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Conformal field theory approach to Fermi liquids and other highly entangled states
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The Fermi surface may be usefully viewed as a collection of (1 + 1)-dimensional chiral conformal field theories.
This approach permits straightforward calculation of many anomalous ground-state properties of the Fermi gas,
including entanglement entropy and number fluctuations. The (1 + 1)-dimensional picture also generalizes to
finite temperature and the presence of interactions. We argue that the low-energy entanglement structure of Fermi
liquid theory is universal, depending only on the geometry of the interacting Fermi surface. We also describe
three additional systems in 3 + 1 dimensions where a similar mechanism leads to a violation of the boundary
law for entanglement entropy.
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I. INTRODUCTION

Fermi liquid theory forms the core of our theory of
metals, and many materials are well described by Fermi liquid
theory over at least some portion of their phase diagram.
The experimental prominence and simplicity of Fermi liquids
give them permanent appeal, so the community has expended
much effort understanding their underlying structure. The
most physical way to understand the universality of Fermi
liquids is in terms of renormalization-group approaches that
involve scaling toward the Fermi surface.1–3 These approaches
have given us a physical picture of Fermi liquids as mostly
attractive fixed points. To this mostly attractive fixed point,
we must add an infinite set of marginal deformations labeled
by Landau parameters and the marginally relevant BCS
instability. The apparent stability of Fermi liquids has a dark
side, however, as it has proved challenging to find simple
systems exhibiting non-Fermi liquid behavior. Indeed, Fermi
liquids are continually surprising us with their versatility.

The latest surprise comes from the study of many-body
entanglement entropy. Entanglement entropy is an attempt
to characterize the real-space entanglement properties of
quantum ground states. It is defined as the von Neumann
entropy of the reduced density matrix of a spatial subsystem
of the full system. Most systems in d > 1 spatial dimensions
satisfy a boundary law for the entanglement entropy of a spatial
region,4 but free fermions violate this boundary law with a
logarithmic correction.5–10 For a region of linear size L, the
entanglement entropy of most known critical and noncritical
systems is nonuniversal and scales as SL ∼ Ld−1.4 However,
the entanglement entropy for free fermions scales as SL ∼
Ld−1 ln L with the Fermi momentum kF making up the extra
units where needed. Furthermore, there is a precise conjecture
for the form of this term known as the Widom formula.6

However, a full physical proof of the Widom formula and
the extension to interacting fermions remain open questions.

The only other systems known to violate the boundary
law are conformal field theories (or, more generally, scale
invariant theories) in d = 1 spatial dimensions.11 We have
suggested that these two violations of the boundary law are
related because the Fermi surface in any dimension may
be regarded as a collection of (1 + 1)-dimensional chiral
conformal field theories.12 However, it should be understood

that this correspondence, at least, in its simplest form, is
only expected to hold in the low-energy limit. Below, we
provide additional evidence for the patch formulation and
the Widom formula by constructing a suitable generalization
that can exactly compute the low-energy thermal entropy
of a free Fermi gas. We also wish to emphasise that this
(1 + 1)-dimensional construction is not an attempt to bosonize
the Fermi surface in higher dimensions, although these points
of view are related.13,14 Indeed, the bosonization point of view
has recently been pursued in Ref. 15, which agrees with our
results. Note that a more complicated patching procedure has
recently been employed to discuss a Fermi surface coupled to
a gapless boson, but we do not address these issues here.16,17

To further support these ideas, we also give three other
systems, all in 3 + 1 dimensions, that violate the boundary law
for entanglement. We argue that, in all these cases, the common
mechanism is the presence of many gapless one-dimensional
modes. The systems we consider include Weyl fermions in a
magnetic field, a strong coupling holographic generalization
of the Weyl fermion problem,18 and dislocations in certain
kinds of topological insulators.19–25 These systems provide
further evidence for the claim that the quasi-one-dimensional
picture of anomalous entanglement is a ubiquitous mechanism,
although we certainly do not claim that this is the only way
to have highly entangled states. Our results in the holographic
context also provide a useful clue into the nature of the strongly
coupled system described by the holographic geometry, i.e.,
that it may be similar to a collection of fermion zero modes.

