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Mobile small bipolarons on a three-dimensional cubic lattice
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We use numerically exact quantum Monte Carlo (QMC) to compute the properties of three-dimensional
bipolarons for interaction strengths where perturbation theory fails. For intermediate electron-phonon coupling
and Hubbard U , we find that bipolarons can be both small and light, a prerequisite for bipolaron superconductivity.
We use the QMC results to make estimates of transition temperatures, which peak at between 90–120 K and are
demonstrated to be insensitive to Coulomb repulsion and impurities.
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I. INTRODUCTION

The mechanisms of three-dimensional superconductors
with high transition temperatures (such as the bismuthates)
are widely acknowledged to have their origins in the electron-
phonon interaction. In at least some materials, a proposed
mechanism involves the pairing of phonon dressed electrons
(polarons) to form bipolarons. At sufficiently low tempera-
tures, these bipolarons form a Bose-Einstein condensate with
superconducting properties.1 The main criteria for bipolaronic
superconductivity with significant transition temperatures
are bipolaron mobility (low effective mass)2 with sufficient
density (small bipolarons). Although small (bi)polarons are
often viewed as immobile states that may be easily localized
by disorder, small mobile bipolarons that can lead to supercon-
ductivity with high transition temperatures have been found in
one and two dimensions.2–4

Polarons occur naturally in nearly all media, from plasmas
and ultracold atoms through normal bulk materials and possi-
bly high-temperature superconductors.3,5 Landau introduced
the polaron concept in 1933 to study lattice polarization due
to the motion of electrons through ionic solids:6 An electron
moving though a crystal lattice creates distortions that follow
its trajectory, producing a phonon cloud that propagates though
the system, surrounding the electron.3,7

Bipolarons are formed when two polarons interact with
each other using phonon-mediated interactions to form pairs.
These pairs can be strongly bound and travel though the
lattice as a single composite particle. There are many different
interaction types that lead to bipolaron creation.8 In this paper,
we consider an extended Hubbard-Holstein model, where
the Coulomb interaction is purely onsite, and an extended-
Holstein interaction couples the electron density to lattice vi-
brations on the same site and near-neighbor sites, similar to the
interaction introduced by Bonča and Trugman.8,9 Increasing
this intersite interaction allows electrons to form bipolarons
and overcomes the Coulomb repulsion so that large bipolarons
become local (small) bipolarons with approximately the size of
the lattice constant.10 The site-local Holstein model describes
an extreme short-range limit where electrons can form pairs
on single atoms. In this case, the electron-phonon interaction
has to overcome the onsite repulsion to form a bipolaron.11 We
note that the interactions used here are distinct from the specific
forms required to describe bismuthate superconductors.12

Recent studies of low-dimensional bipolarons have uti-
lized various numerical methods and analytical techniques.
One-dimensional bipolarons have been found to be relevant
in describing strong electron-phonon interactions in low-
dimensional organic semiconductors,13 and it is possible
that three-dimensional (3D) bipolarons in a strong mag-
netic field simplify into one-dimensional (1D) bipolarons.14

Two-dimensional (2D) bipolarons have been investigated
extensively in the study of two-dimensional conductors and
high-temperature superconductors such as the cuprates.1

Properties of the short-range Hubbard-Holstein bipolaron
model have been established on small lattices using ex-
act diagonalization11 and an optimized approach for ex-
act diagonalization at weak coupling.15 Advanced varia-
tional techniques,16 density-matrix renormalization-group,17

and various quantum Monte Carlo (QMC) approaches7,18

have all been used to study 2D bipolaron systems. It is
found in one dimension that only a small attractive force
between electrons leads to pairing, the most important factor
being the nearest-neighbor interaction when considering long-
ranged interactions.7,19 Two-dimensional work also shows us
that inclusion of nearest-neighbor interaction is responsible
for significant change compared with the Hubbard-Holstein
model.8,20 Light bipolarons are found on a simple square
lattice, showing that elaborate lattices are not needed to
create small light pairs that have the potential to form Bose
condensates.8 On change of dimension from 1D to 2D, an
increase in electron-phonon coupling constant and nearest-
neighbor attraction is needed to create onsite bipolarons.7,8

There have been several notable studies of 3D bipolarons,
especially in relation to superconductors, to understand the
reasons why cuprates and other layered superconductors
are different to 3D materials.21,22 Several publications have
examined the differences between the binding of bipolarons in
two and three dimensions, concluding that a greater attraction
is needed to form stable bipolarons on 3D lattices.23,24 It
has been found that the probability of bipolaron formation
increases with decreasing dimensions or increase in the crystal
anisotropy.25 Variational studies of the region of existence
of the three-dimensional singlet bipolaron have allowed
investigation of the relationship between the critical value
of the electron-phonon coupling constant and the dielectric
properties of the medium,26 concluding that conditions in
alkali-halide crystals are not suitable even for metastable

