observations all appear to be well reproduced. The
quantitative magnitude of the “tilt” and its variation with
the Bragg vector can only be reproduced by introducing a free
parameter, which can only be estimated approximately. We
also discuss the other explanations for the tilt, which are correct
in principle. We find that if they were a major contributor, there
would introduce other features in neutron scattering which are
ruled out by the experiments.

The basis states in Eq. (2) may be taken to be the eigenstates
of the orbital magnetic moment operator L3, with the three-axis
identified with the c axis of the crystal. An important aspect
of the problem is to specify the kinetic energy term that mixes
the four basis states in a cell i to give Eq. (2). This is important
because there is obviously no orbital moment vectors pointing
in the plane at the four locations indicated in the Fig. 1 because
current flow only in the planes is assumed. We will show that
an operator with the right commutation rules for an angular
momentum exists in the problem but its physical basis is a
fluctuating current loop between the four oxygen atoms around
a Cu atom in each unit cell. Such an operator occurs naturally
in the microscopic theory of loop currents in the cuprates16

and leads among other things to the marginal Fermi liquid14,15

in the normal state in the quantum-critical regime.
This paper is organized as follows. In the next section, we

summarize the quantum Ashkin-Teller model introduced in I
and cast it in the basis of local angular momentum operators,
which are more useful to discuss neutron scattering. We will
also review the transformation properties of these operators
to show that, given the quantum Ashkin-Teller model, the
direction of the tilt in the x-y plane cannot be determined.
In the following section, we discuss neutron scattering and
its polarization dependence and show that besides the usual
matrix element for polarized neutron scattering, there exists
also another matrix element due to the finite extent of the
current loops. In calculating the neutron scattering intensity,
we first consider the moments as point objects at the four
sites and subsequently improve the calculation by considering
the finite extent of the current loops. This also allows us to
estimate the form factors or the momentum dependence of the
scattering at the Bragg vectors. In our conclusions, we discuss
also alternate ways of obtaining the tilts and show that they are
not consistent with the qualitative features of the experiments.

II. LOOP-CURRENT MAGNETIC ORDER

In I, we have fully described the symmetries of the quantum
Ashkin-Teller model with which the collective modes of the
ordered loop current states are described and compared with
experiments. To calculate neutron scattering, we will proceed
in two steps. First, we will stay with the abstract representation
given in I. To reproduce only the correct symmetry of the
magnetic order, the orbital moments have been represented as
point objects located in the centroid of the triangular loops
of Fig. 1. The locations are labeled by Ri,a = R0

i + Ra , a =
1, . . . ,4. Here, i denote the lattice sites, R0

i is the position
of the center of the unit cell and Ra is the relative position
of each local moments in the unit cell. We take R1 = (r0,r0),
R2 = (−r0,r0), R3 = (−r0, − r0), and R4 = (r0, − r0) with a
value r0 smaller than 1/2 the lattice constant. The four loop
current states are labeled by the eigenvalues of σz and τz of
the classical Ashkin-Teller (AT) model. At the classical level,
for state |1,1〉 there is a magnetic moment perpendicular to the
copper oxygen plane pointing up located at R1 and another
pointing down at R3. Also there are zero moments at R2 and
R4. All the other three loop current states can be obtained
by sequentially rotating |1,1〉 by π/2 and will be denoted
by | − 1,1〉, | − 1, − 1〉, and |1, − 1〉. This labeling is also
consistent with the direction of the anapole vector �. The
four states (±1, ± 1) are, of course, globally orthogonal. We
assume that this is also true of the four local states in any unit
cell (±1, ± 1)i , as also each of them between different cells.
This is no different than, say, what is done with respect to the
local moments formed from the collective degrees of freedom
of fermions in itinerant antiferromagnets or ferromagnets for
regions of frequency and momenta where their wavefunction
do not overlap much the incoherent fermion excitations.

This is adequate to get the symmetries of the neutron
scattering intensity for different momentum transfer Q and
different measured initial and final neutron polarizations. But
it is not adequate to give the form factor and relative intensities
at different Q and polarizations. Calculating such information
is a very formidable task. In a second step, we will, however,
attempt this in an approximate way by introduce the wave
functions responsible for generating the orbital moments as
well as the representation of the kinetic energy in terms
of current operators. Besides quantitative verisimilitude, this
affords some insight into the interesting new physics in the
kinetic energy terms.
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The Hamiltonian derived in I to calculate the collective
modes was written in the space basis of the states (±1,±1),
and equivalently in the direct product basis with four-
dimensional vectors. The transformation from one to the other
is

|1,1〉i ≡ |1000〉i , |1, − 1〉 ≡ |0100〉i , etc. (3)

The classical Ashkin-Teller model in this basis is given by

HAT = −
∑
〈i,j〉

(
J1S

3
i S

3
j + J2T

3
i T 3

j + J4K
33
i K33

j

)
. (4)

The quantum terms causing a transition between the four states,
which are rotated with respect to each other in the direction of
� by ±π/2, are given in the same choice of gauge as Eq. (2)
by

HQ =
∑

i

t(S1 + T 1) + t ′K11, (5)

where Si , T i , and Kii are matrices in SU(4) space, specified
in I, where their commutation rules are also given. The
Hamiltonian HAT + HQ was used to derive the collective
modes in I and to get the ground-state wave function (2).
The terms K11

i which causes rotation by ±π , are unimportant
for our purposes here because they cause change in angular
momentum by two and therefore do not couple to neutrons,
which can change angular momentum only by one in the weak
scattering limit.

For calculating neutron scattering, it is more convenient to
define a basis set given in terms of the orbital moment operators
at the four locations in a cell. Since the local moments are
generated by orbital loop current they should be considered
in the representation for spin 1. The three components of
the effective moment will be denoted by L = (L1,L2,L3).
Normally, one would represent L by the spin-1 representation
of SU(2), i.e., by a three-dimensional representation, with
eigenvalues say of ±1,0. But we have four states per unit cell
in the loop current model. As explained in Appendix B, the
three-dimensional representation is inadequate to the present
case and a four-dimensional representation of the spin-1 states
must be used. This representation is given by

L1 = 1

2

⎛
⎜⎜⎜⎝

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

⎞
⎟⎟⎟⎠ , L2 = 1

2

⎛
⎜⎜⎜⎝

0 −i −i 0

i 0 0 −i

i 0 0 −i

0 i i 0

⎞
⎟⎟⎟⎠ ,

(6)

L3 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

⎞
⎟⎟⎟⎠ .