In this paper, we give a more complete formulation of a
Fermi surface as a collection of (1 + 1)-dimensional chiral
conformal field theories. We will first describe the basic
setup for free fermions and will sketch the arguments leading
to the anomalous entanglement entropy of the free Fermi
gas. As examples of the formalism, we compute number
fluctuations and heat capacity of a Fermi gas from the (1 + 1)-
dimensional point of view. Next, we include interactions and
argue that interacting Fermi liquids violate the boundary law
for entanglement entropy in a universal way. The formalism
is also applied to several other systems in three dimensions
that are shown to violate the boundary law. We conclude with
some comments about the relevance of these results to other
systems and about future work.
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II. CHIRAL FERMIONS ON THE FERMI SURFACE

We begin by reviewing the arguments of Ref. 12. Consider
fermions on a lattice (much of what we say is independent of
the details of the ultraviolet regulator). Given a generic band
structure and filling fraction, a finite density of fermions will
form a metallic state with a Fermi surface. For simplicity, let
us assume that this Fermi surface is nearly spherical. The low-
energy degrees of freedom are particle-hole fluctuations near
the Fermi surface in momentum space. Note that quasiparticles
exist only above the Fermi surface, whereas quasiholes exist
only below. Both particles and holes move with the same group
velocity set by the local Fermi velocity.

Each such patch on the Fermi surface is equivalent to
a single gapless chiral fermion in 1 + 1 dimensions, the
dimensions being the radial direction and time. The patch is
chiral because all the excitations have a common velocity. For
illustrative purposes, let us specialize to the case of d = 2 so
that the Fermi surface is one dimensional. We can formalize
these statements by saying that the low-energy effective action
of the free Fermi gas is

Sψ =
∫

dθ

∫
dk dt ψ+

θ (k,t)[i∂t − vF k]ψθ (k,t), (1)

where θ labels the patch on the Fermi surface. Each operator
ψθ (k,t) should be regarded as a free fermion in one spatial
dimension, the local radial direction, as specified by θ . The
basic approach will be to compute physical properties of the
Fermi gas by appropriate sums over the (1 + 1)-dimensional
degrees of freedom labeled by θ .

Starting from this free low-energy effective action, we can
trace the effects of interactions using a renormalization-group
flow, but we will continue to focus on the case of free fermions.
Each patch, labeled by θ , is equivalent to the chiral half of
a one-dimensional free relativistic fermion. The nonchiral
relativistic fermion has a total central charge c = 2 as a
conformal field theory. This central charge is a sum of left
and right moving pieces c = cL + cR where, for the free
relativistic fermion, we have cL = cR = 1. This assignment
should not be confused with the Majorana fermion, which
has central charges cL = cR = 1/2. The basic fact we use
about such a one-dimensional conformal field theory is that
the entanglement entropy on an interval of length L is given
by S = cL+cR

6 ln (L/ε), where ε is an ultraviolet cutoff. We
also use the generalization of this formula to finite temperature
T = 1/β given by

S = cL + cR

6
ln

[
βv

πε
sinh

(
πL

βv

)]
, (2)

where v is the characteristic velocity in the conformal
field theory.11,26 Later, v will be identified with the local
renormalized Fermi velocity vF . This formula represents a
crossover function between thermal and entanglement entropy,
and we generalize this result to Fermi liquids in any dimension.

The formulation sketched above gives an intuitive under-
standing of the anomalous entanglement properties of the
Fermi surface. If we ask about the entanglement entropy
in a region A of linear size L, then, we naturally coarse
grain the Fermi surface into coarse patches of typical size
1/Ld−1 for a total of (kF L)d−1 coarse patches. Each patch

contributes roughly ln L as is appropriate for a one-
dimensional conformal field theory, and the total entanglement
entropy scales as Ld−1 ln L as observed.5–9 The Widom
formula for the entanglement entropy is obtained from a more
precise counting of patches.12 The fundamental interpretation
of this counting procedure and the Widom formula is in terms
of an effective central charge coming from the amalgamation
of many (1 + 1)-dimensional degrees of freedom.12 We will
now use similar counting arguments to compute a number of
observables for free fermions.