035106-11098-0121/2012/86(3)/035106(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.035106


A. R. DAVENPORT, J. P. HAGUE, AND P. E. KORNILOVITCH PHYSICAL REVIEW B 86, 035106 (2012)

bipolarons and that three-dimensional continuum bipolarons
do not exist in La2CuO4. However, metal-ammonia systems
potentially lie within the region of existence for three-
dimensional continuum bipolarons.26 In the context of 3D
polarons, we have also examined binding to attractive impu-
rities, showing that polarons are localized when the impurity
potential is around four effective hoppings in magnitude.27

The work presented here goes beyond previous work by
considering exact solutions for 3D extended Hubbard-Holstein
bipolarons (both numerical and analytic). Exact solutions are
important to understand regions of the parameter space where
perturbative approximations break down, and as we will show
are essential for understanding the regions where bipolaronic
superconductivity is strongest. The paper is organized as
follows: In Sec. II, we introduce the model. The Lang-Firsov
transformation is performed before a brief overview of the
continuous-time quantum Monte Carlo (CTQMC) simulation
method. Section III presents quantum Monte Carlo results for
singlet bipolaron properties, including total energy, number
of associated phonons, inverse mass, and average bipolaron
size. Finally, in Sec. IV, we look at the possibility of Bose-
Einstein condensation of three-dimensional bipolarons. For
completeness, in the Appendix, we consider the U -V model
corresponding to the high phonon-frequency limit. Solving
the equation analytically, we find the binding conditions for
varying onsite attraction U and nearest-neighbor repulsion V .

II. MODEL AND METHODS

A. Model

The extended Hubbard-Holstein model used here has its ba-
sis in a general electron-phonon Hamiltonian with electrostatic
repulsion, which is written in the following form:7,8

H = −t
∑

〈nn′〉,σ
c
†
n′,σ cn,σ + 1

2

∑
nn′σσ ′

v(n,n′)c†nσ cnσ c
†
n′σ ′cn′σ ′

+
∑

m

P̂ 2
m

2M
+

∑
m

ξ 2
mMω2

2
−

∑
nmσ

fm(n)c†nσ cnσ ξm,

(1)

where n and m represent vectors to electrons and ions,
respectively, c (c†) are the creation (annihilation) operators
for electrons, M is the ion mass, ω is the phonon frequency,
and σ is the z component of the electron spin. The first term in
the equation expresses the kinetic energy of electrons moving
from site to site. The element t is the hopping integral for an
electron moving between neighboring sites.

The second term in the Hamiltonian represents the Coulomb
repulsion v between two electrons. Here, the repulsion is
approximated to have the Hubbard form, and long-ranged
interactions are assumed to be insignificant due to screening
in the material28 so the repulsive term has the form HHubbard =
U

∑
n ni↑ni↓, where U is the magnitude of the repulsion.7,8

Note that near-neighbor interactions are in principle allowed,
but neglected in Secs. III and IV of this paper.

The final three terms include the effects of lattice vibration.
The ion momentum is described by the P̂m operator and the
ion displacement is signified by ξm. Here, we take ξm to be
one dimensional, which is an approximation that could relate

to phonon modes polarized by a strong electric field, a three-
dimensional molecular crystal with molecular ordering along
a single direction or possibly radial phonon modes. Following
Ref. 8, we take the force function to be

fm(n) = κ
∑

l i

δn,m+l i /2. (2)

This describes interaction between electrons on sites at vectors
n and vibrating ions between valance sites at positions m. l i

are the vectors between nearest-neighbor valence sites at r and
r ′. An effective electron-electron interaction can be defined as

��r [r,r ′] =
∑

m

fm[r]fm+�r [r ′], (3)

so that for the chosen force function, �0[r,r ′]/�0[0,0] = γ

where the nearest-neighbor interaction strength (γ ) strictly has
the value 1/z. The reason for �r will be explained later on
in the paper. Here, we will also modify γ to investigate the
effects of turning on the intersite interaction. For large phonon
frequency, this interaction can then be mapped directly onto
a U -V model. For γ = 0, a Holstein interaction is recovered,
equivalent to fm(n) = κδmn. The shift in γ is equivalent to
moving the vibrating ions within the unit cell so that they get
closer to the site’s host electrons.

B. Lang-Firsov transformation

In the limit that phonon frequency becomes infinite, the
model described in Eq. (1) can be mapped onto a U -V
model, consisting of an onsite Hubbard U and inter-site
Hubbard V . The mapping uses a Lang-Firsov canonical
transformation,29 which creates a new Hamiltonian H̃ =
e−SHeS and wave function ˜|ψ〉 = e−S |ψ〉, where H̃ = H +
[S,H ] + [S,[S,H ]] + · · · and S = gn(d† − d). Here, g is a
dimensionless interaction constant proportional to the force
and d† (d) is the phonon creation (annihilation) operator.
Under this transformation, the creation operators for electrons
and phonons become

c
†
i → c̃

†
i = c

†
i exp

[ ∑
j

gij (d†
j − dj )

]
,

(4)
d
†
j → d̃

†
j = d

†
j +

∑
i

gij ni .

