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First-principles calculations of uranium diffusion in uranium dioxide
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The present work reports first-principles DFT + U calculations of uranium self-diffusion in uranium dioxide
(UO2), with a focus on comparing calculated activation energies to those determined from experiments. To
calculate activation energies, we initially formulate a point defect model for UO2±x that is valid for small deviations
from stoichiometry. We investigate five migration mechanisms and calculate the corresponding migration barriers
using both the LDA + U and GGA + U approximations. These energy barriers are calculated using the occupation
matrix control scheme that allows one to avoid the metastable states that exist in the DFT + U approximation.
The lowest migration barrier is obtained for a vacancy mechanism along the 〈110〉 direction. This mechanism
involves significant contribution from the oxygen sublattice, with several oxygen atoms being displaced from
their original position. The 〈110〉 vacancy diffusion mechanism is predicted to have lower activation energy than
any of the interstitial mechanisms and comparison to experimental data for stoichiometric UO2 also confirms this
mechanism.
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I. INTRODUCTION

Uranium dioxide UO2 is the most widely used nuclear fuel
worldwide and its atomic transport properties are relevant to
practically all engineering aspects of the material. During in-
reactor operation, the fission of uranium atoms produces a
wide variety of fission products that create point defects as they
deposit their energy in the surrounding material. Since many of
the fuel properties that govern fuel performance are influenced
by point defects, it is of high importance to investigate their
thermodynamic properties and migration mechanisms.

Activation energies for uranium self-diffusion have been
reported for near stoichiometric and stoichiometric UO2 single
crystals ranging from 4.4 eV to 5.6 eV.1–4 One of our
goals here is to use first-principles calculations to provide
some physical meaning to these activation energies. Although
uranium self-diffusion coefficients have been determined
experimentally,1–5 the migration mechanisms remain unknown
and discrepancies are observed even for purportedly stoichio-
metric compositions, both in relation to the actual value of the
self-diffusion coefficient and the associated activation energy.
An essential cause of scatter is the enhanced diffusion at the
grain boundaries. Sabioni reports a grain boundary diffusion
coefficient five orders of magnitude greater than the volume
diffusion coefficient between 1773 and 1973 K in a reducing
atmosphere.6 In addition, it has been shown in previous work
relating to oxygen self-diffusion7,8 that one of the issues in
obtaining a reliable set of data lies in monitoring the relevant
thermodynamic conditions during the experiment, such as
oxygen partial pressure, temperature, and the impurity content
of the sample.

First-principles calculations based on the density functional
theory (DFT) can be used to analyze the experimental studies
mentioned above. It is well known, however, that standard
approximations to DFT fail to describe accurately uranium
dioxide because of the strong correlations among uranium 5f

electrons. In order to entirely capture these correlation effects,
one needs to use approximations beyond standard DFT, such

as the self-interaction correction,9 the hybrid functionals,10–12

or the DFT +U approximation.13–15

The DFT +U method has been widely used to study the
behavior (formation and migration) of uranium and oxygen
point defects in UO2.16–22 Despite this, the description of UO2

remains challenging. It is now recognized that the DFT +U

method creates a number of metastable states that make the
search for the electronic ground state difficult and can lead to
large errors in calculations of defect energies if no care is taken
to control the correlated electronic states. To our knowledge,
there are currently three methods to circumvent these diffi-
culties: the occupation matrix control (OMC) scheme,8,21–26

the U -ramping method,27 and the quasiannealing method.28

The OMC scheme was used in the present work. It was first
developed by Jomard et al.23 and Amadon et al.24 then applied
to uranium dioxide.8,21,22,25 Compared to the U -ramping
method or the QA approach, the OMC scheme allows us
to more precisely control various valence states for uranium
atoms in defective UO2, such as U3+ and U5+ cations. We
have already applied this scheme in our previous studies,21,22,29

particularly in relation to oxygen self-diffusion.8 The results
have shown that this method can provide accurate physical
properties and defect migration energies and we here extend
this work to defect energies involving the cation sublattice.

Assessing defect formation and migration energy calcu-
lations against self-diffusion data requires a rigorous point
defect model that establishes the point defect concentrations
as a function of temperature and oxygen potential. In Sec. II,
we establish such a point defect model and specify its range
of validity. Analytical expressions for activation energies are
then derived in two limiting cases when electronic defects are
predominant over anion disorder and vice versa. Section III
describes in detail all the energies that are required for the
calculation of activation energies. In Sec. IV, we present our
first-principles calculations. The energies corresponding to the
mass balance equations required for the point defect model are
evaluated using both neutral and charged supercell approaches.
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Also, different uranium defect migration mechanisms and
associated energy barriers are computed. Finally, in Sec. V, we
analyze the point defect model using the formation energies
calculated from first principles and we assess the model
predictions against the experimental data reported in the
literature.

II. POINT DEFECT MODEL FOR UO2±x

Experimental methods for direct measurement of formation
and migration energies are often complex and thus difficult
to implement. Self-diffusion properties, however, are directly
dependent on these quantities. In order to correlate self-
diffusion data with formation and migration energies, a point
defect model is needed that enables one to relate the various
defect concentrations to prevailing thermodynamic conditions.
In this work, we rely on such a point defect model to compare
defect energies calculated from first principles to uranium
self-diffusion data, as was recently done in the simpler case of
oxygen diffusion.8 The model developed is similar to others
reported in the past30,31 and is based on defect chemistry using
the Kröger and Vink formalism.32 We assume that charged
defect concentrations are governed by a set of simultaneous
equations amongst which so-called mass-action laws are the
expression of thermodynamic equilibrium.