In addition to anomalous entanglement entropy, the free
Fermi gas has anomalously large fluctuations of some con-
served quantities. Many systems in d > 1 spatial dimensions
satisfy a boundary law for ground-state fluctuations of various
physical quantities. One notable exception to this intuition
occurs in symmetry-broken phases. There, the fluctuations of
conserved quantities scale with the volume of the subregion.
As an example, let us consider the number operator NA, cor-
responding to the number of fermions in region A. Typically,
one would expect to find 〈(NA − 〈NA〉)2〉 ∼ Ld−1 where L is
the linear size of region A. This boundary law for fluctuations
in the ground state appears to be relatively general, however,
it is violated in the case of free fermions.6,10 Just like their
entanglement properties, free fermions have anomalously large
number fluctuations scaling, such as Ld−1 ln L. It is natural
to ask if we can account for these fluctuations by viewing
the Fermi surface as a collection of chiral one-dimensional
conformal field theories.

The leading logarithmically corrected boundary law be-
havior can again be traced to the presence of numerous
gapless modes at the Fermi surface. Consider first the problem
of computing number fluctuations in a one-dimensional gas
of free nonrelativistic fermions at finite density. We wish
to calculate the fluctuations �N2

A = 〈(NA − 〈NA〉)2〉 in the
fermionic ground state with A an interval of length L. By
writing the operator NA as a restricted integral over the
fermion density operator, the calculation can be reduced to
an integral using Wick’s theorem. To leading order in L, the
fluctuations scale as �N2

A ∼ 1
π2 ln (L/ε). Note that this result

generalizes for Luttinger liquids in one dimension.27 There are
two Fermi points or patches, and each Fermi point contributes
1
2

1
π2 ln L to the answer. Returning to d > 1 dimensions, the

number fluctuations can again be written in integral form
using Wick’s theorem. However, the analysis of the integral
is considerably more complex.10,28 Instead, we can obtain the
exact expression for the asymptotic behavior of the number
fluctuations indirectly using the one-dimensional picture.

To perform the mode counting, let us return for a moment
to the entanglement entropy. We choose a spatial region A of
linear size L and ask about the entanglement entropy of this
region. The Widom formula takes the form of an integral over
the boundary of A and the Fermi surface,

S = 1

(2π )ds−1

ln L

12

∫
k

∫
x

dAkdAx |nx · nk|, (3)

where nx and nk stand for unit normals to the boundary of
A and the Fermi surface, respectively. The detailed choice of
linear size L in the logarithm is immaterial in this formula
since it only corrects the ultraviolet-sensitive boundary law
piece of the entanglement entropy. Once more, this formula
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should be interpreted as counting the effective number of chiral
one-dimensional modes contributing ln L to the entropy. Each
patch has cL = 1 and cR = 0 where left and right movers are
defined by the local radial direction. Thus, each patch should
contribute cL+cR

6 ln L = 1
6 ln L to the entropy. The Widom

formula is essentially this entropy per patch times the number
of such patches,

Nmodes = 1

(2π )d−1

1

2

∫
k

∫
x

dAkdAx |nx · nk|, (4)

where the |nx · nk| factor arises from computing the projected
area when performing the mode counting.12

Returning to the number fluctuations, each patch con-
tributes 1

2
1
π2 ln L following the one-dimensional result, and

the asymptotic form of the number fluctuations for a region A

in higher dimensions is, thus,

�N2
A = 1

(2π )d−1

ln L

4π2

∫
k

∫
x

dAkdAx |nx · nk|. (5)

Precisely this formula has been obtained previously by a
lengthier and rigorous analysis (note that some confusion
can arise in the comparison because of different bases for
the logarithms).6,10