This representation is equivalent to a representation in the basis
of two independent set of spin-1/2 operators. This is quite
natural to use for the quantum Ashkin-Teller model. We will
verify that they satisfy the SU(2) algebra [Li,Lj ] = iεijkLk .
This is a reducible representation with two (orthogonal) L3 =
0 states that we denote as |01〉 and |02〉. The loop current basis
states in each unit cell in this representation have the following

bases in each unit cell:

|1,1〉 = (|1〉R1 ,|01〉R2 ,| − 1〉R3 , − |02〉R4 ), (7)

| − 1,1〉 = (|01〉R1 ,| − 1〉R2 , − |02〉R3 ,|1〉R4 ), (8)

| − 1, − 1〉 = (| − 1〉R1 ,|02〉R2 ,|1〉R3 , − |01〉R4 ), (9)

|1, − 1〉 = (|02〉R1 ,|1〉R2 , − |01〉R3 ,| − 1〉R4 ). (10)

Here, |i〉Rj
stands for the eigenvector of L3 with eigenvalue

i = ±1 or 0 at location j = 1, . . . ,4 in a unit cell. The phase
factors ±1 in front of the states |0〉Rj

are picked so that the
states in the left of Eq. (7) have zero net moment in a cell.

While, since it has a classical analog, it is perfectly clear
what L3

i,s physically means, the same cannot be said of L1
i,s

and L2
i,s . Obviously, these are not proportional to angular

momentum operators at the sites (i,s), since the currents
are required to flow only in the plane. We shall show that
there exist operators that have off-diagonal matrix elements
in the basis (±1,±1), so that using Eq. (7), we shall find
(in general complex) matrix elements between the eigenstates
with eignevalues ±1 and 0 of the operator L3

i,s . We shall define
L1

i,s and L2
i,s through such matrix elements.

A. Allowed unitary transformations on the quantum
Ashkin-Teller model

The unitary transformations described in I are equivalent
to rotations in L space, as we will explicitly show below.
Apart from the crystalline z axis that defines the direction of
the moments of the classical problem there is nothing in the
Hamiltonian derived in I for the problem which involves the
crystalline x and y axis (except that they be orthogonal to the z

axis). Therefore the direction 3 of L3 may be identified as the
z axis leaving the choice of the 1 and 2 axis with respect to the
x and y crystalline-axes undetermined. This situation is similar
to the traverse field Ising model in which the transverse field
is self-generated. One can then choose it to be in any direction
normal to the Ising axis with identical experimental results.
(Only if the transverse field is an externally applied field, can
one find in experiments that the direction of the moments is
tilted from the Ising axis towards the external field axis.)

We have shown in I that the classical Ashkin-Teller model
has a continuous symmetry U(1)S3 × U(1)T 3 × U(1)K33 , which
is the rotation around operators S3, T 3, and K33. The rotation
matrix is given by

U (θ ) = eiθ1S
3/2eiθ2T

3/2eiθ3K
33/2. (11)

The classical AT model is invariant under this transformation.
It has been shown that the quantum terms introduced depend
on the transformation U . At the same time, this transformation
changes the wave functions. For a general wave function |ψ〉 =
a|1,1〉 + b|1, − 1〉 + c| − 1,1〉 + d| − 1, − 1〉 with four com-
plex coefficients a,b,c, and d, we have

|Uψ〉 = aeiφ1 |1,1〉 + beiφ2 |1, − 1〉
+ ceiφ3 | − 1,1〉 + deiφ4 | − 1, − 1〉 (12)

with φ1 = θ1+θ2+θ3
2 , φ2 = θ1−θ2−θ3

2 , φ3 = −θ1+θ2−θ3
2 , and φ4 =

−θ1−θ2+θ3
2 . Thus U puts different phase factors on each of the
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four classical states with the sum of all phase factors restricted
to zero.

One should note the special case θ1 = θ2 = 0, when
this unitary transformation is simply a rotation of S and
equivalently of L in the x-y plane:

UL1U † = cos θ3L
1 − sin θ3L

2, (13)

UL2U † = sin θ3L
1 + cos θ3L

2. (14)

So, given the quantum Ashkin-Teller model, the direction of
the moments perpendicular to the z axis is undeterminable.

We now show more generally that Li have the properties of
angular momentum operators. As already discussed in Ref. 13,
by making use of Eq. (7), etc., one can express the local spin
operator L in terms of the Ashkin-Teller model operators of
Si , T i (defined in Ref. 13) as follows:

Lx
R1

= Lx
R2

= 1
2 (S1 + T 1), Lx

R3
= Lx

R4
= − 1

2 (S1 + T 1),

L
y

R1
= L

y

R3 = 1
2 (S2 + T 2), L

y

R2
= L

y

R4 = 1
2 (S2 − T 2),

Lz
R1

= −Lz
R3 = 1

2 (S3 + T 3), Lz
R2

= −Lz
R4 = 1

2 (S3 − T 3).

Using the commutation relations given for SiandT i in I, it is
easy to verify that the L satisfy the SU(2) algebra (up to an
overall minus sign). Therefore L can be regard as an angular
momentum operators.

III. POLARIZED NEUTRON SCATTERING

The neutron scattering Hamiltonian is

Hint =
∫

drB(r) · σ (r). (15)

σ (r) is the spin of the neutron at point (r) in the crystal where
the magnetic field operator is B(r). The source of the magnetic
field are the magnetic moment operators due to spin or in our
case orbital moments L(R0

i + Ra) at locations (R0
i + Ra). One

can Fourier transform Eq. (15) and rewrite it in terms of the
magnetic moments L at the momentum transfer Q as7,8

∑
a

eiQ·RaFa(Q)La,⊥(Q) · σ (Q). (16)

Here, La,⊥(Q) = La − (La · Q̂)Q̂ is the component of La

perpendicular to Q̂ and Fa(Q) is the form factor.
It is important to discuss how the directions of the Pauli

matrices σ are fixed in the usual situation in which the
directions of L are known with respect to the crystalline axes
and the difference in the present case. The quantization axis of
the neutron spin is fixed externally to the sample by applying
a (small) magnetic field in a specific direction, with respect,
say to the momentum transfer direction Q̂ of the neutron. This
fixes σ3 with respect to the crystalline axes and the experiment
is done with various choices of direction i = 3 with respect to
Q̂. The other directions 1 and 2 are then fixed through knowing
the direction of L with respect to the crystalline directions and
the use of the dot product in Eq. (15). In effect, B can be treated
classically in such situations.