A. Applicability

The model presented in this section is only applicable to a
limited region of the UO2±x phase diagram, typically x < 2 ×
10−3 (this validity range will be demonstrated in Sec. V). This
is because in the traditional defect chemistry approach that we
adopt here, defects are assumed to be far apart, which means
both that the configurational entropy is given by the dilute limit
approximation (i.e., low defect concentrations) and that strong
defect interactions that are known to occur in oxide systems
are neglected. Methods have been developed to account for
strong defect interactions, as well as the modifications to
the configurational entropy due to defect clustering.33 These
approaches, however, are thought to be necessary for defect
concentrations greater than approximately 10−2 mol fraction.
Hence the equations described below are applicable to low
deviations from stoichiometry only. In addition, the model
only accounts for point defects in the strict sense of the
term, i.e., it does not explicitly describe the formation of
defect clusters that readily appear in UO2 as deviation from
stoichiometry increases.34 Finally, it is assumed that all point
defects are created thermally (i.e., intrinsic regime), which
limits the applicability of the model to high temperatures, in
practice, above approximately 1273 K. Below 1273 K, the
regime is known to be extrinsic with the hole concentration
being controlled by impurities.35

B. Model formulation

Magnetic susceptibility experiments on U4O9 have shown
that this oxide contains a mixture of U4+ and U5+ ions.36

In addition to this, first principles calculations22 have shown
that two U5+ ions are more stable than one U6+ ion upon
introduction of an oxygen interstitial. Hence we follow here
the assumption of many other authors35 that electronic disorder

is controlled by the disproportionation of two U4+ (5f 2) ions
to one U5+ (5f 1) ion and one U3+ (5f 3) ion, which may be
written as follows using the Kröger-Vink notation:

2UX
U � h· + e

′
, (1)

where UX
U designates a uranium atom on a normal uranium

lattice site (U4+) and h· and e
′

designate holes (U5+) and
electrons (U3+), respectively. Oxygen disorder on the anion
sublattice results from the Frenkel equilibrium:

OX
O + VX

i � O′′
i + V··

O, (2)

where OX
O is an oxygen atom on a normal oxygen lattice site

and VX
i is a vacant interstitial site. The following equilibrium

equation describes the incorporation of oxygen atoms from the
gas phase into the solid:

1
2 O2 + VX

i + 2 UX
U � O′′

i + 2 h·. (3)

Note that in Eq. (3), the two holes (U5+) are not bound
to the oxygen interstitial. Finally, the Schottky and uranium
Frenkel disorder are described as follows:

� � V
′′′′
U + 2V··

O (4)

and

UX
U + VX

i � U····
i + V

′′′′
U . (5)

In the dilute limit approximation, the configurational entropy
terms for each of the chemical potentials of the different
defect species are given by the corresponding site fractions.
If �Gα designates the Gibbs free energy of one of the
above defect formation equations [electron-hole pair (α = eh),
oxygen Frenkel pair (α = FPO), oxygen interstitial (α = Oi),
Schottky defect (α = S), and uranium Frenkel pair (α =
FPU)], then thermodynamic equilibrium determines relations
between activities, i.e., site fractions. Site fractions are pro-
portional to defect concentrations and it can be shown that the
equilibrium constants may be expressed as a function of defect
concentrations normalized to the uranium site concentration.
Equilibrium is therefore expressed as five relationships, each
corresponding to the five chemical equilibria (1) to (5):

Keh = [e
′
][h·][

UX
U

]2 = exp

(
−�Geh

kBT

)
, (6)

KFPO = [O′′
i ][V··

O][
OX

O

][
VX

i

] = exp

(
−�GFPO

kBT

)
, (7)

KOi = [O′′
i ][h·]2

√
pO2

[
UX

U

]2[
VX

i

] = exp

(
−�GOi

kBT

)
, (8)

KS = [V
′′′′
U ][V··

O]2 = 4 exp

(
−�GS

kBT

)
, (9)

and

KFPU = [V
′′′′
U ][U····

i ][
UX

U

][
VX

i

] = exp

(
−�GFPU

kBT

)
, (10)

where the square brackets represent normalized defect con-
centrations and pO2 the equilibrium oxygen partial pressure.
Note that the factor of 4 on the right hand side of Eq. (9) is
due to the fact that defect equilibrium constants are expressed
as a function of concentrations and not site fractions. There
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are nine unknowns to this model and in addition to the
five defect equilibrium relationships, three equations express
the constraints imposed by the crystalline structure and an
additional one guarantees electroneutrality:[

UX
U

] + [V
′′′′
U ] = 1, (11)

[
OX

O

] + [V··
O] = 2, (12)

[O′′
i ] + [

VX
i

] + [U····
i ] = 1, (13)

4 [V
′′′′
U ] + 2 [O′′

i ] + [e
′
] = 4 [U····

i ] + 2 [V··
O] + [h·]. (14)

A first-order approximation of deviation from stoichiometry
x (for small x) may then be expressed from the defect
concentrations that the model provides:

x = [O′′
i ] − [V··

O]

1 − [V
′′′′
U ] + [U····

i ]
. (15)

C. Analytical expressions for activation energies

Following Kofstad,37 two limiting cases are discussed and a
corresponding analytical expression for the uranium activation
energy is provided assuming a vacancy or interstitial diffusion
mechanism. All expressions are derived under the assumption
of proximity to stoichiometric composition.

