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We perform a comparative study of the performances of some standard approaches within the many-body
perturbation theory. We calculate quasiparticle dispersions, lifetimes, and spectral functions of aluminum and
sodium. Calculations have been carried out in the GW approximation with a plasmon pole model (PPM) or
with the contour deformation technique. We also accounted for vertex corrections either only in the screening
(replacing the RPA dielectric function with the TDLDA or the Hubbard one) or both in the screening and in
the self-energy (using the Del Sole et al. local vertex). Results show the failure of the PPM to describe the
corrections far from the Fermi energy, as well as its inability to describe quasiparticle lifetimes and spectral
functions. Calculations with a more refined screened interaction decrease the bandwidths and the lifetime of
the quasiparticles compared with the GW as well as inducing tiny modifications in the spectral functions. The
inclusion of the vertex also in the self-energy cancels the effects arising from the screening by pushing the results
back toward the GW ones or even enlarging the differences.
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I. INTRODUCTION

Starting from good band gaps obtained with the first
calculations on bulk Si,1,2 a wide number of applications (see,
e.g., Refs. 3 and 4) consecrated Hedin’s GW approximation5,6

as one of the most accurate theories for the description of
quasiparticle band structure of weakly correlated systems.
Nowadays, applications of the GW approximation range over a
wide class of materials, yielding good descriptions not only for
semiconductors or simple metals, but also for rather complex
systems.7,8

Quasiparticle energies are not the only quantities which
are accessible through a GW calculation. The self-energy
being a non-Hermitian potential, its eigenvalues are complex,
and their imaginary part corresponds to the inverse lifetime
of the states due to electronic origin. Such quantities have
been investigated for a wide class of materials.9,10 In the same
way the knowledge of the frequency dependence of the self-
energy allows the determination of the single-particle spectral
functions. A mismatch between theory and experiment (GW

produces satellites placed at 1.5 times the plasma frequency
against one plasma frequency given by measurements)11,12

has been addressed only thanks to a cumulant expansion13 or
alternative approaches for the evaluation of the single-particle
Green function,14 so that the physics underlying the spectral
functions is still the object of investigation.

Improvements in theory development and in computational
performances have allowed us to overcome the simplifications
of the first applications, despite the fact that some of them
are commonly used anyway. For example, self-consistent
calculations have been performed,15,16 sometimes relying on
the self-consistent quasiparticle approach.8,17

Here we are interested in overcoming the basic approx-
imation of a GW approach, which is the neglect of vertex
corrections. Some authors have proposed the refinement of
many-body calculations by adopting a more accurate screened
interaction calculated in the framework of time-dependent
density-functional theory (TDDFT). For example, applications
are available for homogeneous electron gas (HEG), discussing

bandwidths,18–20 lifetimes,21 and spectral functions.22,23 On
the contrary, only a limited number of works address realistic
systems such as Na24 and Si.25

To account for the vertex also in the self-energy is a
more complex task and proposed calculations usually rely
on simplified vertices (like the one tested on bulk Si in
Refs. 25–27) or addresses the HEG.28 Only a few authors
have discussed the differences arising in the results among the
different vertex corrections. They have generally addressed the
HEG, by discussing the bandwidths19,20 or lifetimes.21 On the
contrary, to the best of our knowledge, for realistic systems,
only the band gap of silicon has been addressed.25

The objective of the present work is to explore the problem,
trying to understand the effects on the main quantities which
are accessible by many-body calculations and trying to draw
general conclusions. With this aim, we perform a systematic
study of the performances of some available approaches
applied to nearly-free-electron metals such as aluminum and
sodium. We focus on the main quantities which are accessible
through a non-self-consistent approach, like the quasiparticle
dispersion (also discussing the bandwidth problem), finite
quasiparticle lifetimes, and spectral functions.

This work is organized as follow: in Sec. II we briefly
summarize the theoretical background and the approximations
used in the present paper. Then in Sec. III we discuss our
results, starting with the quasiparticle dispersion in Sec. III A,
moving to the quasiparticle lifetimes in Sec. III B, and
concluding with the spectral functions in Sec. III C. We give
our conclusions in Sec. IV.