On transforming the atomic Hamiltonian (t → 0), the electron
and phonon subsystems are decoupled:

H̃at = −
∑
ii ′

nini ′
∑

j

fij fi ′j

2Mω2
+ h̄ω

∑
j

(
d
†
j dj + 1

2

)
. (5)

The function �0 and a dimensionless interaction parameter
λ = Ep/W are introduced to simplify the Hamiltonian, where
W is the half-bandwidth zt , and Ep = ∑

j f 2
0j /2Mω2 =

�0(0,0)/2Mω2 is the polaron shift, leading to

H̃at = −
∑
ii ′

nini ′
Wλ�0(i,i ′)

�0(0,0)
+ h̄ω

∑
j

(
d
†
j dj + 1

2

)
. (6)

Transformation of the tight-binding Hamiltonian leads to

H̃tb =
∑
ii ′

σii ′c
†
i ci ′ , (7)
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with

σii ′ = tii ′exp

[
−Wλ

h̄ω

(
1 − �0(i,i ′)

�0(0,0)

)]

× exp

( ∑
j

(gij − gi ′j )d†
j

)
exp

(
−

∑
j

(gij − gi ′j )dj

)
,

(8)

where gij = fij /ω
√

2Mω. When the phonon frequency is
very large, the ground state contains no real phonons, and
there is a further simplification leading to a modified hopping
σii ′ ≈ t ′ii ′ = tii ′exp[−Wλ

h̄ω
(1 − �0(i,i ′)

�0(0,0) )]. Exact solutions of the
transformed Hamiltonian in the large phonon frequency limit

can be found in the Appendix for comparison with the
numerical results.

C. Computational methods

We use the continuous-time quantum Monte Carlo method,
which has been used to simulate the screened Hubbard-
Fröhlich bipolaron in 1D and 2D.7,30 A more in-depth overview
of our algorithm has been presented in a previous paper and
so will not be repeated.8 The continuous-time quantum Monte
Carlo algorithm is based on path integrals, where each path
ri(τ ) exists in imaginary time and represents a single particle
in the system. The algorithm probes path configurations which
are each assigned a weight exp(A) where

A[r] = zλω̄

2�0(0,0)

∫ β̄

0

∫ β̄

0
dτ dτ ′e

−ω̄β̄

2

∑
ij

�0[r i(τ ),rj (τ ′)](eω̄( β̄

2 −|τ−τ ′|) + e−ω̄( β̄

2 −|τ−τ ′|))

+ zλω̄

�0(0,0)

∫ β̄

0

∫ β̄

0
dτ dτ ′e−ω̄τ e−ω̄(β̄−τ ′)

∑
ij

(��r [r i(τ ),rj (τ ′)] − �0[r i(τ ),rj (τ ′)]) − 1

2

∫ β

0
v[r1(τ ),r2(τ )]dτ.

(9)

Here, �r = r(β) − r(0) is the distance between the end
points of the paths in the nonexchange configuration, the
phonon frequency ω̄ = h̄ω/t , and inverse temperature β̄ =
t/kBT . i = 1,2 and j = 1,2 represent the fermion paths.
v(r1,r2) = Uδr1,r2 is an instantaneous Hubbard repulsion
between electrons. The paths lie between the range τ ∈ 0,β,
and are formed from straight segments punctuated with
“kinks” representing site-to-site hopping. The algorithm is
used to compute (bi)polaron energy, the number of phonons
in the system, the effective mass of the (bi)polaron, and the
radius of the bipolaron.

III. QUANTUM MONTE CARLO AND INTERMEDIATE
PHONON FREQUENCY

Using a continuous-time quantum Monte Carlo code,
we simulated the extended Hubbard-Holstein model with
nearest-neighbor interaction strengths of γ = 0, 0.25, and 0.5
on a cubic lattice. The magnitude of the nearest-neighbor
component of the electron-phonon interaction has been shown
in both one and two dimensions to be the most significant
contributing factor to bipolaron properties.7,8 The simulation
produces exact numerical solutions for the total energy,
average number of excited phonons, mass, and size of singlet
bipolarons.

In the following, we examine only the singlet bipolaron
for a range of U/t and λ at inverse temperature β̄ = 14 with
fixed h̄ω/W = 1, where the half-bandwidth W = 6t , which is
towards the lower end of the intermediate phonon frequency
limit. Calculations are carried out on an infinite lattice where
particles are confined to within 50 lattice spacings of each
other, which is sufficiently large to avoid the majority of finite-
size effects. The most sensitive property to finite-size effects
is the bipolaron radius, which does not become infinite when

the polarons are not bound into a bipolaron. All errors are
determined using bootstrap resampling on the simulation data
and are displayed as three standard errors.