We assume [e
′
] ≈ [h·] (i.e., intrinsic ionisation predomi-

nates) and [UX
U] ≈ [VX

i ] ≈ [OX
O]/2 ≈ 1. Note that these as-

sumptions will be validated later in Sec. V. In this case, the
system of equations (6) to (14) may be solved analytically and
in particular [V

′′′′
U ] and [U····

i ] are expressed as follows:

[V
′′′′
U ] = K2

Oi
KS

K2
ehK

2
FPO

pO2 , (16)

[U····
i ] = K2

ehK
2
FPO

KFPU

K2
Oi

KS

1

pO2

. (17)

Note that the above assumption ([e
′
] ≈ [h·]) implies that

the Fermi level is located in the middle of the band gap.
This is important because the position of the Fermi level
has an influence on the charge states of defects in UO2.19,38

Crocombette et al. have shown that for a Fermi level located
in the middle of the band gap, the most stable defects are O′′

i

and V
′′′′
U with no local charge compensation around the defects,

which is consistent with our model. As for oxygen vacancies,
we used a +2 charge state in our model (i.e., with two unbound
U3+) even though there are indications that they might be
charged +1 when the Fermi level is located near the middle of
the band gap.38 However, our calculations indicate that the +2
charge state is favored up to a Fermi level positions that are
higher than the midgap position. For sake of consistency, we
therefore only account for oxygen vacancies in a +2 charge
state.

Now, if diffusion proceeds via simple mechanisms, then the
expression for the uranium self-diffusion coefficient is given
by39

DU = fVU [V
′′′′
U ]DVU + fUi [U

····
i ]DUi , (18)

where fVU and fUi are the correlation factors for the vacancy
and interstitial mechanisms. DVU and DUi are the vacancy and

interstitial diffusion coefficients, respectively. The latter may
be expressed as

Dd = D0
d exp

(
− Ed

m

kBT

)
, (19)

where Ed
m (EVU

m and EUi
m ) are the vacancy and interstitial

migration barriers, respectively. Combining Eqs. (16) to (19)
yields the corresponding activation energies EVU

a and EUi
a that

can be written as

EVU
a = 2EOi + ES − 2Eeh − 2EFPO + EpO2

+ EVU
m , (20)

EUi
a = −2EOi − ES + 2Eeh + 2EFPO + EFPU − EpO2

+ EUi
m ,

(21)

where Eα are the energies (or strictly speaking enthalpies)
associated with the Gibbs free energies �Gα of Eqs. (1)
through (5).

Note that the term EpO2
that appears in Eqs. (20) and (21)

has been introduced because DU depends on the oxygen
partial pressure via Eqs. (16) and (17). Therefore assessing
this theoretical approach to the experimental data would, in
principle, require the knowledge of the oxygen potential at
which the experiments were carried out. This information is
not available. We know, however, that the experiments were
carried out under reducing atmospheres generally obtained by
introducing a proportion of hydrogen in the carrier gas, which
activates the following equilibrium:

H2O � H2 + 1
2 O2. (22)

As a result, the actual oxygen potential under which the
experiments are carried out has an Arrhenius dependence.
We have carried out measurements of oxygen potentials of
Ar/5%H2 at different temperatures and estimated an activation
energy of 4.3 eV for the above equilibrium, which is close
to the expected value of 5.1 eV that would be expected if
the H2O � H2 + 1

2 O2 equilibrium were buffering the oxygen
partial pressure.

Note that if the uranium vacancy concentration is still
predominant with respect to the uranium interstitial concen-
tration in the substoichiometric region of the phase diagram
(which is quite possible if EFPU is high), then the apparent
activation energy (i.e., the activation energy of an Arrhenius
representation of DU) should show no change of slope, even
in the possible case where the material goes from a slightly
hyper- to slightly hypo- stoichiometric composition as the
temperature increases.

The other limiting case is when internal disorder predomi-
nates (i.e., [V··

O] ≈ [O′′
i ]). In this case, it is straightforward to

show that the self-diffusion coefficient is no longer dependent
upon equilibrium partial pressure, which is in contradiction
with experimental results that show a sharp increase in DU

as the deviation from stoichiometry increases. We would
therefore expect this situation not to arise if the theory outlined
in this work were consistent.
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III. ENERGIES REQUIRED FOR THE CALCULATION
OF ACTIVATION ENERGIES

Given the point defect model described above, the following
energies are required in order to calculate activation energies
for uranium diffusion in UO2±x : (1) the formation energies
of oxygen interstitials (EOi ), with two unbound U5+ cations.
(2) The formation energies of oxygen and uranium Frenkel
pairs (EFPO and EFPU ), Schottky defects (ES), and electron-hole
pairs (Eeh). (3) The migration energy of uranium atoms (EIU

m

and EVU
m ).

