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Topological superconducting phase in the vicinity of ferromagnetic phases
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Through the study of concrete models we establish a strong tie between topological superconductivity
and ferromagnetic spin correlations. Our result can be used as a guideline for the search for topological
superconductors whose pairing symmetry is invariant under time reversal. The results are obtained by the
functional renormalization group method.
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I. INTRODUCTION

Topological insulators and superconductors have become a
focus of interest in condensed-matter physics.1,2 These states
are characterized by symmetry-protected gapless boundary
excitations. The existence of these excitations reflects the
fact that it is impossible to smoothly connect a topological
insulator/superconductor with its nontopological counterpart
without crossing a quantum phase transition. Under the
assumption of no electron-electron interaction, topological
superconductors and insulators have been classified into ten
symmetry classes.3,4 In each spatial dimension precisely five
of these classes have topological representatives. Examples
of topological insulators include the time-reversal symmetry-
breaking (T-breaking) integer quantum Hall insulator,5 and
the time-reversal-invariant (T-invariant) topological insulators
in two6 and three7 dimensions. Examples of topological
superfluids/superconductors include the T-breaking 3He-A
(Ref. 8) and Sr2RuO4,9 and the T-invariant 3He-B.8

In this fast-growing field, discovering new topological ma-
terials is clearly very important. While many topological insu-
lators have been predicted and experimentally confirmed,1,2,7

there is no conclusive evidence that topological supercon-
ductivity with time-reversal-invariant pairing symmetry is
realized in any material. The recently discovered CuxBi2Se3

(Refs. 10–12) is an intriguing but not yet confirmed candidate.
This makes the theoretical study of physical conditions that
favor T-invariant topological superconductivity a pressing task.

Predicting topological superconductors is much harder than
predicting topological insulators. This is because knowing the
desired Bogoliubov–de Gennes (BdG) band structure13 only
meets half of the challenge. The other half requires knowledge
of the microscopic interactions which favor the desired BdG
band structure as the mean-field theory. Leaving topology
aside, it is hard enough to predict superconductivity itself.
This is because the energy scale involved in Cooper pairing
is usually much smaller than the characteristic energies (e.g.,
the bandwidth) of the normal state. However, in the past five
years various types of renormalization group methods have
been used to compute the effective interaction responsible
for the Cooper pairing in iron-based superconductors.14,15 In
this paper we apply a similar method to study topological
superconductivity.

In the literature there are many interesting proposals
for inducing topological superconductivity via the proximity
effect.16–19 (A notable exception is the intriguing proposal of

Ref. 12.) In these proposals, pairing is artificially induced by
a (nontopological) superconductor. The reason the induced
superconducting state is topological is due to the novel spin-
orbit coupled electron wave functions in the normal state. The
focus of this paper is on material which will be a topological
superconductor by itself.

There are two classes (DIII and CI, according to Ref. 4) of
T-invariant topological superconductor in three dimensions.3,4

They are differentiated by the transformation properties with
respect to time reversal and particle-hole conjugation. In this
paper we focus on class DIII, for it has realization in space
dimension d = 1, 2, and 3. We ask, “under what condition is
T-invariant topological superconductivity favored?” We argue
that it is when the ferromagnetic (to be precise, small wave
vector magnetic) fluctuations are strong.

Due to practical limitations (on computation) we limit
ourselves to two-dimensional (2D), i.e., thin-film, topological
superconductors. Such systems inevitably break the spatial
inversion symmetry because of the presence of the Rashba
spin-orbit coupling term near the surface. As a result the
superconductors under consideration are noncentrosymmetric.
For this type of superconductor, parity-even and parity-odd
pairing symmetries can mix. Many real superconducting ma-
terials are noncentrosymmetric. Examples include CePt3Si,20

CeRhSi3,21 CeIrSi3,22 and the superconductivity found at
the interface of LaAlO3 and SrTiO3.23 For discussions of
topological pairing in centrosymmetric systems see, e.g.,
Ref. 24, and for noncentrosymmetric systems see, e.g., Ref. 25.

Using the functional renormalization group method, we
establish a tie between topological superconductivity and
ferromagnetic fluctuations. We provide different mechanisms
that lead to strong ferromagnetic fluctuations and hence
triplet pairing. Under such a condition, we show that a
small Rashba coupling can induce T-invariant topological
superconductivity. Our result implies that such a topological
pairing is unlikely in superconducting materials where singlet
pairing dominates. The paper concludes with a guideline and
a few suggestions for systems that might realize T-invariant
topological superconductivity.