The binding of bipolarons can be established from the total
energy. Figure 1(a) depicts the total energy calculated from our
Monte Carlo calculations when γ = 0 (Holstein interaction).
Diagonal lines show the presence of pairs of electrons on a
single site. As the Hubbard onsite repulsion U is increased,
the onsite pairs are pushed apart creating pairs of polarons. As
the electron-phonon coupling constant λ is increased, we see
that larger Hubbard U is needed to break apart the onsite pairs.
When the pair is unbound, the energy of the bipolaron does not
change with respect to increasing U , and the line is horizontal.
A key difference here is that it takes a large negative Hubbard
U to bind onsite bipolarons in contrast to 1D and 2D systems.

Plots of the total energy of the bipolaron formed when
the electron-phonon interaction contains a nearest-neighbor
component of γ = 0.25 and 0.5 are also shown [Figs. 1(b)
and 1(c), respectively]. It is immediately apparent that the
rapid transition from onsite bipolaron to free polarons is
smoothed out with the addition of nearest-neighbor interaction.
There is no dramatic change between the total energy of
the Holstein and extended Holstein bipolarons for electron-
phonon coupling λ = 0.2, as there is insufficient intersite
interaction to bind an off-site bipolaron. This is in contrast
to 1D and 2D where significant qualitative changes to all
bipolaron properties are found when intersite interaction is
switched on.

We observe that the U value corresponding to the point
of inflection is reduced with increasing γ . This does not
correspond to bipolarons which are more weakly bound (i.e.,
easier to unbind when the Hubbard U is switched on). Rather,
as electron-phonon coupling is increased, the crossover from
bound pairs to unbound pairs occupies a wider range of U
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FIG. 1. Total ground state energy simulated by CTQMC of (a)
a singlet Hubbard-Holstein bipolaron (b) singlet bipolaron with
nearest-neighbor interaction strength of γ = 0.25 and (c) γ = 0.5.
Similar to large phonon frequency (see Appendix), it takes significant
negative Hubbard U to bind onsite bipolarons. For large intersite
interaction and large λ, a crossover is seen between onsite and intersite
bipolarons.

values. Comparison with Fig. 1(a) shows that total energy at
large U typically decreases with increased nearest-neighbor
attraction, consistent with this observation.

Further evidence for binding of bipolarons can be found in
the total number of excited phonons shown in Fig. 2. Here,
we see that at large Hubbard U , the number of phonons in
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FIG. 2. Number of phonons associated with (a) a singlet
Hubbard-Holstein bipolaron, and (b) bipolarons with nearest-
neighbor interaction strength of γ = 0.25 and (c) γ = 0.5. Again,
the range of crossover between onsite bipolaron and unbound/intersite
bipolarons increases with γ .

the system does not change with respect to U , although it
is nonzero, because even unbound polarons have phonons
associated with them. This can be seen in Fig. 2(a), the Holstein
case, as λ increases from λ = 0 (where there are no phonons) to
higher phonon coupling, where there are a significant number
of residual phonons at high U . The curve showing the total
number of phonons also levels out at large U when there is
significant intersite coupling and bipolarons large but bound,
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which occurs because there is vanishing onsite component of
the wave function in the presence of sufficient U and therefore
the system is unchanged as U is varied.

On lowering U in Fig. 2(a), we see that the number of
phonons associated with the bipolaron rapidly increases as
the onsite bipolaron forms. This is due to the rapid crossover
from unbound or intersite pairs to onsite pairs. As U decreases
further, the number of phonons tends again to a set value
dictated by the electron-phonon coupling constant and phonon
frequency, which also does not depend on U . This occurs at
sufficient negative U where the bipolaron is forced into an
onsite configuration. Plots for γ = 0.25 and 0.5 are shown in
Figs. 2(b) and 2(c) for the extended Holstein case. Again,
an increase in nearest-neighbor attractive potential visibly
smooths out transition from bound pairs at low U and the
unbound or offsite pairs seen at large U . The crossover from
bound to unbound is stretched over a larger range of U

consistent with the similar observation in the total energy.
With increased nearest-neighbor attraction, the number of
associated phonons decreases less dramatically as onsite pairs
form, presumably because an increased number of phonons
are associated with the intersite pairs.