This is to be contrasted with the present situation in which
the basis vectors of the ground state (±1,±1) specify only

the direction of the orbital moment, up or down (or zero)
as being along the normal to the Cu-O planes denoted here
by the z axis. Taking matrix elements of B in the ground
state (2) leads to off-diagonal terms in these basis vectors.
As noted this cannot be specified as a magnetic field operator
generated by magnetic moments in specific directions with
respect to the crystalline axes; all that can be said is that
the off-diagonal matrix elements are matrix elements of a
magnetization operator orthogonal to the direction ẑ with
which the basis vector are specified. A purely real ground-state
wave function means that only matrix elements of S1 and T 1

generate the off-diagonal elements and so only L1
⊥(Q) enters in

Eq. (16). Correspondingly, only σ1 appears in Eq. (16). There is
no way to fix 1 with respect to the crystalline axes. If, however,
one used a more general choice of the wave function so that
it is complex, L⊥(Q) are determined by matrix elements of
S1,T 1 as well as S2,T 2 and, correspondingly, σ2 enters in the
calculation. The final answer for the spin-flip cross sections of
the neutrons cannot (and does not) depend on the choice of the
wave function, nor can the directions 1 and 2 be determined
with respect to the crystalline axes.

The difference in our case from the traditional case arises
from the fact that L does not come physically from an atomic
orbital moment where the three different components of the
orbital angular momentum can be defined with respect to the
crystalline axes. Rather, in our case, only the z component is
defined in the basis; the mixing in the ground state of the basis
is due to a transverse field operator as discussed above. The
physical basis for the transverse field will be specified below.

Our purpose is to interpret experiments that deduce every-
thing from measuring (functions of) the matrix elements of
σ (Q) through three different choices of the quantization axis 3
with respect to the Q. From Eq. (16), it follows that when the
polarization of the neutron, i.e., the direction 3 of σ is chosen
parallel to Q, there is only spin-flip scattering, while for any
other choice there is both spin-flip and spin-non-flip scattering.
We have identified L3 as proportional to Lz. As explained, we
have a freedom of choice of rotating the 1 and 2 directions of
the neutron σ by any arbitrary angle about its chosen axis 3.
It thus follows that for any choice of Q and the neutron polar-
ization, one can never determine Lx and Ly . One can only de-
termine Lz and the component of L perpendicular to it, which
we will call Lt . Having shown this, we can do the calculation
in the simplest choice in which the wave function is real and
only the operators S1,T 1, and K33 appear in the Hamiltonian.

The situation may be contrasted with the case when the
direction of order of the system is fixed by, for example,
crystalline anisotropy as in the anisotropic Heisenberg model.
The order parameter 〈M〉 is then fixed with respect to the
crystalline axes and may be regarded as a classical source
for a classical B(r) in Eq. (17). The magnitudes of two of
the components of 〈Mx,My,Mz〉 can then be determined by
measuring the neutron scattering cross-sections by polarizing
the neutron beam in two different directions with respect to
a momentum transfer Q and using Eq. (16). One can then
change Q and repeat the measurement to determine all the
three directions of 〈M〉 for simple magnetic order (or measure
at other Q for more complex order.) If one has an Ising model
in a external transverse field, the direction of M is similarly
fixed.
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The problem discussed above is different also from prob-
lems of scattering neutrons in the quantum Heisenberg antifer-
romagnets, where the kinetic energy terms in the Hamiltonian
are quadratic operators in the spins, as opposed to the present
case where they are linear. In such cases, quantum mechanics
only induces a reduction in the ordered spin moment without
changing its orientation through a Debye-Waller factor due
to zero-point spin fluctuations while transferring weight to an
incoherent background.

IV. MATRIX ELEMENTS FOR NEUTRON SCATTERING

We shall show here that there are two kinds of matrix
elements in scattering of neutrons due to the linear combination
in the ground state (2). This can be seen most clearly from
the rotational and time-reversal properties of the basis states
written in the form of Eq. (6). The basis states are connected
through what we might call the time-reversal part of the dipole
Hamiltonian, which involve L+σ− + L−σ+. This is the usual
scattering. But as already mentioned, the basis states also go
to each other under successive π/2 and π rotations in real
space through the axis normal to the plane at the center of a
cell. We show here that the dipole interaction (17) has a finite
projection to such rotation operators also. We will call these
matrix elements of the “rotational” kind. The matrix elements
from a given initial and a given final basis states for both kinds
must be summed and then squared to get the scattering cross
section.

Since the local loop current is actually an extended object,
the neighboring loop currents although orthogonal have a finite
matrix element through the spatial dependence of the dipole
interactions Hamiltonian:

Hint(R) = σ · L − 3(σ · ̂(r − R)(L · ̂(r − R)

|r − R|3

= −σ · ∇r ×
[

L × ∇r
1

|r − R|
]
. (17)

Here, ̂(r − R) is the unit vector along (r − R). r and R are the
position vector of neutrons and local moments, respectively.

Let |ψa〉 denote one of the four loop current state |±1,±1〉
and |ψa,Ri〉 denote the local moment state of ψa located at Ri .
This local moment state can be written as the direct product of
the coordinate part and a “moment” part as |ψa,Ri〉 = |φ(R −
Ri)〉|ψa,Ri〉s . Here, the moment part |ψa,Ri〉s are the four
possible states |±1〉 and |01,2〉. The coordinate part φ(R − Ri)
describes the spatial wave-function of the magnetic moment
centering around Ri . For orbital moments, φ may be taken to
be the real part of the wave function, while ψ may be taken
to be a phase varying around the loop for the loop currents.
For φ(R − Ri) = δ(R − Ri), there are only the usual matrix
elements of the dipole interaction between the basis states of
Eq. (2) because∫

d3R φ(R − Ri)Hint(R)φ(R − Rj )

=
∫

d3R δ(R − Ri)Hint(R)δ(R − Rj ) ∝ δij . (18)

We will call the matrix elements of the dipole interactions for
(i = j ) the matrix elements of the “spin” kind.