II. TECHNICAL METHODS

A. Theoretical framework

In the present work the many-electron problem is addressed
thanks to Hedin’s scheme, which is based on the following
closed set of five equations:5,6

G(1,2) = G0(1,2) +
∫

G0(1,3)�(3,4)G(4,2) d3d4, (1)
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�(1,2; 3) = δ(1,2)δ(1,3)

+
∫

δ�(1,2)

δG(4,5)
G(4,6)G(7,5)�(6,7; 3) d4d5d6d7,

(2)

χ (1,2) = −i

∫
G(1,3)G(4,1)�(3,4; 2) d3d4, (3)

W (1,2) = vC(1,2) +
∫

vC(1,3)χ (3,4)W (4,2) d3d4, (4)

�(1,2) = i

∫
G(1,3)W (4,1)�(3,2; 4) d3d4 , (5)

where G and G0 are the exact and Hartree’s Green functions,
vC is the bare Coulomb interaction, W is the screened potential,
χ is the polarizability, � is the self-energy, and � is the vertex
function. An argument such as” 1” stands for the set of position,
time, and spin variables (r1,t1,σ1).

Equations (1)–(5) constitute a formally closed set of
equations for the five correlators, which, in principle, one
has to solve self-consistently. Starting from the assumptions
� = 0 and G = G0, one can solve Eq. (2) to calculate �. Its
knowledge permits us to invert Eq. (3) to obtain χ , which
allows the determination of W thanks to Eq. (4). Then an
updated self-energy can be computed thanks to Eq. (5) and a
new iteration can start.

It is a standard procedure to avoid a self-consistent solution
of Hedin’s equation by retaining the first iteration self-energy.
In the following we address only this approach to the
calculations of the self-energy; a discussion of the effects
of self-consistency can be found elsewhere (e.g., in Refs. 15
and 17). The complexity of the equation for the self-energy
suggests simplifying the problem further. Because of the
theoretical and computational issues involved in the presence
of the vertex and in the task of the ω-axis integration, several
approaches to the problem have been suggested. In particular,
in Sec. II B we introduce those which are tested in this paper.
In addition, nowadays, these many-body calculations relies on
a DFT ground state which brings the need to account for Vxc

in the equations.
The knowledge of the self-energy permits the evaluation

of several quasiparticle properties. In a one-iteration scheme,
quasiparticle energies Ej can be obtained as first-order
corrections to the Kohn-Sham (KS) eigenvalues εj , with
respect to the perturbation (� − Vxc), and by linearizing the
energy dependence of �,1,2

Ej � εj + 〈j |�(εj ) − Vxc|j 〉
1 − 〈j | ∂�(ω)

∂ω

∣∣
ω=εj

|j 〉 , (6)

where 〈j | are the KS eigenstates and the denominator
defines the quasiparticle renormalization factor Zj = [1 −
〈j | ∂�(ω)

∂ω
|ω=εj

|j 〉]−1.
The self-energy being a non-Hermitian operator, its eigen-

values will present an imaginary part whose inverse is
interpreted as the lifetime of the quasiparticle due to electronic
de-excitations. The quasiparticle lifetimes are given by

τ−1
j = 2|〈j |Im�(Ej )|j 〉| = 2Zj |〈j |Im�(εj )|j 〉|. (7)

For convenience we refer to this approach as fullZ even though
this is not used in the present paper. In general, the imaginary
part of the renormalization factor is considered negligible;

therefore the quasiparticle lifetimes are evaluated as10,29

τ−1
j = 2ReZj |〈j |Im�(εj )|j 〉|. (8)

We refer to this approach as ReZIm�. A further approximation
in the lifetime calculation is the on-mass-shell approximation
(OMSA), which comprises the complete neglect of the
renormalization factor (Zj = 1),30 so that

τ−1
j = 2|〈j |Im�(εj )|j 〉|. (9)

In the end it is possible to calculate also the single-particle
spectral function,

Aj (ω) = 1

π
Im

{
1

(ω − εj ) − �jj (ω)

}

= 1

π

|Im�jj (ω)|
|ω − εj + Vxc j − Re�jj (ω)|2 + |Im�jj (ω)|2 ,

(10)

where the presence of the matrix element of Vxc accounts, once
again, for the fact that the perturbative GW calculation relies
on KS eigenstates.