A. Calculations of defect formation energies and associated
charge compensations

As mentioned in Sec. II, Eq. (3) describes the insertion of
an oxygen interstitial in UO2. In this equation, the two holes
(U5+) are not bound to the oxygen interstitial. This means that
the formation energy should be calculated using a supercell
in which there is no local charge compensation around the
oxygen interstitial. In the same way, Eqs. (1), (2), (4), and (5)
assume (i) the charged defects do not interact and (ii) there is
no local charge compensation. The corresponding formation
energies should therefore also be computed using defective
supercells with no charge compensation around the defects.

In a standard DFT calculation (i.e., using a neutral super-
cell), however, local charge compensations always occur, i.e.,
there are always U5+ or U3+ cations created because of the
presence of the defects. For instance, an oxygen interstitial
always captures two electrons from the surrounding uranium
atoms and gets a −2 charge, leaving two U5+ cations as charge
compensation. In order to be entirely consistent with the model
described above, however, it is required to remove the local
charge compensations in our calculations. This can be done by
using charged defective supercells instead of neutral ones. By
adding or removing electrons in the supercell, the charge of
the interstitial atom (or vacancy) remains unchanged but the
charge of the whole defect (i.e., extra atom or atom deficit along
with the local charge compensation on uranium atoms) may be
controlled through the following reactions: U5+ + e− → U4+
and U3+ − e− → U4+. The difference between a neutral and
a charged supercell calculation therefore lies in the presence
(or absence) of the local charge compensation.

B. Oxygen interstitial formation energy

The accurate determination of the formation energy of
an interstitial oxygen remains challenging, both from the
experimental and theoretical standpoints. In this section, we
describe the various attempts made at calculating this value
as well as the difficulties encountered, and we explain why
the values obtained from first principles should be considered
more reliable than the current experimental ones. We perform
a careful comparison of our work with all previous DFT based
studies and we infer an approximate value for this formation
energy.

1. Determination from experimental measurements

The (effective) formation energy of oxygen interstitials
can be calculated from experimental measurements of the
oxygen potential as a function of temperature at fixed UO2+x

composition. The oxygen potential is given by

�GO2 = RT ln pO2 = �HO2 − T �SO2 , (23)

where �HO2/2 corresponds to the (effective) interstitial
formation energy in Eq. (3) calculated from DFT. �GO2

has been measured by several investigators40–48 and the
results have been analyzed in thermodynamic assessments
and reviews of the U-O system.46,49–51 For example, based
on experimental data from Markin and Bones,41 Labroche
et al. calculated �HO2/2 to range from −1.4 to −1.5 eV
between UO2.01 and UO2.082.51 Similarly, Aronson and Belle
provided estimates between −1.3 (x = 2.013) and −1.6 (x =
2.203) eV, which is also very close to the oxygen potentials
predicted by the assessed CALPHAD thermodynamic model
for the same concentration regime.50 It should be noted
that in this composition range, stoichiometric variations are
dominated by clustering phenomena (hence the use of the
term effective). Similarly, the lowering of the formation energy
as function of increasing nonstoichiometry (x) follows from
increased clustering. There are experimental measurements of
�GO2 as the stoichiometry approaches stoichiometric UO2

and the corresponding �HO2 values rapidly reaches more
negative values,52 however, this is not related to lowering of
the interstitial formation energy but rather indicates the onset
of oxygen vacancies and it is thus related to the transition from
UO2+x to UO2−x defect chemistry. Consequently, it is difficult
to derive accurate estimates of the interstitial formation
energy from measurements of the oxygen chemical potentials.
The formation energy of −1.3 eV measured at x = 2.013
represents a lower limit for the interstitial formation energy
relevant for the present analysis, but it cannot necessarily be
used as an accurate estimate of the reaction in Eq. (3). This
leads us to put more emphasis on the oxidation energies derived
from DFT.

2. Direct determination from GGA + U calculations

The oxygen interstitial formation energy can be determined
directly from GGA +U calculations by evaluating the energy
required for the following reaction:

1
2 O2 + VX

i + 2 UX
U � O′′

i + 2 h·. (24)

This is done by calculating the total energies of the UO2 perfect
and defective supercells, as well as the total energy of the
O2 molecule. In our previous work, we have estimated the
formation energy to be approximately zero using GGA +U

and occupation matrix control,8 with holes bound to the
oxygen interstitial. In this case, the corresponding equation
using the Kröger-Vink notation is

1
2 O2 + VX

i � OX
i , (25)

which is not consistent with the model that assumes randomly
distributed and unbound U5+ ions [see Eq. (3)]. It is therefore
necessary to add to our value the binding energy of two holes
with the oxygen interstitial, which was evaluated to be 0.4 eV
using charged supercell calculations similar to those applied
in Ref. 29. Our oxygen interstitial formation energy with
unbound U5+ is therefore 0.4 eV, which is surprisingly high
given that UO2 is known to oxidize easily.
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Contrary to what Oxford and Chaka stated,53 the DFT +U

approximation is not likely the cause for such a high formation
energy. It is rather because of the GGA-PBE functional that
fails to accurately describe the O atom and the O2 molecule,
resulting in a calculated O2 dissociation energy that is off by
30%, 20% of which is due to the PBE functional.54 If we
correct our value to exactly reproduce the experimental disso-
ciation energy, the formation energy becomes −0.5 eV. Note
that the magnitude of our correction is in good agreement with
the corrections derived in studies of other metal oxides53,55–57

and molecules.54 Based on assessment of a large number of
oxidation reactions for transition metal oxides, Wang et al.56

proposed an empirical correction of −0.7 eV that is meant to
capture errors for the O2 molecule as well as provide a more
accurate description of the filling of O 2p orbitals in oxides.
If we use Wang’s correction, our corrected formation energy
becomes −0.3 eV.