III. GENERALIZATION TO FINITE TEMPERATURE
AND INTERACTIONS

So far, we have worked at zero temperature and without
interactions, but these restrictions are not essential. For
example, the heuristic picture of the Fermi surface as a
collection of one-dimensional chiral patches gives roughly
the correct finite temperature entropy for a region A of linear
size L. Each patch contributes roughly LT to the entropy,
and the number of patches is proportional (kF L)d−1 giving
roughly the correct entropy for free fermions. There is a reason
to be skeptical, however. The details of the patch counting
depend on the boundary of region A, but any such dependence
should disappear in thermodynamic quantities. Fortunately,
the physically correct choice of linear size L naturally cancels
this detailed boundary dependence.

Returning to the case of d = 2, let us assume that the Fermi
surface is a circle of radius kF . The real-space region A is
taken to be a circle of radius R. Consider a specific patch on
the Fermi surface, and choose coordinates so that this patch
has velocity equal to vF x̂ as in Fig. 1. To compute the integral
over the boundary of region A, we must specify what the
effective linear size L is. We parametrize the boundary of A

by an angle θ defined relative to the x axis. For a mode with
velocity vF x̂ and a point on the boundary of A labeled by θ ,
the physically correct linear size is Leff = 2L| cos θ |, that is,
the chordal distance across the circle parallel to the x axis as
in Fig. 1. The high-temperature limit of Eq. (2) with L = Leff

is

S1+1 = cL + cR

6

πLeff

βvF

. (6)

We use this expression for the entropy contribution of each
patch to compute the entropy of the entire Fermi surface,

S = 1

2π

1

2

∫
k

∫
x

dAkdAx |nx · nk|1

6

πLeff

βvF

. (7)

FIG. 1. A sketch of a circular real-space region A of radius L. The
Fermi velocity of a particular patch on the Fermi surface is shown
superimposed on the circle. The effective length Leff = 2L cos θ ,
which is just the chordal distance across the circle parallel to the
Fermi velocity, is a function of angle θ relative to vF .

The integral over the real-space boundary can be carried out
as described above. What remains is an integral of 1/vF over
the Fermi surface, a familiar result giving the density of states.
The final result is

S = π

6
mT (πL2), (8)

where m is the fermion mass and πL2 is the area of region A.
This is nothing but the usual thermal entropy of a gas of free
fermions in a box of area πL2 to leading order in T/TF . A
similar calculation gives the correct finite temperature number
fluctuations to leading order in T/TF . The fact that the Widom
formula and the patch counting it embodies can be used to
compute exact low-temperature thermal properties is strong
evidence in its favor.

It is also possible to include interactions. In the
renormalization-group treatment of Fermi liquids, most inter-
actions are irrelevant. The exceptions are forward-scattering
interactions, but these interactions do not drastically modify
the (1 + 1)-dimensional picture. The low-energy effective ac-
tion Eq. (1) has an emergent U (1)∞ symmetry, corresponding
to number conservation on each patch, and this symmetry
survives in the low-energy limit of Fermi liquids because only
forward-scattering remains.13,14 Sticking with the simplest
possible situation, let us assume that approximate rotational
symmetry is preserved as we turn on interactions. With the
assumption of rotational symmetry, Luttinger’s theorem that
the area (in d = 2 dimensions) enclosed by the Fermi surface
remains constant implies that kF is not renormalized by
interactions. Indeed, the content of Fermi liquid theory is that
the effects of interactions may be subsumed entirely in terms of
a renormalized Fermi velocity and a set of Landau parameters.