But for finite size φ’s, the above matrix element is, in
general, not zero. The detailed form of this function φ(R)
is not very important to us. Here, we also assume that
the distribution function satisfies the orthogonal relations as∫

d3R φ(R − Ri)φ(R − Rj ) = δij .
Then such matrix element are

〈ψa,Ri |Hint(R)|ψb,Rj 〉
= −

∫
d3R φ(R − Ri)σ · Bφ(R − Rj ),

B = ∇r ×
[

Lij × ∇r
1

|r − R|
]
.

Here, Lij = 〈ψa,Ri |sL|ψb,Rj 〉s . We will call them matrix
elements of the “rotational kind.”

A. Matrix element of the “spin” kind

The ground-state expectations of Li using Eq. (7) are

〈Li(R1)〉 = (sin θ, cos θ ), (19)

〈Li(R2)〉 = (sin θ,0), (20)

〈Li(R3)〉 = (− sin θ, − cos θ ), (21)

〈Li(R4)〉 = (− sin θ,0), (22)

where now the two components refer to the “directions” t̂ and
ẑ, respectively.

The calculation in Eq. (19) is only for one unit cell. The
magnetization in the lattice just repeats the same result in each
unit cell,

L(Q) =
∑
Ria

L(Ria)e−iQ·Ria ,

and the magnetization is given by

Lt (Q) =
∑

n

sin θ (e−iQ·R1 + e−iQ·R2 − e−iQ·R3 − e−iQ·R4 )

× δ(Q − τ n), (23)

Lz(Q) =
∑

n

cos θ (e−iQ·R1 − e−iQ·R3 )δ(Q − τ n). (24)

Here, τ n is the reciprocal lattice vector of the lattice. Suppose
the unit vector of transfer momentum is q̂, then the scattering
intensity is

I (Q) ∝ |〈L⊥(Q)〉|2. (25)

Since we treat the orbital current loop as a pointlike spin, the
scattering amplitude is a constant as a function of Q. So, this
calculation is not designed to give the structure factor correctly.

Suppose this is the only contribution to scattering. Then at
any Q = (a∗,0,0), barring multiple Cu-O layers per unit cell
(which we will have to consider for YBa2Cu2O6+δ) the tilt
angle would be determined by

|Lt |
|Lz| ≈ 2 sin θ · 2 sin(Qr0)

cos θ · 2 sin(Qr0)
.

For the fitted parameters from calculation of the collective
modes in I, we have sin θ = −0.26, so the tilt angle is only
about 28◦.

035124-5



YAN HE AND C. M. VARMA PHYSICAL REVIEW B 86, 035124 (2012)

B. Matrix elements of ‘rotational” kind

We now consider the second kind of scattering starting from
Eq. (19). We can make use of the fact 1

r
= ∫

d3q

(2π)3 e
iq·r 4π

q2 to
transform the above result to momentum space:

〈ψa,Ri |Hint(R1)|ψb,Rj 〉
= σ ·

∫
d3QeiQ·r Q̂ × (Lij × Q̂)Sij (Q) (26)

with Sij (Q) =
∫

d3R φ(R − Ri)φ(R − Rj )e−iQ·R.

Now we can expand the exponential factor and the leading
nonzero term is

Sij (q) ≈ −i

∫
d3R φ(R − Ri)φ(R − Rj )(Q · R). (27)

To be specific, we consider S12(q) first. For simplicity, we
assume that the distribution is isotropic φ(R) = φ(|R|). Since
R1 = (r0, r0) and R2 = (−r0, r0), then it is easy to see that
φ(|R − R1|)φ(|R − R2|) is even function about Rx and Rz.
Thus we have

S12(Q) ≈ −iqy

∫
d3R φ(R − R1)φ(R − R2)Ry = −iQyC,

(28)

S23(Q) ≈ −iqx

∫
d3R φ(R − R2)φ(R − R3)Rx = iQxC,

(29)

S34(Q) ≈ −iqx

∫
d3R φ(R − R3)φ(R − R4)Ry = iQyC,

(30)

S41(Q) ≈ −iqx

∫
d3R φ(R − R4)φ(R − R1)Rx = −iQxC,

(31)

where C = ∫
d3R φ(|R − R1|)φ(|R − R2|)Ry . We see that C

is of O(r0). We will find the coefficient only by fitting to the
data.

Note that this new term is also proportional to L⊥(Q),
just as the traditional matrix elements for polarized neutron
scattering. But the momentum dependence is different from
the classical neutron diffraction expression. We can repeat this
calculation at all possible neighboring local moments and find
similar expressions. Recall that the four states are collections
of four local spin-1 states. The ground state is superposition of
the four states, thus it is also a collections of four local spin-1
states. To compute the total neutron scattering amplitude, we
need to evaluate the matrix elements of L between all the
neighboring local spin-1 states of the ground state. The four
local spin-1 states of the ground state is given by (here we only
write the spin part)

|G,R1〉s = c2|1〉 + sc|01〉 + sc|02〉 + s2| − 1〉,
|G,R2〉s = sc|1〉 + c2|01〉 + s2|02〉 + sc| − 1〉,
|G,R3〉s = s2|1〉 − sc|01〉 − sc|02〉 + c2| − 1〉,
|G,R4〉s = sc|1〉 − s2|01〉 − c2|02〉 + sc| − 1〉.

Here, c = cos θands = sin θ. Then it is straightforward to find
the following matrix elements for L:

〈G,R1|sL|G,R2〉s =
[

(1 + sin2 θ )

4
, − i

2
cos θ,

sin(2θ )

4

]
,

〈G,R2|sL|G,R3〉s =
[

1

2
cos2 θ, − i

2
cos θ, − 1

4
sin(2θ )

]
,

〈G,R3|sL|G,R4〉s = −
[

(1 + sin2 θ )

4
,
i

2
cos θ,

sin(2θ )

4

]
,

〈G,R4|sL|G,R1〉s =
[

− 1

2
cos2 θ, − i

2
cos θ,

1

4
sin(2θ )

]
.