3. Indirect determination using U4O9 compounds

Another way of assessing bounds for the interstitial for-
mation energy is to compare the formation energy of U4O9

compounds with the formation energy of single interstitials.
By calibrating the calculated data for U4O9 to experimental
data for the heat of formation, which is a rather well-known
quantity for this ordered compound, we are able to estimate a
correction that can then be applied to the formation energy of
single interstitials. This takes care of the reference energy of
the O2 molecule as well as other uncertainties related to filling
the O 2p orbitals of oxygen interstitials.

One of the difficulties of this approach is that the exper-
imental structure of U4O9 is very complex and beyond the
reach of current DFT calculations. However, recent advances
in alternative structure models for this compound based on
the ordering patterns proposed by Andersson et al.58 enable
us to determine the U4O9 formation energy from DFT with
reasonable accuracy.59 Using the LDA +U approximation,
we calculated the formation energy of U4O9 to be −1.4 eV. By
comparing our calculated value with the experimental value
(−1.8 eV)50, we derive a correction of −0.4 eV. Assuming that
this correction is constant (measured per interstitial oxygen
ion) for all UO2+x compositions, which is reasonable if the
correction is related to the O2 molecule and filling of the O
2p orbitals, we can apply the same value to the calculated
interstitial formation energy. Using LDA +U , the corrected
oxygen interstitial formation energy with unbound U5+ is
found to be −0.6 eV after applying the previously derived
correction term.

4. Assessment of Oi formation energy

Table I presents a summary of all the DFT based values for
the oxygen interstitial formation energy that were discussed
in this section. We see from Table I that all DFT based values
converged to an oxygen interstitial formation energy between
−0.3 and −0.6 eV, i.e., approximately −0.5 eV, which is
significantly higher (less negative) than the value derived from
oxygen potential measurements away from stoichiometry.
Note that for consistency, we did not apply the GGA +U

corrections to the LDA +U values, and vice versa. Although
a few uncertainties remain, this value probably represents the

TABLE I. Formation energy (in eV) of the oxygen interstitial
in UO2 with unbound U5+, determined from DFT based cal-
culations. Three different corrections are applied, derived from
(i) direct GGA + U calculations, (ii) LDA + U calculations using
U4O9 compounds, and (iii) Wang’s study.56

Direct Wang et al. U4O9

GGA + U Ref. 56 LDA + U

GGA + U −0.5 −0.3
LDA + U 59 −0.6

most accurate estimate of the interstitial formation energy to
date. For completeness, we will perform our analysis using
four different formation energies ranging from 0 to −1.5 eV
(see Table V), thus covering the range of possible values
obtained from theory and experiments.

C. Frenkel pair, Schottky defect, and electron-hole pair
formation energies

DFT values of Frenkel pair (uranium or oxygen) and
Schottky defect formation energies are more accurate than
the oxygen interstitial one because they do not involve any
reference state. From the model described in Sec. II, it
is seen that the formation energies required are those of
isolated Frenkel pairs and Schottky defects, i.e., those with
the corresponding defects created in two separate supercells
in order to remove the interactions between them. Associated
formation energies have been calculated many times before but
only those from Ref. 29 are relevant here: in the latter work,
Andersson et al. indeed used charged supercell calculations in
order to remove the creation of U5+ and U3+ cations, which is
consistent with our model. We will therefore use the formation
energies from Ref. 29 for the oxygen Frenkel pair (3.3 eV),
the uranium Frenkel pair (11.2 eV), and the Schottky defect
(6.0 eV). It should be noted that these energies were obtained
using the LDA functional. We will demonstrate in Sec. IV B,
however, that LDA and GGA calculations yield similar results.
As for the formation energy of an electron-hole pair [given
in Eq. (1)], it has been calculated using charged supercell
calculations and estimated to be approximately 1.7 eV. The
corresponding equation is

2U4+ � U3+ + U5+, (26)

where U4+ refers to a perfect 96-atom neutral supercell
and U3+ (respectively, U5+) refers to a perfect 96-atom
charged supercell in which an electron was added (respectively,
removed). Note that the electron-hole formation energy that we
calculated is consistent with the value of the band gap in UO2,
which is around 2 eV.

Table II displays a summary of all formation energies (EF,
in eV) needed for the model. The only remaining unknowns
in our model are therefore the migration energies for uranium
in UO2. Section IV is dedicated to their determination using
both the LDA +U and GGA +U approximations in order to
assess the differences between them.
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TABLE II. Summary of all formation energies (EF, in eV) needed
by the point defect model.