To see that interactions can be automatically included, let
us compute the heat capacity of a Fermi liquid. The standard
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result of Fermi liquid theory is that the heat capacity depends
on interactions only through the renormalized mass (assuming
kF remains at its free value). Remarkably, we can describe the
thermodynamics of an interacting Fermi liquid, say, in d = 2,
using Eq. (7) so long as we replace the bare Fermi velocity
by the physical renormalized Fermi velocity. In particular,
the mode counting remains unchanged despite the presence
of interactions. Given that we can reproduce thermodynamics
exactly using the patch construction, we have a strong hint that
the interacting Fermi liquid does indeed have an entanglement
entropy described by the Widom formula. Dropping the
assumption of spherical symmetry, the formalism predicts that
the entanglement entropy is still highly universal, it is totally
insensitive to the Landau parameters, for example, and depends
only on the shape of the interacting Fermi surface.

IV. OTHER HIGHLY ENTANGLED STATES

A. Weyl fermion in a magnetic field

Consider a single Weyl fermion ψ charged under a gauge
field A with charge q in 3 + 1 dimensions. The equation
of motion for this fermion is γ μDμψ = 0 with γ 5ψ = −ψ

where Dμ = ∂μ − iqAμ is the covariant derivative. Let there
be a finite magnetic field, say, in the z direction: F12 =
∂1A2 − ∂2A1 = B. The magnetic field defines a length scale
called the magnetic length 
2

B = 1/B (the units are made up
by the flux quantum). On length scales much less than 
B , the
theory looks like a (3 + 1)-dimensional conformal field theory.
On length scales much bigger than 
B , the theory becomes
effectively 1 + 1 dimensional. Indeed, the Weyl fermion is
special because it possesses zero modes that avoid being
gapped by the magnetic field.

We take the γ matrices to satisfy {γ μ,γ ν} = 2ημν with
ημν mostly minus. The chiral γ matrix is defined to be γ 5 =
iγ 0γ 1γ 2γ 3, and I work in the chiral basis where Dirac spinors
decompose as ψT = (ψLψR)T with

γ 5 =
(−12 0

0 12

)
. (9)

The Weyl equation for a left-handed spinor is

(i∂t − iσ iDi)ψL = 0, (10)

with σ i as the usual Pauli matrices. The vector potential in
Landau gauge is Ay = Bx for a constant magnetic field B in
the z direction. Most solutions of the Weyl equation in a finite
magnetic field have a gap coming from the cyclotron motion,
but there are also zero-mode solutions. These solutions may
be heuristically understood as arising from a balance between
the Zeeman energy and the orbital cyclotron energy.

Zero-mode solutions may be found by setting ∂tψL =
∂zψL = 0 to obtain

σx∂xψL + σy(∂y − iqBx)ψL = 0. (11)

Landau gauge maintains translation invariance in the y direc-
tion, so we try a solution of the form ψL(x,y) = ψL(x)eiky .
The Weyl equation reduces to

∂xψL = −σ z(qBx − k)ψL, (12)

with solution,

ψL(x) = exp

[
− qB

2

(
x − k

qB

)2

σ z

]
ψL(0). (13)

In order for this solution to be normalizable, we must have
σ zψL(0) = ψL(0) (assuming qB > 0) leaving only 1 degree
of freedom. The spacing of k is determined by the length of
the system in the y direction to be �k = 2π

Ly
. We have one

zero for each value of k such that ψL(x) sits inside the system
in the x direction. The degeneracy g of zero modes is, thus,
g = qBLx

�k
= qBLxLy

2π
. More generally, these zero modes and

their degeneracies are protected by an index theorem relating
the number of zero modes to the magnetic flux penetrating the
system: Nzero modes = q

2π

∫
F12dx dy.

So far, we have ignored the z direction, but these zero modes
actually disperse in the z direction. Assuming a more general
solution of the form ψL(x,y,z,t) = eipzz+ipyy−iEtψL(x), the
full Weyl equation becomes

EψL − pzσ
zψL − i[σx∂x + σy(∂y − iqBx)]ψL = 0. (14)

The second half of this equation is solved with the same
zero-mode profile as above. The first half reduces to the
equation E = pz using the fact that σ zψL = ψL follows from
the normalization condition. Thus, each zero mode is actually
a relativistic chiral fermion in one spatial dimension. The
low-energy physics is controlled entirely by these zero modes
as all other modes are gapped by the cyclotron motion.