It is of particular interest to examine the change in singlet
bipolaron inverse mass as U and λ are varied, as this can
be related to the BEC transition temperature. Figure 3 shows
that the mass is near constant at large U . Bound onsite pairs
have a high mass (low inverse mass). The inverse mass rapidly
decreases at the point of binding. We see that the transition
from bipolaron to polaron starts at lower U , with increased
nearest-neighbor interaction [Figs. 3(b) and 3(c)]. The mass
decreases more slowly with increased Hubbard U for a higher
interaction in accordance with the slow change in associated
phonons. With high coupling constant λ � 1.1 and γ = 0.5,
we see that the inverse mass has a maximum before decreasing
and then leveling off, showing that the effective mass has
a minimum value at intermediate U . This phenomenon is
not clearly visible in the total energy. The reduction in mass
is a version of the superlight small bipolaron behavior4,7,8,31

and is achieved when onsite and intersite interactions become
comparable in size so that bipolarons can hop by contracting
and expanding through degenerate onsite to intersite pairs
without energy penalty. This behavior is significant because
small mobile bipolarons could form a Bose-Einstein conden-
sate with significant transition temperature. We will discuss
this possibility in the next section.

Wave functions of individual pairs may not overlap if
bipolarons are to be well defined, so the bipolaron size
limits the maximum density of particles in a bipolaronic
material. Figure 4 plots the inverse average singlet bipolaron
size against the Hubbard U . Figure 4(a) shows the inverse
bipolaron size for the local Holstein interaction. As expected
for large U , bipolaron pairs unbind and the bipolaron size
becomes infinite. With increasing coupling constant λ, the
average bipolaron size becomes smaller (inverse size plotted)
as the attractive phonon-mediated interactions overcome the
repulsive Hubbard U .

In Figs. 4(b) and 4(c), where intersite interaction is turned
on, qualitatively different behavior of the bipolaron size can
be seen. For weak electron-phonon coupling λ � 1, we see
that inverse bipolaron size tends to zero at high Hubbard U .
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FIG. 3. Inverse mass of the singlet bipolaron with nearest-
neighbor interaction for interaction strength of (a) γ = 0, (b) γ =
0.25, and (c) γ = 0.5. For large coupling constant λ � 1.1 and
γ = 0.5, we see that the inverse mass has a maximum before
decreasing and then leveling off. The reduction in mass is a version
of the superlight small bipolaron behavior, and is achieved when
onsite and intersite interactions become comparable. Light mobile
bipolarons may form a BEC with significant transition temperature.

The value of U required for unbinding increases with γ . With
large intersite interaction of γ = 0.5, we see that bipolaron
unbinding does not occur at high U for coupling constant λ �
1.1 (within the range investigated), instead tending towards
a bipolaron size on the order of a lattice constant. At λ =
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FIG. 4. Singlet bipolaron inverse size with nearest-neighbor
interaction strength of (a) γ = 0, (b) γ = 0.25, and (c) γ = 0.5.
At λ = 0.8 and γ = 0.5, an inflection in the bipolaron size shows the
transition of onsite bound pairs through intersite pairing before the
bipolaron completely unbinds on increasing U . This is the precursor
of the superlight bipolaron behavior found at larger λ.

0.8 and γ = 0.5, an inflection in the bipolaron size shows
the crossover from onsite bound pairs through off-site pairing
before the bipolaron completely unbinds on increasing U . This
is the precursor of the superlight bipolaron behavior found at
larger λ.

We conclude this section by examining the infinite Hubbard
U case. Figure 5 displays inverse bipolaron size against
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FIG. 5. Singlet bipolaron inverse size with increasing electron
phonon coupling for infinite Hubbard U , showing the transition from
unbound to bound states. Nearest-neighbor strength γ = 0, 0.25, and
0.5. Intersite bound pairs are shown seen to exist at large λ when
nearest-neighbor interactions are switched on.

increasing electron-phonon coupling constant with nearest-
neighbor interaction strength γ = 0, 0.25, and 0.5, showing
the crossover from unbound states to bound intersite pairs. It
is seen that for γ = 0.25 and 0.5, the system is never fully
unbound above λ � 1.5 and 1, respectively. Both have a sharp
decrease of bipolaron size that tends to a value equal to one
lattice spacing. Intersite bound pairs are therefore shown to
exist at large U and λ when nearest-neighbor interactions are
switched on.

IV. BOSE-EINSTEIN CONDENSATION

Evidence from the quantum Monte Carlo simulations
presented in the previous section shows that 3D bipolarons
can be simultaneously small and light in the region of the
parameter space where perturbation theory breaks down. In
this section, we examine if bosonic charge carriers of this
type could form a Bose-Einstein condensate (BEC) with a
significant transition temperature.