Other matrix elements are the complex conjugate of the above
equations. If we put all the terms together, one can see that the
imaginary part cancel out and only the real part contributes.
We find the scattering amplitude in the momentum space as

〈G|Hint(R)|G〉 = 2
∑
(ij )

σ · Q̂ × (Lij × Q̂)Sij (Q) (32)

with index pair (i,j ) = (1,2),(2,3),(3,4),(4,1) and Lij =
Re〈G,Ri |sL|G,Rj 〉s . Putting all the above results together,
we find

〈G|Hint(R)|G〉 = −4iQyCσ · Q̂ × (L12 × Q̂)

− 4iQxCσ · Q̂ × (L41 × Q̂). (33)

Again, we can consider the transfer momentum Q =
(a∗, 0,0). The scattering amplitude is

〈G|Hint(R)|G〉 = −4iQxCσ · Q̂ × (L41 × Q̂), (34)

which can be rewritten as

〈G|Hint(R)|G〉 = σ · Q̂ × [Leff × Q̂], (35)

Leff = 4iQxC
[

1
2 cos2 θ, − 1

4 sin(2θ )
]
. (36)

C. Total matrix element

The form in Eq. (35), has the same structure as the matrix
element of the “spin kind” Eq. (25). We can combine them
together to find the total magnetization as

Ltot = L0 + Leff, L0 = 2i sin(Qxr0)(2 sin θ, cos θ ),
(37)

Leff = 4iQxC
[

1
2 cos2 θ, − 1

4 sin(2θ )
]
,

where the two components again refer to t and z, respectively.
Here, L0 is the magnetization form the “spin-type” contribu-
tion.

The parameter r0 specifies the location of the mo-
ments. For the ground state determined from the collective
modes, we have sin θ = −0.26. If we assume that QxC ≈
−0.5 sin(Qxr0), then we find that for transfer momentum
Q = (a∗,0,0), the tilted angle is about 50◦. The experimental
results are 55 ± 7◦ and 35 ± 7◦, respectively,1 for YBaCuO6.6.
But most of the data available for the collective modes from
which the angle θ is deduced is in Hg1201 with a Tc ≈ 61 K,
which from the general phenomenology has properties close to
those in YBaCuO6.6. Collective modes have also been found in
YBaCuO6.6

11 at similar frequencies but detailed information
about the dispersion of the two branches of collective modes
is unavailable. The tilt in Hg1201 at (1,0,1) is deduced to be9
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FIG. 2. (Color online) Current pattern of the rotation operator in
Eq. (38).

45 ± 20 within the estimates provided here. We can claim that
with C = O(r0), we get the correct trend and the magnitudes
of the tilt in agreement with experiment within the stated error
bars. It should be stated that a simplified model is used to
calculate the collective modes and the ground state from which
θ is determined. It could easily be ±10◦ from that deduced.

V. CALCULATION INCLUDING FORM FACTORS

A. Real-space representation of the operators
(S1 + T 1 + S2 + T 2)

To calculate the neutron scattering including form factors,
one needs the wave function that have the orbital moments
and the microscopic representation of the operators which
lead to the produce the admixed ground-state wave function
(2). The approximate space representation of the basis states
is relatively straight forward. One may represent them with
complex wave functions carrying currents around the indicated
loops as in Fig. 1. The subtle issue is in the representation of
the operators (S1

i + T 1
i ), which give the linear combination

of the classical basis states in the ground state in Eq. (2).
They were introduced at a formal level in I simply because
such terms are allowed and because they are necessary to
calculate the observed collective modes in the loop ordered
state. But what is the physical origin of such quantum terms?
The physical origin was already derived in connection with
calculating the spectra of the collective fluctuations in the
quantum-critical regime of the loop ordered phase.16 A simpler
derivation is given in Appendix A. The operator S1

i + T 1
i is

given by the current operator schematically shown in Fig. 2
and its Hermitian conjugate that has a current flowing in the
opposite direction. In the continuum limit, this is simply the
operator proportional to

∑
cells ∇ × j(r), with r measured from

the center of each unit cell and with a cutoff at the boundary.
We recall from I that the operator (S1

i + T 1
i ) acting on any of

the four states (±1,±1) in a unit cell admixes the state rotated
by ±π/2 to it. This operator corresponds to the collective part

1 2 3 4 5
kz c

0.02

0.04

0.06

0.08

0.10

Mx,Mz A.U

FIG. 3. (Color online) Mx (black curve) and Mz (red curve) as a
function of kz.

of the following fermion operators (see Appendix A):∑
k

eik·Ri icxcy(p†
x,kpy,k − p

†
y,kpx,k). (38)

Here, px,k and py,k are the Fourier transform of the oxygen
p-orbital operators in the x and y directions, respectively,
around the Cu atom in the unit cell i. Such an operator is cre-
ated microscopically through expressing the nearest-neighbor
interactions in each unit cell in terms of current operators
and combining such current operators to form closed loops
within a unit cell. Five different point group symmetries result
including that of Eq. (38) sketched in Fig. 2. That this operator
admixes the basis states is shown in detail in Appendix A.

Given this, we can calculate the form factor of neutron
scattering by further approximations to represent the collective
states shown in Figs. 1 and 2. These are described in
Appendix A. We now proceed with the comparison with the
experiments in evaluation of the neutron scattering using these
results.

B. Results for tilt and form factor

It easy to see that if we include the form factor effects, Lz

decreases faster than L1 as Qz increases [see Fig. (3)]. (Recall
that the subscript 1 in L1 stands for whatever component
of L perpendicular to the z axis is being measured.) We
therefore find the tilt angle for Q = (101) is larger than
Q = (100), qualitatively consistent with the experiments.1

How the tilt angle depends on the momentum is determined in
our calculation by the choice of parameters such as rs and r0,
which is hardly definitive.