B. Approximations for the self-energy

Different approaches have been proposed to calculate the
self-energy. The simplest choice is the complete neglect of the
vertex both in the screened interaction and in the self-energy.
This approach yields the so-called GW approximation.5,6

Therefore W reduces to the Coulomb interaction times
the random phase approximation (RPA) inverse dielectric
function ε−1 and the equation for the self-energy simplifies
to the product of the Green function and the screened
interaction:

�(1,2) = iG(1,2)W (2,1). (11)

Within the GW approximation further simplifications have
been proposed to easily manage the integration required
to evaluate the self-energy. Since one bottleneck for the
calculation is the evaluation of the dielectric matrix, one often
introduces a plasmon pole model (PPM)1 for its frequency
dependency in order to evaluate ε−1 at only a limited number
of frequencies (usually one or two) and to deal analytically
with the convolution necessary to evaluate the self-energy.
The dielectric function assumes the following analytical
expression:

ε−1
GG′(q,ω) = δGG′ + �2

GG′(q)

ω2 − ω̃2
GG′(q)

. (12)

The evaluation of the parameters �2 and ω̃2 can be performed
in several ways. The first approach proposed was to determine
the parameters by imposing the model ε−1 to match the
calculated one at ω = 0 and to fulfill the f-sum rule.1 In this
work we adopt a different scheme based on the evaluation of
the dielectric matrix at two frequencies (usually ω = 0 and
ω = iωP , where ωP corresponds to the plasma frequency of
that specific material) and use expression (12) to fit the two
numerical values.

The PPM is not expected to work properly for states far
from the Fermi level or to describe correctly the imaginary
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part of the self-energy. Therefore alternative approaches to
deal with Eq. (11) have been proposed.31,32 In particular, in
this work we adopt the contour deformation (CD) technique.32

In this approach the convolution along the real ω axis is moved
to an integration along the imaginary axis plus a summation
on the poles in the upper-right and bottom-left quadrants.

The GW is a mere approximation for the self-energy which
has been found to work accurately. It is desirable anyway to
go beyond introducing vertex corrections. One possibility is
to move toward a more accurate description of the screened
interaction by replacing the RPA ε−1 with one calculated in
the framework of TDDFT (this corresponds to the inclusion
of a vertex only in the screened interaction and not in the
self-energy).

Older studies of the loss function and the dynamic
structure factor demonstrate the time-dependent local-density-
approximation (TDLDA)33 to provide an accurate description
for the screening of both semiconductors34–36 and metals.37,38

This approximation corresponds to a local and static ap-
proximation of the kernel, which is defined as fxc(r,r′) =
δ(r − r′)[dvLDA

xc (ρ(r))/dρ(r)]. Therefore, in this work we are
interested in testing how the results are affected by adopting
the TDLDA screening instead of the RPA one (henceforth we
refer to this approach as the GWLDA).

The TDLDA fxc is not the only available kernel. A large
variety of local-field factors (which are proportional to the
TDDFT fxc) has been proposed for the HEG. In this work
we choose to perform self-energy calculations adopting the
screening obtained within the Hubbard local-field factor39 (we
refer to this approach as the GWHubbard). This is a local-field
factor which includes exchange effects by a model analytical
expression: fxc = −vc(Q)Q2/(Q2 + k2

F ). A discussion of the
accuracy of this local-field factor in the description of the
inverse dielectric function of Al and Na can be found in Ref. 38.

To move to more accurate approaches one should include
the vertex not only in the calculation of the screened interaction
but also in the self-energy. An easy approximation for dealing
with this problem has been proposed by Del Sole et al.25

The authors proposed a GW� approach based, once again,
on the TDLDA exchange and correlation kernel fxc. They
demonstrate that the inclusion of the TDLDA vertex in Hedin’s
equations is equivalent to a GW calculation with the screened
interaction given by a TDLDA electron-test-charge dielectric
function. In this work we perform calculations also with this
approach, which is called the GW�LDA.

In the next section we discuss the difference between the
results obtained within these approximations for quasiparticle
properties of bulk Al and Na.