The BEC transition temperature can be calculated using the
expression

kBTBEC = 3.31h̄2

m∗∗

(
nb

a3

)2/3

, (10)

where nb is the number of bosons per site, m∗∗ is the effective
boson mass, and a is the lattice constant (here we take a to
be 4.2 Å, consistent with the bismuthates). An upper bound
on the number of bosons per lattice site can be established
by utilizing the bipolaron size R, nb/a

3 ≈ 1/R′3, where R′
is the effective radius of the bipolaron. From this, we get the
following relation:

TBEC = 3.31h̄2

kBm∗∗R′2 . (11)

Figure 6 is a plot of transition temperatures with (a) Holstein
and intersite interaction strengths (b) γ = 0.25 and (c) γ =
0.5. We only plot positive Hubbard U in this section since
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FIG. 6. BEC transition temperature with nearest-neighbor inter-
action strength of (a) γ = 0, (b) γ = 0.25, and (c) γ = 0.5. The
divergence in TBEC for the Holstein case will be suppressed because
the bipolaron is only weakly bound. On the other hand, high transition
temperatures of 90–120 K are seen with nearest-neighbor interaction
strength γ = 0.5 and medium electron-phonon coupling constant
where bipolarons are well bound.

negative U would be unphysical. The effective radius R′ is
taken to be 5R (a bipolaron separation is 5 bipolaron radii
in each direction) corresponding to a bipolaron wave-function
overlap of less than 1%. As bipolaron densities increase so
that bipolarons overlap, interaction corrections are expected to
reduce transition temperatures.

Several sharp peaks in TBEC are seen in Fig. 6(a) for Holstein
electron-phonon coupling constants of λ = 0.8, 1.1 and 1.4
(for weaker λ, the peaks are at unphysical negative U values).
These peaks reach values temperatures of ∼50 K. The regions
of high TBEC are unstable to small variation in U and bipolarons
are only weakly bound, so thermal fluctuations will suppress
transition temperatures by breaking up the bipolaron. For weak
electron-phonon coupling, bipolarons only bind at unphysical
negative U values, and no BEC is formed for positive U .
It is interesting to note that although bipolarons are formed
through electron-phonon coupling, there is a wide region of
the parameter space where increasing the Hubbard U raises
the transition temperature.

BEC transition temperatures are shown for nearest-
neighbor interaction γ = 0.25 in Fig. 6(b). Similar to the
Holstein case, TBEC has a peak at low Hubbard U for
intermediate λ. The peak width increases with electron-phonon
coupling, but the maximum in the transition temperature de-
creases slightly. A tail appears at large U for coupling constant
λ = 1.4, where the bipolaron becomes bound between sites
and properties depend only weakly on U . QMC simulations are
essential here since the regions of high transition temperature
(where both the electron-phonon coupling and Hubbard U

are intermediate) can not be accessed using perturbative
techniques.

Finally, Fig. 6(c) plots BEC transition temperatures for
nearest-neighbor interaction strength γ = 0.5. The strong
intersite coupling completely eradicates the sharp peaks in
transition temperature associated with the Holstein inter-
action, replacing them with broad continuous curves with
increased TBEC. Bipolarons with medium to high λ form stable
nearest-neighbor pairs with low effective masses, leading
to superconducting states that have significant transition
temperatures over wide range of U . Bipolarons formed from
large electron-phonon coupling have larger effective masses,
leading to significantly lower condensation temperatures. The
most interesting point here is that for medium-sized coupling
constants, bipolaron effective masses are still small when
bipolarons are bound into small intersite pairs, resulting in
high condensation temperatures of 90–120 K. Note that the use
of R′ leads to an approximation on the possible TBEC, lower
transition temperatures are estimated if the upper bound on
the distance between bipolarons is larger (before inter-boson
interactions need to be taken into account), and interactions
between bipolarons typically lower transition temperatures.
Again, it is interesting to note that the BEC transition
temperature can increase as U increases, even though the
mechanism for binding pairs is phonon mediated. Since
bipolarons are bound at very large U and λ (as shown in Fig. 4),
no breakdown of the BEC is seen for very large repulsive
Coulomb interactions, and the transition temperature remains
significant. This is important because many oxide materials
with large electron-phonon interactions also have large U .

To probe the sensitivity of bipolarons to impurities, we
calculate the effective hopping for the bipolarons,

t ′ = h̄2

2a2m∗∗ . (12)

Figure 7 shows the effective bipolaron hopping energy when
γ = 0.5. For electron-phonon coupling constants λ = 1.1
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FIG. 7. Effective Hopping energies with nearest-neighbor inter-
action strength of γ = 0.5. Bipolarons with medium electron-phonon
coupling λ are shown to be mobile with effective hopping energies in
the region of the bare hopping energy.

and 1.4, bipolarons have an effective hopping teff ≈ 0.7t

and 0.4t , respectively. As we have previously shown,7 local
impurities with energy � = −4teff are needed to pin polarons
to impurities. Therefore, for any reasonable impurity size,
bipolarons are mobile.

V. SUMMARY AND CONCLUSIONS

We have investigated the formation of bipolarons and
their subsequent Bose-Einstein condensation on a three-
dimensional cubic lattice. A quantum Monte Carlo code was
employed to investigate regimes of intermediate electron-
phonon coupling and Coulomb repulsion, and was validated
using analytic calculations in the large phonon frequency limit.
Away from the regions where perturbation theories are valid,
the effective mass and bipolaron radius are consistent with
light small bipolarons.