Using the one-dimensional structure, we can compute
the entanglement entropy of the Weyl fermion. Consider
a box of linear size L. The entanglement entropy SL is
defined as the von Neumann entropy of the reduced density
matrix corresponding to the box: SL = −Tr(ρL ln ρL). For
one-dimensional conformal field theories, the entanglement
entropy is known to have the form

SL = cL + cR

6
ln

(
L

ε

)
, (15)

where cL and cR are the left and right central charges and ε is
an ultraviolet cutoff.11 Weyl fermions in a magnetic field may
be described by a large number of one-dimensional gapless
modes, and these modes are each equivalent to a chiral (1 + 1)-
dimensional conformal field theory, the dimensions being z

and t . Each chiral fermion mode has cL = 1 and cR = 0 and,
hence, contributes (1/6) ln L to the entanglement entropy. For
a cube of side length L aligned with the z direction, we have
qBL2/(2π ) zero modes for a total entanglement entropy,

SL =
(

qBL2

2π

)
1

6
ln

(
L

ε

)
. (16)

This formula may be checked using the generalization of one-
dimensional entanglement entropy to finite temperature,

SL = cL + cR

6
ln

(
β

πε
sinh

πL

β

)
. (17)

Note that, unlike the case of the Fermi surface, here, all the
modes point in the same direction, so the resulting integral
over one-dimensional modes is trivial. The thermal entropy of
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these zero modes in a cube of size L is, thus,

S =
(

qBL2

2π

)
πLT

6
, (18)

which agrees with the direct thermodynamic calculation.
Before moving on, let me note that a single charged Weyl

fermion does not give a consistent quantum theory. This is due
to the presence of a gauge anomaly proportional to Tr(Q3)
where Q is the charge matrix. This anomaly must vanish for
a completely well-defined chiral gauge theory, but this can be
accomplished by adding Weyl fermions with compensating
charges. The boundary law violating behavior remains, and
thus, there are consistent configurations of Weyl fermions that
violate the boundary law for entanglement entropy.

B. Holographic generalization

We have computed the entanglement entropy for a single
free Weyl fermion and found a term that violates the boundary
law for entanglement entropy. A useful choice for incorporat-
ing interactions is N = 4 SU(N ) Yang-Mills theory, which
includes 4N2 Weyl fermions as part of the field content.
These fermions sit in the adjoint of the non-Abelian gauge
group SU(N ), whereas the magnetic field B corresponds to
a weakly gauged U (1) subgroup of the R symmetry. In zero
magnetic field, this theory is conformal at all values of the
t’Hooft coupling λ = g2

YMN , but it is particularly amenable to
study at strong coupling because of holographic duality. This
duality relates theN = 4 theory to a theory of quantum gravity,
type IIB string theory, in an asymptotically five-dimensional
anti-de Sitter space-time (AdS5). The limits λ → ∞ and
N → ∞ in the field theory give classical supergravity in
anti-de Sitter space on the gravity side.

In the strong coupling and large N limits, configurations
of the super-Yang-Mills theory have an emergent geometric
interpretation in terms of classical gravitational field config-
urations. The ground state of the field theory is dual to pure
anti-de Sitter space, and the field theory at finite temperature
is accessed via a bulk black hole. The field theory in a
background magnetic field at zero temperature is obtained
from a magnetically charged extremal black hole in the bulk.
Given the bulk geometric configuration, the leading large N

contribution to the entanglement entropy can be determined
holographically by computing the area of certain minimal
surfaces in the bulk.29,30