For example, as a reasonable guess, we can take r0 = 0.25a

and rw = 0.175a. Here, a is the lattice constant of xy plane.
The tilted angle is quite sensitive to the current width parameter
w. From experimental data, we know that the intensity of
neutron scattering of L = 2 is half of that for L = 0. For a
Gaussian shape dependence of Qz, we can deduce that w ≈
0.5a. The half width of the current is comparable to the radius
of the current.

For the above choice of parameters, the intersection of
these two circles are R1a = (0.238a,0.075a) and R1b =
(0.075a,0.238a). If we use the approximate form factor of
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Eq. (C9), then for transfer momentum Q = 2π
a

(0,1,0), we find
that the tiled angle is φ = arctan( |Lx |

|Lz| ) ≈ 64◦.
Since the width w = 0.5a is not small compared to a, we

can not use the above approximation. Therefore we have to
numerically transform Eqs. (C6) and (C4) to momentum space.
For Q = 2π

a
(0,1,0), we find that the tiled angle is φ ≈ 26◦. If

we also include the “rotation” kind contribution to the moment
from Eqs. (C10) and (C11) and choose the parameter C =
−0.2a, we find the total tiled angle is φ ≈ 38.5◦. For YBCO,
c ≈ 3a. Therefore for transfer momentum Q = (0, 2π

a
, 2π

c
), we

find the tiled angle φ ≈ 47◦.
For YBCO, there are two copper-oxygen planes. Suppose

the distance between these two layers are d, then we will have
an extra structure factor cos(Qz

d
2 ). This makes the amplitude

oscillate with Qz.

VI. CONCLUDING REMARKS

In this paper, we have used the result derived earlier in
I that the ground state of the loop-ordered state is a linear
combination of the classical basis states. This necessitates a
new view of calculating the neutron scattering cross section in
which one must consider the flip in the neutron spin due also to
the matrix elements of flip operators of the quantum-moments
in the ground state. The simplest (mean-field) ground state was
considered. This does not include the zero-point deviations due
to spin waves. We have calculated these to be a small effect
because the collective modes are all at finite energy.

Our method of calculating the neutron scattering cross
section may be useful in other quantum problems, for example,
the transverse field Ising model, provided the transverse field
is not an external field with a specified direction but internally
generated. It may also be useful when scattering experiments
are done in other loop-ordered states such as the anomalous
Hall effect and the topological insulator states.

We have been able to show reasonable consistency of the
calculation with the experimental results but a parameter C

was introduced, which we find hard to calculate but can argue
only that it should be small compared to 1, as is indeed found.
Especially gratifying is that the tilt angle deduced depends
on the Bragg vector. This would not happen in the traditional
usage in which the neutron spin flips quantum mechanically
of a spatially dependent classical magnetic field due to the
magnetic order.

It is worthwhile commenting on earlier attempts to under-
stand the tilt. One was based on spin-orbit scattering.17 This
had two difficulties; there is no such term in Hg1201 and
the magnitudes do not come out reasonably without giving a
scattering at (2,0,0), which is not in agreement with elastic
experiments. The other idea is that there is a moment on
the triangles made through apical oxygens.18 This is allowed
by symmetry.6 Mean-field calculations do not provide any
significant such moment for any reasonable set of parameters.
There is a more basic problem with having any significant
amplitude for such a contribution. It is that such moments
would provide zero contribution of the moment perpendicular
to the z axis for any scattering vector with Qz = 0 due to
the structure factors in the Cu-O lattices with a plane of
reflection in the unit cell perpendicular to the z axis. As already

mentioned a large tilt has been deduced for Q = (1,0,0).2

One could introduce currents through the apical oxygens
which would produce “tilts” at Q = (1,0,0) also. But they
are not allowed by symmetry of the currents in the plane but
would require additional symmetry breaking. Simultaneous
occurrence of two different symmetry breaking would require
an unlikely accident.

Our calculations in this paper also have an impact for some
other measurements. If the tilt were due to moments in triangles
made through apical oxygens as discussed in the previous
paragraph, there should be measurable magnetic fields20 at
several sites in the lattice, detectable in NMR experiments.
With the quantum origin of tilt fields, the calculations based
on a classical magnetic field tilted in specific directions are
not valid. Further consequences of the quantum origin of the
tilt, for example, in NMR experiments, is well worth further
investigation.
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APPENDIX A: MICROSCOPIC THEORY OF THE KINETIC
ENERGY OPERATOR (S1 + T 1 + S2 + T 2) FOR THE LOOP

CURRENT STATES

The loop current states were derived4 starting from the
basis of the three orbitals (di,pix,piy) per unit cell. Besides
the kinetic energy operator between the neighboring d, px ,
and py orbitals, the model includes local repulsion at each site
(the U ’s) and near-neighbor repulsions of charges V ninj . The
on-site repulsions are assumed to serve only to renormalize
the remaining terms in the Hamiltonian in the metallic state.
A crucial role is played by the operator for nearest neighbor
interactions. For spin-diagonal terms in the operator ninj , it
may be written as

V
∑

σ

ni,σ nj,σ = V/2(|jij |2 − ni − nj ). (A1)

Here, jij = i
∑

σ c+
i,σ cj,σ + H.c. has the operator content of

a current. Discarding the one particle terms, a mean-field
approximation is made on |jij |2:

|jij |2 = (
r2
ij + rjij + r∗jij + fluctuation operators

)
. (A2)

Here, rij is the collective part of jij . Now the effective kinetic
energy on the link (ij ) is tij + iV rij /2, which gives a complex
kinetic energy with a phase ≈ rVij /(2tij ). Phase differences on
links within a unit cell are combined to form closed loops that
have invariant fluxes with different point group symmetries.
For nonintersecting loops on the Cu-O lattice, there are five
and only five such closed loops possible.16 Two of these, which
transform as doubly degenerate vectors E1, in the (x ± y)
directions and their time-reversed partners form the four flux
patterns depicted in Fig. 1. Simple mean-field calculations as
well as more elaborate calculations18 show that this is the most
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stable allowed symmetry and experiments1 have shown it to be
the realized state in all the underdoped cuprates investigated.

The other current loop that plays a crucial role in our
considerations here and in the collective modes of I and played
an important role in the calculation of collective fluctuations16

in the quantum-critical regime is the pattern transforming with
the full symmetry of the lattice. It is depicted in Fig. 2. We
will show that it has local matrix elements between the states
(±1,±1). Before we show this, it is important to specify some
properties of the basis states (±1,±1).