Defect EF (eV)

Oxygen interstitial −1.5 to 0
Oxygen Frenkel pair 3.3
Uranium Frenkel pair 11.2
Schottky defect 6.0
Electron-hole pair 1.7

IV. THEORETICAL DETERMINATION OF
MIGRATION ENERGIES

A. Computational details

We only consider the fluorite phase, which is stable above
30.8 K, since it is the experimentally relevant phase. It should
be stressed that during the calculation of migration barriers,
it is very difficult to maintain the perfect fluorite structure
due to the breaking of symmetries that turn some atoms
around the defect into the distorted Jahn-Teller phase of
UO2, stable below 30.8 K. However, we have shown in a
previous work8 that this effect does not significantly affect the
calculated migration barriers. All calculations were carried out
using the VASP package.60–62 The Kohn-Sham wave functions
were calculated within the projector augmented-wave (PAW)
formalism63 with the compensation charge n̂ truncated up to
L = 6 (see Ref. 26 for implications of the compensation charge
truncation). We used the Liechtenstein approach of DFT +U

with a double-counting correction in the fully localized limit.14

For all calculations, the U and J parameters of the DFT +U

approximation were set to 4.50 and 0.54 eV respectively, as
determined by Yamazaki and Kotani,64,65 based on the analysis
of x-ray photoemission spectra. Migration energies were
calculated using the nudged elastic band (NEB) method,66

using a 96-atom supercell with a collinear 1k AFM order as
an approximation of the real paramagnetic order. Note that
the paramagnetic order is approximated because it cannot
be modeled yet with the DFT +U approximation due to the
prohibitive computational cost of the calculations. In UO2,
the influence on the migration energies of the 1k AFM order
approximation, and of the magnetic ordering in general, is
currently unknown. In order to give a rough estimate, we have
perfomed calculations in ferromagnetic UO2 and we found
that the migration energy for the most probable diffusion
mechanism was approximately 0.5 eV higher than that in
AFM UO2. The difference is significant but we expect the 1k
AFM order to be closer to the actual paramagnetic state than
a ferromagnetic state, because the 1k AFM order keeps a total
magnetic moment of zero (consistent with paramagnetism)
though displaying a local ordering of the magnetic moments,
instead of a completely random one. A 500 eV cutoff energy
was used with a 2 × 2 × 2 Monkhorst-Pack k-point mesh. This
ensured the convergence of the cell parameters and of the total
energy to less than 10−3 Å and 10 meV/atom, respectively. For
the calculation of fractional occupancies, we used a gaussian
smearing with a smearing width of 0.1 eV. Finally, spin-orbit
coupling (SOC) is neglected in all calculations. Our previous
studies of oxygen point defect formation22 and migration8

have shown, however, that the DFT +U approximation can

FIG. 1. (Color online) Schematics of the interstitial mechanism
in the 〈110〉 direction. Light grey and red spheres represent uranium
and oxygen atoms, respectively. The dark blue sphere represents the
initial interstitial uranium atom.

still quantitatively describe transport phenomena in UO2, even
with the neglect of SOC. We can therefore expect this trend to
be the same for uranium self-diffusion.

B. Migration energies: comparison of LDA and
GGA functionals

Five migration mechanisms were considered for uranium
self-diffusion.

(1) Direct interstitial mechanism in 〈110〉 direction: a
uranium atom at an octahedral interstitial site moves to the
nearest octahedral interstitial site, along the 〈110〉 direction
(see Fig. 1).

(2) Interstitialcy mechanism: a uranium atom at an octahe-
dral interstitial site first kicks a uranium atom out of a lattice
site, which in turn moves to the nearest octahedral interstitial
site. There are two interstitialcy mechanisms depending on the
direction taken by the kicked atom (see Fig. 2).

(3) Vacancy mechanism in the 〈100〉 direction: A uranium
atom moves in the 〈100〉 direction to the nearest uranium
vacancy (see Fig. 3). Note that this mechanism involves the
uranium ion traveling through an interstitial site.

(4) Vacancy mechanism in the 〈110〉 direction: a uranium
atom moves in the 〈110〉 direction to the nearest uranium
vacancy (see Fig. 4).

FIG. 2. (Color online) Schematics of the two interstitialcy mecha-
nisms, depending on the direction taken by the kicked atom: collinear
(top) and noncollinear (bottom). Light grey and red spheres represent
uranium and oxygen atoms, respectively. The dark blue sphere
represents the initial interstitial uranium atom.
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FIG. 3. (Color online) Schematics of the vacancy mechanism in
the 〈100〉 direction. Light grey and red spheres represent uranium
and oxygen atoms, respectively. The small yellow spheres represent
uranium vacancies.

(5) Vacancy mechanism in the 〈110〉 direction with con-
tribution of oxygen sublattice: a uranium atom moves in the
〈110〉 direction to the nearest uranium vacancy. Compared to
the previous mechanism, this mechanism involves a significant
contribution from displacements of the oxygen sublattice
around the migrating U atom (see Fig. 5).29

Table III reports the migration energies calculated for
the mechanisms described above, both in the LDA +U and
GGA +U approximations with the equilibrium volumes of
the corresponding defective supercells (≈5.45 and ≈5.53 Å for
LDA and GGA, respectively). Note that we only considered the
noncollinear interstitialcy mechanism within both LDA +U

and GGA +U . The collinear barrier was calculated within
LDA +U to be 3.7 eV. Even though this barrier is lower
than the noncollinear mechanism, the conclusions of our work
are not affected given the extremely large activation energies
of all interstitial mechanisms, irrespective of the mechanism
considered (see Sec. V).