Consider extremal magnetic brane solutions in Einstein-
Maxwell theory with negative cosmological constants in five
dimensions.18 These solutions interpolate between an asymp-
totically AdS5 region and a near horizon AdS3 × T2 region
(assuming the xy plane is compactified). The asymptotic
AdS5 region corresponds to the unperturbed N = 4 theory
at high energies. The near-horizon region appears as a result
of turning on a magnetic field in the gauge theory. The
radial evolution represents a renormalization-group flow from
a (3 + 1)-dimensional conformal field theory at high energies
to an effectively (1 + 1)-dimensional conformal field theory at
low energies. This is qualitatively similar to the physics of free
Weyl fermions, and even at strong coupling, the crossover scale
is determined by the magnetic length. At zero temperature, the

metric may be written in the form

ds2 = −U (r) dt2 + dr2

U (r)
+ U (r) dz2 + e2V (dx2 + dy2),

(19)
with r as the radial coordinate (r → ∞ is the boundary) and
z as the direction of the magnetic field on the boundary.18 We
use bulk units with the AdS radius set to 1. In addition to
the metric, the gauge field has a profile given by F = B dx ∧
dy. The asymptotic AdS5 region is described by U = e2V =
r2, whereas the near horizon AdS3 × T2 region corresponds
to U = 3r2 and e2V = B/3. Notice that, in the near-horizon
region, the xy plane has decoupled from the radial coordinate
and has a fixed size given by the magnetic length.

The entanglement entropy of a region in the dual field theory
is determined by the area of the minimal surface in the bulk that
terminates on the boundary of the region in the field theory.
The entanglement entropy is just this minimal area divided
by 4G

(5)
N . We will focus on the entanglement entropy of a

rectangular region in boundary theory of size L × L × Lz.
Assuming L � Lz gives approximate translation invariance
in the xy plane. The minimal surface calculation reduces to a
two-dimensional problem involving only the variables z and
r . The zero-temperature geometry is only known numerically,
and the minimal surface calculation can also only be performed
numerically. However, the important physics can be extracted
without the numerical details. For cubic regions with all
dimensions less than the magnetic length, the minimal surface
only probes the AdS5 region and gives the usual ultraviolet
divergent boundary law for entanglement entropy.

For boundary regions of linear size much larger than the
magnetic length, the minimal surface passes right through
the asymptotic AdS5 region toward the near-horizon region.
Once in the near-horizon region, the x and y directions freeze
out, and the minimal surface behaves exactly as in AdS3.
In particular, we find the characteristic ln (Lz/
) dependence
familiar from (1 + 1)-dimensional conformal field theory with
the magnetic length providing the cutoff. The entanglement
entropy, thus, consists of two pieces, a nonuniversal boundary
law contribution from the asymptotically AdS5 region and
a universal low-energy piece SL ∼ N2BL2 ln (Lz/
B). The
appearance of the magnetic field can be understood because
the effective (1 + 1)-dimensional central charge is related to
1/G

(3)
N , which is enhanced relative to 1/G

(5)
N by a factor of

BL2 from the freeze-out of the xy plane. This strong-coupling
version of the free Weyl fermion system, thus, also violates
the boundary law for entanglement entropy at low energies.

C. Topological insulators

In both cases considered above, the appearance of many
gapless one-dimensional modes was responsible for the highly
entangled nature of the quantum state. This intuition can
be applied to more experimentally relevant systems known
as topological insulators. These systems are time-reversal
invariant electronic band insulators that are not smoothly
connected to trivial band insulators. In particular, they possess
interesting topological structures that give rise to protected
edge modes. These edge modes are robust so long as time-
reversal invariance is preserved.19,21,25 Topological insulators
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in three spatial dimensions have gapless surface states living
in two spatial dimensions, but these modes do not lead to
a violation of the boundary law for entanglement entropy.
Similarly, the bulk of a topological insulator is gapped in
a perfect crystal and certainly satisfies a boundary law for
entanglement entropy.

However, experimentally realized topological insulators are
not perfect crystals; they possess topological defects, including
dislocations in the crystalline bulk. Remarkably, for certain
kinds of topological insulators and dislocation types, the
dislocations have been shown to support gapless fermionic
modes.31 These effectively one-dimensional modes make the
dislocations into gapless quantum wires threading the other-
wise gapped bulk. The one-dimensional modes in the quantum
wires are analogous to the Weyl zero modes considered above
with the dislocations playing the role of magnetic field lines.
In the presence of a finite density of dislocations supporting
gapless modes, the bulk of a strong topological insulator
violates the boundary law for entanglement entropy.