Corresponding to each of the four collective states
(±1,±1), there are four mean-field kinetic energy Hamiltoni-
ans for the fermions:

H (k) =

⎛
⎜⎝

0 itpdSx itpdSy

−itpdSx 0 tppsxsy

−itpdSy tppsxsy 0

⎞
⎟⎠ (A3)

with Sx = sin(kxa/2 + φx), Sx = sin(kya/2 + φy), sx =
sin(kxa/2), and sy = sin(kya/2). The four different mean-field
Hamiltonians correspond to the four different possible order
parameters (φx,φy) = (±�,±�), where � is the magnitude
of the order parameter, which is determined variationally. The
eigenvalues and eigenstates of the three fermion bands in the
zeroth order of tpp/tpd are given by

E1 = −tpd

√
S2

x + S2
y , E2 = 0, E3 = tpd

√
S2

x + S2
y ,

|1,k〉 = 1√
2

(
− i,

Sx

Sxy

,
Sy

Sxy

)T

, |2,k〉 =
(

0, − Sy

Sxy

,
Sx

Sxy

)T

,

|3,k〉 = 1√
2

(
i,

Sx

Sxy

,
Sy

Sxy

)T

with Sxy = √
S2

x + S2
y .

To find the collective operator which rotates among the
four states (±1, ± 1), let us first find the operator which
rotates among the fermion states of these four collective states.
Then the collective operator we are looking for is simply the
collective part of such an operator formed from the fermions.
Let us use subscript a, b, c, and d to label order parameter
(1,1), (−1,1), (−1, − 1), and (1, − 1). Then we can find the
exact unitary operators that rotates among the four states such
as

Uab = |1〉b〈1|a + |2〉b〈2|a + |3〉b〈3|a,
Ubc = |1〉c〈1|b + |2〉c〈2|b + |3〉c〈3|b.

The above rotation operators are exact and unique, but they are
too complicated to be useful. Since the order parameter � is
small, we only need to make this rotation up to linear order of
�. We also need to impose the requirement that the operator
rotating from a to b is the same as the operator that rotates
from b to c.

In finding the operator with the right properties, we are
guided by what we know of the operator if we take a continuum
of two dimensional states specified by a unit vector in the
plane and ask for the operator which rotates such a vector.
It is obviously the angular momentum operator in a direction
normal to the plane of i(x ∂

∂y
− y ∂

∂x
) or equivalently, the current

operator ∇ × j where j is proportional to the current operator

in the plane. The equivalent of this operator on the Cu-O lattice
is pictorially depicted in Fig. 2.

It is straightforward to calculate that the algebraic represen-
tation of the operator (which will be the generator of rotations)
in Fig. 2 is given by

gk = icxcy(p†
x,kpy,k − p

†
y,kpx,k). (A4)

Then the corresponding unitary operator is

U = 1 + i�gk =

⎛
⎜⎝

1 0 0

0 1 −�cxcy

0 �cxcy 1

⎞
⎟⎠ . (A5)

We can now check that such an operator makes the π/2
rotations that we are looking for up to linear order of �. It
is easy to verify that

〈3,k|bU |3,k〉a = 1 + cxs
2
y

(
sxsys

2
xy − cx

)
s4
xy

�2 + O(�3),

〈3,k|cU |3,k〉b = 1 − cys
2
x

(
s2
xs

2
y + cy + s4

y

)
s4
xy

�2 + O(�3),

〈3,k|dU |3,k〉c = 1 − cxs
2
y

(
sxsys

2
xy + cx

)
s4
xy

�2 + O(�3),

〈3,k|aU |3,k〉d = 1 + cys
2
x

(
s2
xs

2
y − cy + s4

y

)
s4
xy

�2 + O(�3).

It has already been shown16 that operator gk is also generated
by the nearest-neighbor interactions. It then follows that a
collective current operator of the same symmetry also exists
that serves as a kinetic energy term mixing the collective
configurations. In the basis of the collective states | ± 1, ± 1〉,
this has all the transformation properties and commutation
rules of the operator (S1 + T 1 + S2 + T 2).

APPENDIX B: NEED FOR A FOUR-DIMENSIONAL
REPRESENTATION OF THE OPERATOR S

As discussed the gauge transformation is given by the
rotation matrix

U (θ ) = eiθ1S
3/2eiθ2T

3/2eiθ3K
33/2. (B1)

The classical AT model is invariant under this transformation.
Under this rotation, the quantum term S1, T 1, and K11 will be
transformed as follows:

U (θ )S1U (θ )† = cos θ3(cos θ1S
1 − sin θ1S

2)

− sin θ3(sin θ1K
13 + cos θ1K

23), (B2)

U (θ )T 1U (θ )† = cos θ3(cos θ2T
1 − sin θ2T

2)

− sin θ3(sin θ2K
31 + cos θ2K

32), (B3)

U (θ )K11U (θ )† = cos θ1 cos θ2K
11 + sin θ1 sin θ2K

22

− (cos θ1 sin θ2K
12 + sin θ1 cos θ2K

21).

(B4)

The quantum terms related by this transformation are equiv-
alent to each other. In the mean time, the mean-field ground
state is also transformed to a new form. In the loop current
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state basis, the original ground state can be written as |G〉 =
(c2,sc,sc,s2)T. After the transformation, we have |G′〉 =
U (θ )|G〉, which is a superposition of the four states with
complex number coefficients. Thus after the transformation,
〈Sy〉 is nonzero and depends on the gauge parameter θ1,2,3.

Since M(q) as a physical observable is gauge invariant, it
should not depend on the gauge parameter θ1,2,3. This gauge
dependence should disappear if we make a corresponding
unitary transformation on the local spin operator S1,2,3. But
now we meet a immediate difficulty. The transformation U (θ )
is a 4 × 4 matrix simply given by

U (θ ) = diag{eiφ1 ,eiφ2 ,eiφ3 ,eiφ4} (B5)

with φ1 = θ1+θ2+θ3
2 , φ2 = θ1−θ2−θ3

2 , φ3 = −θ1+θ2−θ3
2 , and φ4 =

−θ1−θ2+θ3
2 . Translating this transformation to the basis of local

spin-1 state, we find that the corresponding transformation is

V (θ ) = diag{eiφ1 ,eiφ2 + eiφ3 ,eiφ4}. (B6)

Clearly, on can see that V (θ ) is not a unitary transformation.
Therefore we cannot use V (θ ) to cancel the gauge dependence.