C. Computational details

All the calculations presented have been performed with an
adapted version of the ABINIT package.40,41 Calculations have
been performed for the experimental lattice parameter, using
Troullier-Martins pseudopotentials,42 and an LDA exchange
and correlation functional. We adopted a 14 × 14 × 14 k-point
mesh, with a smearing temperature of 0.005 Ha and an energy
cutoff of 30 Ha for the wave functions and of 15 Ha for the
screening and the self-energy, and we included 140 bands in
the calculation of both the dielectric matrix and the self-energy.

The same set of values has been used for the calculations within
the different approximations for the self-energy.

Inclusion of the intraband term in the screened interaction
as discussed in Ref. 43 was not possible for the calculations
without the PPM, due to the difficulties for performing reliable
fits for the lowest real frequencies. Therefore we choose to
correct the G = G′ = 0 element of ε−1 with a Drude-like tail
(εintra = 1 − ω2

P

ω2 ), evaluating the plasma frequency with the
approach described in Ref. 44. In particular, we obtain an
intraband plasma frequency ωP of 12.42 eV for Al and 6.18
eV for Na.

To evaluate the self-energy within the PPM we calculated
the screening at ω = i15.79 eV for Al and ω = i5.91 eV for
Na. Similarly for the evaluation within the CD technique we
calculate the screening over a regular mesh of 10 frequencies
on the imaginary axis up to 60.17 eV for Al and 22.53 eV for
Na, of 30 real frequencies up to 40.82 eV for Al, and of 52
frequencies up to 27.21 eV for Na.

III. QUASIPARTICLE PROPERTIES

In this section we discuss the results of the calculations
on aluminum and sodium with the approaches described in
Sec. II B. We discuss the quasiparticle properties, also address-
ing the bandwidth, the lifetimes, and the spectral function.

A. Quasiparticle energies

The first self-energy calculations on the HEG showed a
reduction of the occupied bandwidths with respect of those
from DFT,6 findings confirmed by successive photoemission
measurements.45,46 Consequently, in parallel to the first self-
energy calculations on silicon, calculations on nearly-free-
electron metals suggested that the use of a TDLDA dielectric
function could address the remaining mismatch between GW

and experimental bandwidths.18,24 These findings opened a
debate whether the mentioned mismatch in the bandwidth of
Na is due to correlation effects beyond GW or, rather, to
other problems, such as surface or final-state effects on pho-
toemission measurements.19,28,47,48 Subsequently, calculations
on the HEG with inclusion of vertex corrections also in the
self-energy were performed,19,20 finding bandwidths closer to
GW ones than to those calculated with more accurate screened
interactions.

The corrections to the KS eigenvalues as defined in Eq. (6)
are plotted in Fig. 1 (the results have been aligned by setting
the correction at the Fermi level to 0). With the exception of the
calculations with the PPM, the general trend is the following:
inclusion of the vertex only in the screened interaction
increases the magnitude of the corrections more than the
GW -CD, while the GW�LDA gives the smallest quasiparticle
corrections. The results within the GW -PPM are very close
to the GW -CD ones in the neighborhood of the Fermi energy,
while, as soon as we consider states a few electron volts from
the Fermi level, the corrections start to present a different slope.

The PPM constitutes a mere approximation for the real
dielectric response, which, for example, does not describe the
particle-hole continuum or the plasmon linewidth. In addition,
the parameters appearing in Eq. (12) are sensitive to the model
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FIG. 1. (Color online) Comparison of quasiparticle corrections
calculated within the different approximations dealt with in this
work. Corrections are shifted so that they vanish at the Fermi energy.
Top, Al; bottom, Na. Calculations with the GW-PPM (diamonds), the
GW-CD (exes), the TDLDA screening (triangles), the Hubbard one
(squares), and the Del Sole et al. vertex (plus signs).

used. It is a known drawback that, when the PPM is used to
evaluate GW corrections, it yields to a poor description of
quasiparticle states far from the Fermi level, as confirmed by
the present results. In addition, the results of a test adopting the
model proposed by Hybertsen and Louie1 yielded corrections
closer to the CD results with respect to the one adopted
throughout this work. In the same way, this alternative model
induces a shift toward higher energies of the strong deviation
of the PPM corrections which can be observed in Na at around
5 eV above the Fermi energy, thus suggesting that this feature
is probably a mere artifact of the approximation used.