We see from Table III that for both approximations the
vacancy mechanism in the 〈110〉 direction is found to have
the lowest migration barrier when assisted by the oxygen
sublattice. The calculated migration barriers are 4.8 and 3.6 eV
in LDA +U and GGA +U , respectively. The former value is
1 eV higher than the experimental value reported by Matzke,4

which is as low as ≈2.4 eV. While it is of the same order
of magnitude, we would expect the DFT results to be closer
to the experimental value if the correct mechanism had been
considered. The experimental migration barrier reported by
Matzke for uranium self-diffusion might therefore correspond
to diffusion of defect clusters rather than single uranium
vacancies.29

As mentioned in a previous work,29 LDA +U always
yields higher migration energies than GGA +U . This could
be due to the fact that the LDA equilibrium volume is smaller

FIG. 4. (Color online) Schematics of the vacancy mechanism in
the 〈110〉 direction. Light grey and red spheres represent uranium
and oxygen atoms, respectively. The small yellow spheres represent
uranium vacancies.

FIG. 5. (Color online) Transition state for the oxygen-assisted
vacancy mechanism (left), compared to the regular vacancy mech-
anism along the 〈110〉 direction (right). Light grey and red spheres
represent uranium and oxygen atoms, respectively. The dark blue
sphere represents the uranium atom migrating to the nearest-neighbor
uranium vacancy along the 〈110〉 direction. In the assisted mech-
anism, several oxygen atoms have moved significantly away from
their fluorite position.

than that calculated by GGA, which in turn has an influence
on the migration energies. To assess the influence of the
cell volume, we performed LDA calculations but retained
the GGA equilibrium volume. The results are reported in
Table IV and are denoted as “LDA +U ∗.” We see from
Table IV that the LDA +U ∗ results are closer to the GGA +U

values, indicating that the calculated migration barriers are
almost independent of the approximation used for the ex-
change correlation functional. Therefore, if the GGA +U

results reported in Table III are lower than the LDA +U

results, it is mainly because the equilibrium volumes differ,
even though additional calculations are required to firmly
establish this connection. We have also compared point defect
energies between LDA + U and GGA + U and, unlike
uranium migration, good agreement is found at the respective
equilibrium volumes. Apparently, the higher equilibrium
volume for GGA + U primarily influences migration barriers
of large species such as uranium ions. This emphasizes that we
can use the LDA point defect formation energies calculated in
Ref. 29 as input data for the model presented in Sec. II.

V. DISCUSSION

The model presented in Sec. II has been applied with the
formation energies defined and calculated in Sec. III. Figure 6
represents the variations of all point defect concentrations as
a function of equilibrium oxygen partial pressure calculated
at 1873 K, except [U ····

I ] for which concentrations are too low.
Deviation from stoichiometry x [as calculated from Eq. (15)]
is also represented.

TABLE III. Migration energies (in eV) for the various uranium
migration mechanisms considered in the fluorite phase of UO2 given
by the DFT + U approximation.

Migration energy (eV)

Mechanism LDA + U GGA + U

Direct interstitial 8.8 7.9
Interstitialcy noncollinear 4.7 4.1
Vacancy 〈100〉 7.6 7.2
Vacancy 〈110〉 6.1 5.5
Vacancy 〈110〉(O displacement) 4.8 3.6
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TABLE IV. Migration energies (in eV) for uranium self-diffusion
in the fluorite phase of UO2 given by the LDA + U approximation
with the GGA + U equilibrium volume.

Migration energy (eV)

Mechanism LDA + U ∗ GGA + U

Direct interstitial 8.1 7.9
Interstitialcy noncollinear 4.3 4.1
Vacancy 〈100〉 7.3 7.2
Vacancy 〈110〉 5.8 5.5
Vacancy 〈110〉(O displacement) 3.8 3.6

It can be seen from Fig. 6 that defect formation energies lead
to uranium defect concentrations that are far below both the
majority oxygen defect and electronic defect concentrations
over the entire range of oxygen potential calculated. This is a
marked improvement over previous point defect models38,67,68

which, in combination with the formation energies calculated
in those studies, have a tendency to predict more stable
uranium vacancies in the hyperstoichiometric region of the
phase diagram. It should be noted that we used the oxygen
interstitial formation energy of −0.5 eV, but the diagram is
not significantly affected if this formation energy ranges from
−1.5 to 0 eV. The figure also indicates that at compositions
near to stoichiometry (i.e., where the model is thought to
apply theoretically), the electroneutrality equation that applies
is [e

′
] ≈ [h·]. This is also encouraging since, as pointed out

in Sec. II, the relationship [V··
O] ≈ [O′′

i ] is inconsistent with
the oxygen potential dependence of the uranium self-diffusion
coefficient. In fact, [e

′
] ≈ [h·] applies over a range of oxygen

partial pressures, the lower and upper bounds of which may
be defined as follows:

[h·] ≈ 2 × [V··
O], (27)

and

[e
′
] ≈ 2 × [O′′

i ]. (28)

FIG. 6. (Color online) Calculated changes as a function of
oxygen potential of various defect concentrations and deviation from
stoichiometry x.

The corresponding oxygen partial pressures are given by

pmin
O2

= K2
eh

2K2
Oi

(29)

and

pmax
O2

= 4KehK
2
FPO

K2
Oi

. (30)

A numerical application of Eqs. (29) and (30) yields values of
oxygen potentials of 2 × 10−22 and 5 × 10−15, respectively,
and an upper bound value of deviation from stoichiometry of
approximately ±0.002.