This difficulty arise because there are four states in the
loop current state basis but there are only three states in the
local spin-1 state basis. In order to overcome this difficulty,
we have introduced a four-dimensional representation of the
spin-1 states given in the paper.

APPENDIX C: APPROXIMATE CALCULATIONS
OF FORM FACTOR

We first consider the form factor for the Lz. Since Lz

only has diagonal matrix elements, we do not need to use
the rotation operator yet. The form factor is determined by
the current density around the O-Cu-O triangle. To simplify
the calculation, we approximate the triangle shape by a circle
shape current density and also assume the density is a Gaussian
distribution around the circle. Then, the wave function of
the local spin states in terms of cylindrical coordinates r =
(r cos φ,r sin φ,z) are given by

ψa,±1 = 1√
2πw

e
− (r−rs )2

4w2 e
− z2

4w2 e±iφ, (C1)

ψa,0 = 1√
2πw

e
− (r−rs )2

4w2 e
− z2

4w2 . (C2)

Here, we assume the radius of the circle is rs and centered
around Ra and w specify the width of these circles. Now we
can verify that ψa,1 gives a torus shape current density:

j(r) = − i

2
(ψ†

a,1∇ψa,1 − ψa,1∇ψ
†
a,1)

= 1

2πw2
e
− (r−r0)2

2w2 e
− z2

2w2 φ̂. (C3)

Similarly, ψ↓ gives a torus shape current density with opposite
direction. ψ0 is real function, so the current is zero. These three
states correspond to |±1〉 and |0〉 pointlike angular momentum
states. If we take w → ∞ limit, we find a current circle j(r) =
δ(r − r0)δ(z)φ̂.

We still have Lz = ψ†Lzψ , where Lz = −i ∂
∂φ

. The φ-
dependent part will give the same matrix elements as before.
Now, we also have an extra r- and z-dependent part as follows:

Fz,a(r) = 1

2πw2
exp

[
− (ra − rs)2

2w2
− z2

2w2

]
. (C4)

Here, ra = √
(x − Ra,x)2 + (y − Ra,y)2 with a = 1,2,3,4.

Then the form factor is the Fourier transformation of the above
function. If the current width is narrow, we have

F (k) =
∫

cell
F (r)e−ik·rd3r ≈ f (kr )e− w2k2

z
2 e−ik·Ra

with f (kr ) = 1√
2πw

∫ ∞

0
e
− (r−rs )2

2w2 J0(krr)rdr.

Using this result in Eq. (24), we find

Lz(k) = cos θ [Fz,1(k)e−ik·R1 − Fz,1(k)e−ik·R3 ]. (C5)

The form factor of Lt is more complicated, since the rotation
operator has its own coordinate dependence. As explained
before, the rotation operator is currents flows around the four
oxygens in the unit cell. Here, for simplicity, we approximate
the current around the oxygens as a big circle with radius r0

centered at R0
i . We have Lt = ψ†Ltψ . Here, Lt will annihilate

or create the eiφ factor. The φ-dependent part will give the same
matrix elements as before. For the local spin state at Ra , we
also have an extra r- and z-dependent part as follows:

Fx,a(r) = 1

2πw2
exp

[
− 1

2w2
(r − r0)2 − z2

2w2

]

× exp

[
− 1

2w2
(ra − rs)

2 − z2

2w2

]
. (C6)

Here, r =
√

x2 + y2. It is easy to transform the z-dependent
part to momentum space. The x- and y-dependent part has
to be computed by numerics. Including the form factors in
Eq. (23), the x component of moment is

Lt (k) = sin θ [Fx,1(k)e−ik·R1 + Fx,2(k)e−ik·R2

−Fx,3(k)e−ik·R3 − Fx,4(k)e−ik·R4 ]. (C7)

If the current width is quite narrow w � a, here a is lattice
constant of xy plane, then Eq. (C6) can be approximated by
to two Gaussian peaks located at R1

a and R2
a , where R1

a and
R2

a are the two intersection points of the two circles. Thus we
have

Fx,a(r) ≈ 1

2πw2

[
e
− (r−r1

a )2

2w2 + e
− (r−r2

a )2

2w2

]
e
− z2

w2 . (C8)

Transferring to momentum space, we find the form factor as

Fx,a(k) = √
πwe− w2(k2

x+k2
y )

2
(
eik·R1

a + eik·R1
a

)
e− w2k2

z
4 (C9)

with a = 1,2,3,4.
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So far we only considered the “spin” kind contribution
to the moments. Similarly, we can also compute the form
factor for the “rotation” kind contribution. Follow the same
line of arguments, the φ-dependent part will give the same
matrix elements as before. For the the matrix element
〈ψa|Lt |ψb〉, there is an extra r- and z-dependent part as
follows:

Fx,ab(r) = 1

2πw2
exp

[
− 1

2w2
(r − r0)2 − z2

2w2

]

× exp

[
− 1

4w2
(ra − rs)

2 − z2

4w2

]

× exp

[
− 1

4w2
(rb − rs)

2 − z2

4w2

]
. (C10)

Similarly, or the the matrix element 〈ψa|Lz|ψb〉, there is an
extra r-and z-dependent part as follows:

Fz,ab(r) = 1

2πw2
exp

[
− 1

4w2
(ra − rs)

2 − z2

4w2

]

× exp

[
− 1

4w2
(rb − rs)

2 − z2

4w2

]
. (C11)

And the form factor is the above function transform to
momentum space. Therefore, for transfer momentum k =
2π
a

(0,1,0), we find the effective moment due to the “rotation”
kind contribution is

Leff = −ikyC[Fx,12(k)(1 + sin2 θ ), 0, Fz,12(k) sin 2θ ].

(C12)

These results have been used in the paper to calculate the
form factor and the tilt angles and compared with experiments.
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