The bandwidths obtained from the previously discussed
GW corrections are listed in Table I. All the approaches
produce a reduction in the bandwidth compared to the DFT-
LDA one. The GW -PPM produces smaller results than the
GW -CD approach, a difference which arises from the expected
better description of the bottom valence of this last approach.
The introduction of a vertex in the screened interaction
produces a further bandwidth reduction with respect to the
GW -CD. In particular, for both Al and Na the TDLDA kernel
provides a band slightly larger than the Hubbard local-field
factor. On the contrary, the inclusion of the vertex also in

TABLE I. Occupied bandwidth for aluminum and sodium. Re-
sults are compared with old calculations as well as experiments. All
energies are in electron volts.

Al Na

DFT-LDA 11.706 3.134
GW -PPM 10.192 2.751
GW -CD 10.749 2.887
GWLDA 10.406 2.673
GWHubbard 10.013 2.498
GW�LDA 10.946 2.958
Northrupa GWLDA(PPM) 10.0 2.52
Cazzanigab PPM 10.03 2.81
Brunevalc GW -CD 10.54
Experiment 10.6 ± 0.2d 2.5 ± 0.1e

2.65 ± 0.05f

aCalculations by Northrup et al.18

bCalculations by Cazzaniga et al.43

cCalculations by Bruneval et al.17

dExperiment by Levinson et al.45

eExperiment by Jensen and Plummer.46

fExperiment by Lyo and Plummer.47

the self-energy produces, for Na and Al, an increase in the
bandwidth with respect to the mere GW -CD calculation.

The results of the present work are in substantial agreement
with old calculations,17,18,24,43 while differences can be due to
different convergence or methodology to perform the calcula-
tions. Our results also show that the inclusion of the vertex in
calculations for real metals yields the same conclusions which
were drawn for the HEG model.18–20 Comparing numerical
calculations with experiments, the closest results are obtained
with the GW -CD for Al and the GWLDA-GWHubbard for Na.
This suggests that none of the approaches discussed here
can be addressed as the most accurate. Indeed, there is not
a vertex which is closest to the experiment for either material,
while more than one result compares favorably with the
measurements.

B. Quasiparticle lifetimes

As discussed in Sec. II A, the self-energy being a non-
Hermitian operator, the eigenvalues will be complex, and
their imaginary part can be interpreted as the inverse lifetime
of the quasiparticles. While the imaginary part of the self-
energy for the HEG was discussed at the same time as the
real one, detailed study of the quasiparticle lifetimes for
realistic systems came after the calculations of bandwidths.
Two-photon photoemission measurements, providing access
to the lifetimes of empty states, were made available only in
the 1990s,49–51 thus raising interest in ab initio calculations
for realistic systems (for a review of this topic see Refs. 9
and 10). Calculations with inclusion of vertex corrections were
discussed for the HEG.21 In this section we discuss the results
for inverse lifetimes.

Figure 2 represents the inverse lifetimes close to the Fermi
energy calculated within the approximations discussed in this
paper. Of course, the PPM is not expected to be able to
describe the lifetime correctly, the model dielectric function
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FIG. 2. (Color online) Comparison of quasiparticle lifetimes calculated within the different approximations dealt with in this work. Top
row, Al; bottom row, Na. Calculations with the GW-CD (exes), the TDLDA screening (triangles), the Hubbard one (squares), and the Del
Sole et al. vertex (plus). (a, d) Calculations with the OMSA; (b, e) calculations with the ReZIm� approach; (c, f) comparison of the present
calculations with old results and experiment [(a) calculations by Zhukov et al.;52 (b) experiment by Bauer et al.;49 (c) calculations by Dolado
et al.30].

being real. Therefore the discussion refers only to the other
approximations.