A consequence of the 3D lattice is that binding of bipolarons
is difficult for weak λ. Small and mobile bipolarons form for
intermediate λ and intersite coupling γ when the energies of
onsite and intersite pairs become similar. By analyzing the
exact numerical results, we have shown that bipolaron con-
densation temperatures (leading to superconductivity) could
be up to 90–120 K for realistic bipolaron densities. Another
consequence of 3D is that it is more difficult to bind bipolarons
to impurities. Impurity energies of around −4teff are required
to localize particles in 3D. Therefore, the light bipolaron states
are stable against attractive impurity levels with energies of
up to ∼t as the effective hopping has a similar magnitude
to the bare electron hopping energy. We conclude that stable
bipolaron superconductors that are insensitive to changes in
Hubbard U could form in three-dimensional oxides with
intersite electron-phonon interactions of intermediate magni-
tude (that is, electron-phonon interactions with a moderate
momentum dependence). Moreover, with sufficiently large
intersite electron-phonon coupling, superconductivity could be
stable at very large values of U , demonstrating that Coulomb
repulsion is no barrier to bipolaronic superconductivity in 3D.
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APPENDIX: HIGH PHONON FREQUENCY AND
THE UV MODEL

The bipolaron properties can be analytically approximated
in the high phonon frequency (antiadiabatic) limit (h̄ω � W )
by using the result of the Lang-Firsov transformation since if
the phonon frequency is very large, there are no real phonons.
Up to a linear shift in energy, the resulting U -V model is shown
as

H̃ = −
∑
nn′σ

t ′nn′c
†
nσ cn′σ + U ′ ∑

n

c
†
n↑cn↑c

†
n↓cn↓

+
′∑

nn′

∑
σσ ′

V ′
nn′c

†
nσ cnσ c

†
n′σ ′cn′σ ′ . (A1)

The primed sum over V ′ in the final part of Eq. (A1) ignores the
self-interaction term. The interaction terms in this Hamiltonian
for onsite interaction and nearest-neighbor interactions are
U ′ = U − 2Wλ and V ′

nn′ = 2Wλ�0(n,n′)/�0(0,0), respec-
tively.

Taking the two-particle Schrödinger equation

[E − ε(k1) − ε(k2)]χ (k1,k2)

= U ′ ∑
q

χ (q,k1 + k2 − q)

−V ′ ∑
l

e−ik1·l
∑

q

χ (q,k1 + k2 − q)eiq·l , (A2)

ε(k) = −t ′
∑

l

e−ik·l = −2t ′(cos kx + cos ky + cos kz),

(A3)

where l = {(±1,0,0),(0,±1,0),(0,0,±1)} assuming that the
lattice constant a = 1 (this will be assumed throughout).
To simplify the problem, we introduce a set of momentum-
dependent values �(K ):

�(0,0,0)(K ) ≡
∑

q

χ (q,k1 + k2 − q), (A4)

�l (K ) ≡
∑

q

χ (q,k1 + k2 − q)eiq·l , (A5)

and then substitute them into the Schrödinger equation (A2).
By rearranging the resulting equation, we obtain an expression
for χ in terms of K and q, where K = k1 + k2:

χ (k1,k2) = U ′�(0,0,0)(K ) − V ′ ∑
l �l (K )e−ik1·l

E − ε(k1) − ε(k2)
, (A6)

χ (q,K − q) = U ′�(0,0,0)(K ) − V ′ ∑
l �l (K )e−iq·l

E − ε(q) − ε(K − q)
. (A7)
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Expanding the expression for χ (q,K − q) from Eq. (A7) into a matrix format leads to the following relation:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L0 − 1
U ′ L−x Lx L−y Ly L−z Lz

Lx L0 + 1
V ′ L2x Lx−y Lx+y Lx−z Lx+z

L−x L−2x L0 + 1
V ′ L−x−y L−x+y L−x−z L−x+z

Ly Ly−x Ly+x L0 + 1
V ′ L2y Ly−z Ly+z

L−y L−y−x L−y+x L−2y L0 + 1
V ′ L−y−z L−y+z

Lz Lz−x Lz+x Lz−y Lz+y L0 + 1
V ′ L2z

L−z L−z−x L−z+x L−z−y L−z+y L−2z L0 + 1
V ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U ′�(0,0,0)

−V ′�x

−V ′�−x

−V ′�y

−V ′�−y

−V ′�z

−V ′�−z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (A8)

Lp = Lqp
(E,K ) =

∑
q

eiqp

E − ε(q) − ε(K − q)
. (A9)

At the � point, K = (0,0,0), the additional symmetry simplifies analysis of Eq. (A8) since Eq. (A9) can be reduced to the
following components: L±x = L±y = L±z ≡ L1, L±2x = L±2y = L±2z ≡ L2, and L±x±y = L±y±z = L±z±x ≡ L3.