We now turn to the calculation of activation energies using
Eqs. (20) and (21). Table V reports the activation energies
calculated using both the LDA +U and LDA +U ∗ migration
barriers. Since the GGA + U and LDA +U ∗ barriers are very
close, we did not create a separate entry for the GGA + U . As
mentioned in Sec. III B, we use a range of different values
for the oxygen interstitial formation energy (EOi = −1.5,

−1.0,−0.5, and −0.05 eV) given the uncertainties associated
with this value. Having said that, based on our earlier analysis
we believe −0.5 eV to be the most representative. Finally,
the values in Table V correspond to activation energies calcu-
lated with the experimentally measured activation energy for
oxygen partial pressure (4.3 eV), while the values in brackets
correspond to those calculated with the value of 5.1 eV that
we would expect if the H2O � H2 + 1

2 O2 equilibrium were
buffering the oxygen partial pressure.

We can draw several conclusions from the results of
Table V. First, it is seen that the LDA +U activation energies
are approximately 1 eV higher than the LDA +U ∗ values.
This is significant and highlights the importance of volume
effects in the migration process. Second, we notice that our
model does not favor low values for the oxygen interstitial
formation energy. For EOi < −1.00 eV, the resulting activation
energies are lower than all experimental values, especially for
LDA +U ∗ results. Finally, interstitial mechanisms may be
completely discarded since they yield activation energies for
uranium migration which are all higher than 14 eV.

From this study, the oxygen-assisted uranium vacancy
mechanism emerges as the most likely mechanism for uranium
diffusion in near stoichiometric UO2, with an apparent activa-
tion energy derived from DFT that is close to that reported by
Sabioni under a reducing atmosphere (4.4 eV).2 In addition,
the theoretical approach may be used to rationalize the two
studies relating to uranium diffusion in near stoichiometric
UO2 reported by Matzke and Sabioni.2,4 Indeed, we see from
our study that the term “stoichiometric” covers deviations
from stoichiometry of ±0.002. Although these values are
small, they correspond to equilibrium oxygen partial pressure
variations of over six orders of magnitude. Figure 6 shows
that a change in x from 10−3 to 0 (not measurable using
standard thermogravimetric techniques) covers a three-order-
of-magnitude change in the oxygen partial pressure. Changes
in the carrier gas used in different experiments could lead
to such variations in the oxygen potential resulting in small
undetectable changes in the oxygen content of the material.
Hence assuming vacancy assisted uranium diffusion and
further assuming that the uranium vacancy concentration
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TABLE V. Calculated activation energies for uranium diffusion in UO2±x (in eV), depending on the uncertainties on EOi and the mechanism
involved for uranium migration. The activation energies in brackets correspond to those obtained with EpO2

= 5.1 eV while the others correspond
to EpO2

= 4.3 eV.

EOi (eV)

−1.5 −1.0 −0.5 0.0

LDA + U

Direct interstitial 22.7(21.9) 21.7(20.9) 20.7(19.9) 19.7(18.9)
Interstitialcy noncollinear 18.6(17.8) 17.6(16.8) 16.6(15.8) 15.6(14.8)
Vacancy 〈100〉 4.9(5.7) 5.9(6.7) 6.9(7.7) 7.9(8.7)
Vacancy 〈110〉 3.4(4.2) 4.4(5.2) 5.4(6.2) 6.4(7.2)
Vacancy 〈110〉(O displacement) 2.1(2.9) 3.1(3.9) 4.1(4.9) 5.1(5.9)

LDA + U ∗

Direct interstitial 22.0(21.2) 21.0(20.2) 20.0(19.2) 19.0(18.2)
Interstitialcy noncollinear 18.2(17.4) 17.2(16.4) 16.2(15.4) 15.2(14.4)
Vacancy 〈100〉 4.6(5.4) 5.6(6.4) 6.6(7.4) 7.6(8.4)
Vacancy 〈110〉 3.1(3.9) 4.1(4.9) 5.1(5.9) 6.1(6.9)
Vacancy 〈110〉(O displacement) 1.1(1.9) 2.1(2.9) 3.1(3.9) 4.1(4.9)

is proportional to the equilibrium oxygen partial pressure
would explain discrepancies observed in both studies. These
uncertainties warrant new uranium self-diffusion studies in
which oxygen partial pressure and temperature are monitored
carefully.

VI. CONCLUSION

We report DFT +U calculations of uranium self-diffusion
in UO2 and carefully compare these calculated values to
existing experimental data. To make this comparison possi-
ble, a point-defect model based on mass balance equations
involving the most probable defects was formulated and
the corresponding formation energies were calculated. These
calculations show that at stoichimetric composition, electronic
defects constitute the predominant defect population, followed
by anion and finally cation disorder (mainly in the form of
uranium vacancies).

In addition, migration barriers for different mechanisms
were calculated and an analytical expression is derived for the
uranium self-diffusion activation energy assuming a vacancy
and an interstitial mechanism. By comparing the theoretical
results to existing data, it is shown that the oxygen-mediated
uranium vacancy mechanism is the most probable diffusion
mechanism in UO2. The lowest migration barrier is obtained
for the movement of a vacancy along the 〈110〉 direction

involving a substantial concerted distortion of the anion
sublattice.

Finally, it is shown that a careful comparison of a theoretical
approach to experimental self-diffusion data, although promis-
ing, suffers to some extent from a lack of data. These results
encourage us to pursue this effort and warrant a thorough
investigation of cation self-diffusion under controlled oxygen
partial pressures.
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