The results clearly show the expected parabolic behavior
around the Fermi energy. In particular, with both the OMSA
and the ReZIm� approach, the GW -CD and the GW�LDA

approaches give comparable lifetimes in this interval of
frequencies for both the metals. In addition, within these
approximations the quasiparticle excitations survive longer
compared to those calculated including the vertex only in
the screened interaction. Comparing the results calculated
with the OMSA with those calculated with the ReZIm�

approach, we can observe that the effect of the inclusion of
the renormalization factor is an increase in the quasiparticle
lifetimes, which can be expected, as Zj � 1. We found
our results to be in substantial agreement with previous
calculations for Al52–57 (not all plotted in Fig. 2). In the
same way, GW-OMSA calculations for Na are in substantial
agreement with previous calculations.30 The only available
measurements to compare our calculations with are the ones by
Bauer et al. for Al.49 In the energy range where measurements
have been carried out, the differences between the calculations
within the vertices discussed in the present work do not
allow us to conclude that one approximation compares better
than another one. On the contrary, an improvement in the
comparison of theory vs. experiment is achieved when the
ReZIm� approach is adopted instead of the OMSA.

To better visualize the difference in the results we fit the
curves with the following equation in the intervals [−3,3] eV
for Al and [−1,1] eV for Na:

|Im�(ε)| ∼ α(ε − εF )2. (13)

The resulting coefficients α are listed in Table II. The numbers
confirm the increase in Im� when a more refined screening
is adopted. On the contrary, GW�LDA produces results very
similar to the GW -CD ones. In the same way, the numbers
confirm the increase in the quasiparticle lifetimes when the
ReZIm� approach is adopted. The fit performed for the
calculations by Dolado et al.30 is comparable with the present
results, while the fit for the results of Zhukov et al.52 is slightly
larger than our results.

TABLE II. Fitted coefficients α according to Eq. (13). Fits along
the interval [−3,3] eV for Al and [−1,1] eV for Na. Results with the
OMSA and with the ReZIm� approach are compared with fits of old
calculations. All values are in eV−1.

Al Na

OMSA
GW -CD 7.6 × 10−3 4.3 × 10−2

GWLDA 9.4 × 10−3 6.3 × 10−2

GWHubbard 9.9 × 10−3 6.0 × 10−2

GW�LDA 7.3 × 10−3 4.2 × 10−2

ReZIm�

GW -CD 5.6 × 10−3 2.7 × 10−2

GWLDA 6.7 × 10−3 3.7 × 10−2

GWHubbard 7.0 × 10−3 3.5 × 10−2

GW�LDA 5.5 × 10−3 2.8 × 10−2

Doladoa GW -OMSA 4.6 × 10−2

Zhukovb GW -fullZ 6.3 × 10−3

aCalculations by Dolado et al.30

bCalculations by Zhukov et al.52
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FIG. 3. (Color online) Comparison of the quasiparticle lifetimes
of Al calculated with the GW-CD (solid line), the TDLDA screening
(dash-dotted line), the Hubbard one (dash-dotted line), and the Del
Sole et al. vertex (dashed line). Inset: Comparison of GW -CD results
for aluminum (solid line) with corresponding results for the HEG
from Ref. 58 (dashed line).

We now discuss Im� within the OMSA farther from
the Fermi energy for aluminum, chosen as the reference.
The calculations within the approximations presented in this
work show the well-known spreading of the lifetimes for
high-energy states.26,30 To simplify the discussion we choose to
retain only the energy dependence, averaging the k dependence
over the Brillouin zone (BZ) according to

〈Im�(ω)〉 =
∫

BZ Im�(k,ε) b2

(ω−ε)2+b2 d
3k∫

BZ
b2

(ω−ε)2+b2 d3k
. (14)

Here ε is the energy of the DFT-LDA bands, and b is a
parameter to smooth the curve which assumes values from 0.01
near the Fermi energy to 1 for the largest energies. The results
are plotted in Fig. 3. Also, for highly unoccupied states the
imaginary part of the self-energy is larger when a vertex is in-
cluded in the screened interaction. In particular, the GWHubbard

approximation produces the smallest lifetimes, followed by the
GWLDA, while the GW�LDA approximation gives excitations
surviving longer. These findings are consistent with the results
for the HEG.21

More interesting is the comparison with the HEG results
(see inset in Fig. 3). It is possible to observe the absence of
slope discontinuity in the Al results. This effect is due to the
fact that interband transitions widen the plasmon peak in real
solids, and consequently, they smooth the energy dependence
of the lifetimes.30 Another difference which can be observed
is the small dip at 45 eV present only in Im� for Al. This
structure is probably a physical effect since it is not washed
out by the average procedure, and it can be related to band
structure effects since a similar dip is present in the density of
states.