To diagonalize the problem, a new basis of states with s-, p-, and d-wave symmetry is introduced:

�0 = �(0,0,0), �s = 1√
6

(�x + �−x + �y + �−y + �z + �−z), �p1 = 1√
2

(�x − �−x),

�p2 = 1√
2

(�y − �−y), �p3 = 1√
2

(�z − �−z), �d1 = 1√
4

(�x + �−x − �y − �−y), (A10)

�d2 = 1√
12

(�x + �−x + �y + �−y − 2�z − 2�−z),

where the s and d states are symmetric and p states antisymmetric on inversion through the origin.
Applying the new basis of �’s to the matrix equation leads to a simple block-diagonal matrix consisting of two s states (�0

and �s), three p, and two d states:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L0 − 1
U ′ 6L1 0 0 0 0 0

L1 LS + 1
V ′ 0 0 0 0 0

0 0 λp 0 0 0 0

0 0 0 λp 0 0 0

0 0 0 0 λp 0 0

0 0 0 0 0 λd 0

0 0 0 0 0 0 λd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U ′�0

−V ′�s

−V ′�p1

−V ′�p2

−V ′�p3

−V ′�d1

−V ′�d2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A11)

where

L0 =
∑

q

1

E − 2ε(q)
,

LS =
∑

q

2 cos qx(cos qx + cos qy + cos qz)

E − 2ε(q)
,

λp = L0 + 1

V ′ − L2, (A12)

λd = L0 + 1

V ′ + L2 − 2L3.

The p and d states are diagonalized in the new basis and their
energies can be calculated directly from

λp = 0,

λd = 0. (A13)

The ground-state singlet states can be computed from solution
of the 2 × 2 matrix in the top left-hand corner of Eq (A11):(

L0 − 1
U ′ 6L1

L1 LS + 1
V ′

)(
U ′�0

−V ′�s

)
= 0, (A14)

which can be used to calculate energies of the s state by taking
the determinant(

L0 − 1

U ′

) (
LS + 1

V ′

)
− 6L2

1 = 0. (A15)

Rearranging Eq. (A15),

L0 = V ′(6U ′L2
1 + LS

) + 1

U ′(V ′LS + 1)
, (A16)

a binary search can be used to determine values of E for various
values of U ′ and V ′.

The solutions found by this method are shown in Fig. 8.
Typically, there is a smooth transition from bound states
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FIG. 8. Ground-state bipolaron singlet energy computed for a
UV model on a cubic lattice. A key result here is that it takes a large
negative Hubbard U to bind onsite bipolarons in contrast to 1D and
2D systems. At low V ′, the bipolaron binds for finite U , but for large
V ′, the unbinding occurs at very large (infinite) U since the intersite
bipolaron is stable.

(diagonal lines) to unbound states (horizontal lines). For V =
0, the graph depicts a diagonal line with constant gradient
representing a bound onsite pair that at about U ′/t ′ � −8
levels off to a horizontal line representing unbound polarons in
the lattice. With increasing nearest-neighbor potential V ′, the
transition from bound to unbound states spans a larger range
of Hubbard U ′ (curved line), and is related to the presence of
intersite pairs in the lattice. At large enough V ′, there are no
unbound states.

Even if there is no intersite repulsion V ′/t ′ = 0, strong
negative Hubbard values U ′/t ′ = −7.915 are required to bind
the bipolaron in contrast to 1D and 2D lattices where you need
U ′/t ′ = 0.7,8 This is due to the additional degrees of freedom
in the cubic structure, where electrons are not confined in
any direction. For a nearest-neighbor attraction of V ′/t ′ =
4, Fig. 8 shows that binding occurs around U ′ = 0 (actual
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FIG. 9. Exact bipolaron energy computed for a U -V model on a
cubic lattice. Here, we examine the energy at infinite U ′ to observe
if there is a critical V ′ that ensures binding in the 3D lattice for s, p,
and d states.

crossing value V ′/t ′ = 3.875), whereas on the square lattice
the presence of V ′/t ′ leads to off-site pairing at strong positive
U ′. The lack of confinement in 3D means that bipolaron onsite
pairing is not guaranteed even with high coupling constants.
Applying a small nearest-neighbor potential in 2D has a much
bigger effect on the binding than in 3D due to the confinement.8

To understand the qualitative difference in bipolaron be-
havior as V ′ is changed, we evaluated the energy of the pair at
infinite U . In Fig. 9, we plot the total energy [from Eq. (A16)]
as a function of nearest-neighbor potential V ′, showing the
binding of the s state as V ′ is increased. We also show both
p and d states for completeness. For the s state, the binding
crossover begins at a nearest-neighbor interaction strength of
V ′/t ′ = 5.875. After this point, the energy curves sharply to
an approximate E ∝ V ′ for high V ′. The energies of the p and
d states do not level off at E = −12t ′ since they are excited
states.
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