To estimate the size of the violation, consider the arti-
ficial situation of a dilute array of topologically nontrivial
dislocations all aligned. Let these dislocations have an areal
density ρ [a typical value of ρ might be 1012 m−2 (Ref. 31)].
A region in the bulk of size L × L × Lz with the z axis chosen
parallel to the dislocations effectively contains ρL2 gapless
one-dimensional fermionic modes. These modes should each
contribute roughly ln (Lz/ε) to the entanglement entropy.
The boundary law violating component of the entanglement
entropy is, thus, on the order of SL ∼ ρL2 ln (Lz/ε). This
estimate is crude, but it should suffice for a reasonably uniform
and collimated set of dislocations. Note that, despite the
enhanced L dependence relative to the usual boundary law,
this term may be much smaller than the boundary law term
for experimentally accessible system sizes and dislocation
densities. We also wish to emphasize that this is a statement
about the zero-temperature quantum state. The helical modes
are protected from elastic scattering (such scattering might
otherwise localize a one-dimensional gapless mode), but at
finite temperature or in the presence of inelastic processes, the
boundary law violating behavior will be disrupted.

V. DISCUSSION

We have elaborated on a view of the Fermi surface as
a collection of (1 + 1)-dimensional chiral conformal field
theories. We focused mostly on circular real-space regions
and Fermi surfaces in d = 2 spatial dimensions, but the
generalization for other geometries and higher dimensions is
straightforward. So long as region A is convex, the proper
effective length is physically well defined. To define this
length, draw a line from a fixed point on the spatial boundary
such that the line is parallel to the Fermi velocity of a fixed
point on the Fermi surface. For convex A, this line will intersect

the boundary of A in one other place. The length of the line
segment between these two intersections is Leff for the chosen
points. Using this definition, the thermal entropy calculation
can be shown to produce the volume of region A irrespective
of the particular shape chosen. The ultimate message is that
the anomalous entanglement entropy depends only on the
geometry of the interacting Fermi surface in any dimension.
This result is part of a growing body of work that strongly
links entanglement and geometry in many-body physics.

The present formulation was originally motivated by
renormalization-group treatments of the Fermi liquid and by
attempts to understand intuitively the origin of the anomalous
entanglement properties of fermions. However, it seems to
be giving us much more. It can handle both finite temperature
and some kinds of interactions, and it provides strong evidence
both for the still unproven Widom formula for free fermions
and for its extension to interacting fermions. On the practical
side, it provides a simple and unified formalism for many
calculations that previously appeared quite complex in the
free Fermi gas.

We have also described three other systems special to three
dimensions that exhibit anomalous entanglement properties
following from a plethora of gapless one-dimensional modes.
One of systems was a holographic strong-coupling generaliza-
tion of the Weyl fermion problem, which provides evidence
that the picture developed here does not break down at strong
coupling. In all these cases, the patch argument was essentially
unnecessary because the systems were already strongly one
dimensional due either to a magnetic field or because they
were hosted on one-dimensional defects.

These results also support the prediction in Ref. 12 that
other exotic phases of matter, including non-Fermi liquid
metals,32 spin liquids with a spinon Fermi surface, holographic
non-Fermi liquids,33 and Bose metals34 violate the boundary
law for entanglement entropy. Numerical evidence supporting
this prediction has recently been provided in Ref. 35. To
truly extend the patch argument given here to these systems,
one must account for nontrivial coupling between patches,
such as that provided by a gapless boson, but we leave
this to future papers. It is also likely that these exotic
phases have anomalously large fluctuations analogous to the
fermion number fluctuations in a Fermi liquid, although
these statements are more model dependent. One hope is
that anomalous properties, such as entanglement entropy
and charge fluctuations may provide useful numerical and
experimental handles for identifying such exotic phases.36
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