C. Spectral functions

The first applications of Hedin’s GW approximation to
the HEG found the presence of a satellite in the spectral

TABLE III. Difference in the energies of the quasiparticle peak
EQP and of the satellite ES for aluminum and sodium at the bottom of
the valence band. Calculations performed by detecting the positions
of the peaks in the spectral functions in Figs. 4(a) and 4(b). Results
in electron volts or in units of ωP .

ES − EQP

Al Na

GW -PPM 21.16 eV, 1.41 ωP 9.24 eV, 1.48 ωP

GW -CD 21.88 eV, 1.46 ωP 9.45 eV, 1.52 ωP

GWLDA 22.18 eV, 1.48 ωP 9.59 eV, 1.54 ωP

GWHubbard 22.18 eV, 1.48 ωP 9.75 eV, 1.57 ωP

GW�LDA 21.60 eV, 1.44 ωP 9.53 eV, 1.53 ωP

Aryasetiawana 9.48 eV, 1.52 ωP

aCalculations by Aryasetiawan et al.13

functions.59–61 In particular, at the bottom of the valence band
the satellite was found at around 1.5 ωP from the main quasi-
particle peak (called the plasmaron) and was demonstrated to
be induced by a second 0 in ω − εj + Vxc j − Re�jj (ω). On
the contrary, experimental measurements found the satellite
at 1 ωP , as well as a series of satellites.11,12 Only a few
calculations have been carried out on realistic systems, like
those performed on Si by Fleszar and Hanke,26 arriving at the
same conclusions as for the HEG. Improved approaches for the
description of the satellite rely on a cumulant expansion,13 as
well as alternative approaches for evaluation of the single-
particle Green function.14 In the following we present the
calculated spectral functions for Al and Na.

In Fig. 4 we plot the real and imaginary part of the
self-energy and the resulting spectral functions at the bottom
of the valence band and for the first unoccupied state at the
� point for Al and Na. Our GW -CD spectral function at the
bottom of the valence band for Na presents the quasiparticle
and the satellite peaks at energies in agreement with a previous
calculation,13 but their relative heights present the opposite
behavior. Figure 4 shows that the GW -PPM is able to capture
only approximately the shape of the self-energy and the
spectral function. The main drawbacks can be observed in
the spectral functions, where the peak height and width are
completely different from the other calculations. The inclusion
of the vertex as done in the approaches discussed in the present
work produces tiny differences in both the self-energies and
the spectral functions, as already observed for the HEG in
Refs. 22 and 23. Small shifts of the peaks and modifications of
their height and width are present for both the metals and
for both the states presented here. Therefore, none of the
approximations tested is able to modify the relative position
of the peaks to move the calculated spectral function toward a
better agreement with measurements.

Since the differences in Fig. 4 do not allow us to clearly
detect the differences among the results calculated with the
different vertices, we perform a more quantitative analysis of
the results calculated at the bottom of the valence band. In
particular, in Table III we report the results for the differences
in the extracted energies of the quasiparticle peak (EQP) and
of the satellite (ES) both in electron volts and in units of the
plasma frequency ωP . The listed values show in a quantitative
way that, within all the approaches addressed here, the satellite
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FIG. 4. (Color online) Spectral functions and matrix elements of the self-energy of aluminum and sodium. Comparison of results calculated
with the GW-PPM (dashed line), the GW-CD (solid line), the TDLDA screening (dash-dotted line), the Hubbard one (dash-dotted line), and
the Del Sole et al. vertex (dash-dotted line). Calculations at the � point for the bottom of the valence band [(a) Al and (b) Na] and for the first
unoccupied state [(c) Al and (d) Na]. In (b) our results are compared with an old calculation by Aryasetiawan et al.13

is placed at around 1.5 ωP from the main quasiparticle peak.
The numbers evidence only tiny differences between the
discussed approximations. For both metals the PPM produces
the smallest distance, while inclusion of the vertex only in the
screened interaction increases the distance with respect to the
GW -CD results. The GW�LDA brings the results back toward
the GW -CD, in relation to which the two metals behave dif-
ferently: while it brings the satellite closer to the quasiparticle

peak in Al, that distance is increased in Na. Alternatively, it is
possible to evaluate the same quantity by looking for the zeros
of ω − εj + Vxc j − Re�jj (ω);59 the results obtained with this
approach yield the same considerations drawn before.

In addition to the relative positions of the two peaks,
differences between the approximations discussed here can
be evidenced by comparing the height and the full width
at half-maximum (FWHM) of the quasiparticle peak and
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TABLE IV. Height (in eV−1) and FWHM (in eV) of the
quasiparticle peak and of the satellite for aluminum and sodium at
the bottom of the valence band.

Al Na

Height FWHM Height FWHM

Quasiparticle peak
GW -CD 0.246 1.745 0.669 0.540
GWLDA 0.202 2.068 0.501 0.688
GWHubbard 0.207 1.956 0.567 0.601
GW�LDA 0.261 1.677 0.905 0.422

Satellite
GW -CD 0.1767 1.233 0.585 0.439
GWLDA 0.189 1.168 0.626 0.446
GWHubbard 0.205 1.077 0.667 0.415
GW�LDA 0.1774 1.183 0.524 0.462

of the satellite. The values are listed in Table IV. As for
the distance between the two peaks, the differences in the
results are small. The general trend for the quasiparticle peak
is that, with respect to GW -CD, the GW�LDA approach
increases the height of the peak and decreases its width,
while the other two approximations do the opposite. On
the contrary, for the satellite it is more difficult to detect a
general trend; while the inclusion of the vertex only in the
screened interaction increases the height and decreases the
width, the GW�LDA produces peaks close to the GW -CD
ones. Tiny differences concern an increase in the height of the
peak in Al, a decrease in it in Na, and the opposite for the
widths.

In conclusion, the small differences among the results
calculated with the vertices tested here show that none of
the approximations are able to deal with the problem of the
position of the satellite. Therefore, to obtain a satisfactory
description of the spectral function a more complex approach
is required.

IV. CONCLUSIONS

In this work we have performed a comparative study of
several many-body approaches to the quasiparticle properties
of Al and Na. In particular, we have tested the GW approxima-
tion with and without the simplification arising for a PPM for
the screening, emphasizing its limitations: we have shown a
different behavior of the quasiparticle corrections far from the
Fermi energy, the impossibility of describing the imaginary

part of the self-energy, and the difficulties in the description of
the spectral functions.

We tested the effect of the inclusion of a vertex correction
only in the screened interaction by replacing the RPA dielectric
function with the TDLDA or the Hubbard one. Results show
a decrease in the bandwidth as well as a decrease in the
quasiparticle lifetimes. Concerning the spectral functions there
are just tiny differences, which reveal a slight breakaway of
the satellite from the quasiparticle peak, as well as a small
decrease in and widening of the quasiparticle peak, and an
opposite behavior of the satellite.

The results are compared with calculations with a local
vertex included both in the screening and in the self-energy.
In this case we can observe the effects of expected cancelation
between the vertex in the dielectric function and the one in the
self-energy.19,20 In particular, quasiparticle bandwidths for Al
and Na in the GW�LDA become even larger than the GW -CD
ones. Similarly, within the same approximation quasiparticles
have lifetimes comparable to the GW -CD ones close to the
Fermi energy and survive even longer at high energies. In the
same way the GW�LDA approach has the effect of deleting
the small changes in the spectral functions induced by the
modified screening interaction, providing results close to the
GW -CD ones.

Concerning the performances of the approaches discussed
compared to experimental results, we can conclude that none
of the tested vertices is able to describe all the quasiparticle
properties well, for either metal. Indeed, only small differences
were found in the results. In particular, concerning the
bandwidths the results closest to experiment are obtained with
different vertices for the two metals. For lifetime calculations
we found the ReZIm� approach to work better than the
OMSA, but the differences in the results calculated within the
first approach do not allow us to conclude that one vertex is
preferable. In the end, none of the approaches discussed is able
to provide an accurate description of the spectral functions.
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