The rest of this paper is structured as follows. In Sec. II we
describe briefly the functional renormalization group method
for our purpose, leaving the more technical details in the
Appendix. In Secs. III and IV we provide two concrete models
that lead to T-invariant topological superconductivity. In Sec. V
we discuss the results and the relevance to experiments.
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FIG. 1. A generic four-point vertex �1234 is rearranged into
(a) P , (b) C, and (c) D channels. Here k,q,p are momenta; μ,ν,σ,λ

are spin indices; and m,n denote the form factors. On each side of
the diagrams, the spin (and sublattice) labels are absorbed into the
form-factor labels wherever applicable (see the main text).

II. METHOD

Technically this work requires us to generalize the func-
tional renormalization group (FRG) approach14,15,26,27 to
Hamiltonians without spin rotation symmetry. In addition,
because of the necessity to study small-momentum-transfer
particle-hole scatterings we use a Matsubara frequency rather
than a momentum cutoff. All calculations are carried out
using the singular-mode functional renormalization group
(SM-FRG) method.27,28 More details on this method can be
found in the Appendix.

Consider a generic fully antisymmetrized irreducible four-
point vertex function �1234 in �

†
1�

†
2(−�1234)�3�4. Here

1,2,3,4 represent momentum and spin (and sublattice) indices.
Figures 1(a)–1(c) are rearrangements of �1234 into the pairing
(P ), crossing (C), and direct (D) channels, each characterized
by a collective momentum q. In each channel the vertex
function is decomposed as Eq. (A1) in the Appendix. There
{fm} is a set of orthonormal lattice form factors.29 The spin
(and sublattice) indices are contained in the label of the form
factors as shown in Figs. 1(a)–1(c). The decomposition in
Eq. (A1) is exact if the form factors are complete, but a few of
them are often enough to capture the leading instabilities.27,28

The FRG flow equations for P , C, and D as a function
of the cutoff scale � are given by Eqs. (A3)–(A5) in the
Appendix. The effective interaction in the particle-particle
(pp) and particle-hole (ph) channels are given, respectively,
by Vpp = −P/2 and Vph = C. [Because of antisymmetry D

(= −C) does not yield any new information.] During the FRG
flow we monitor the singular values of the matrix functions
Vpp/ph(q). The most negative singular values, Spp/ph, occur at
special momenta qpp/ph. While qpp is usually zero, qph can
evolve under RG flow before settling down to fixed values.
The eigenfunction associated with Spp is used to construct the
gap function. Further details can be found in the Appendix.

III. TOPOLOGICAL PAIRING IN THE VICINITY
OF VAN HOVE SINGULARITY

We consider spin-1/2 fermions hopping on a square lattice.
The Hamiltonian is given by

H =
∑

k

�
†
k[ε(k)σ0 + λ �γ (k) · �σ ]�k + U

∑
i

ni↑ni↓. (1)

Here �† = (ψ†
↑,ψ

†
↓), ε(k) = −2t(cos kx + cos ky) − 4t ′

cos kx cos ky − μ is the normal state dispersion (t and t ′
are hopping amplitudes and μ is the chemical potential), i

labels the lattice sites, and niσ = ψ
†
iσ ψiσ . In addition, σ0

is the 2 × 2 identity matrix and �σ denotes the three Pauli
matrices. In the Rashba spin-orbit coupling we consider
�γ (k) = (− sin ky, sin kx,0).

Combining the time-reversal and point-group (C4v in the
present case) symmetries, it can be shown that the Cooper
pair operator B† = ∑

k �
†
k�k�

†T
−k takes the form30 �(k) =

[φ(k)σ0 + �d(k) · �σ ]iσ2, where �d(k) transforms, under the
point group, like the product of φ(k) and �γ (k). In the cases we
have studied, to a good approximation, we can write

�(k) = [φ(k)σ0 + χ (k)γ̂ (k) · �σ ]iσ2, (2)

where γ̂ (k) = �γ (k)/| �γ (k)|, and φ(k) and χ (k) are even
functions of k and are real up to a global phase. They transform
according to the same irreducible representation of the point
group (for multidimensional representations there are several
φ’s and χ ’s). In Landau theory, φ and χ act as order parameters
and can induce each other in the presence of the Rashba
coupling (λ �= 0).

It is important to note that the Rashba term splits each of
the otherwise spin-degenerate Fermi surfaces into two. The
spin-split Fermi surfaces are characterized by eigenvalues ±1
of γ̂ (k) · �σ . In the case where φ(k) and χ (k) are nodeless, the
gap function on the two split Fermi surfaces will have opposite
sign if the magnitudes of χ (k) dominate over φ(k). It turns out
that for each pair of Fermi pockets surrounding a T-invariant k
point the above sign reversal leads to two counterpropagating
Majorana edge modes. Thus, topological pairing requires the
triplet χ component to be dominant. Moreover, sign reversal
(in the gap function) on odd/even pairs of the spin-split Fermi
surfaces (satisfying the condition specified above) will lead to
strong/weak topological superconductivity.

For t ′ = −0.475t , μ = −2t , and λ = 0.01t , the spin-split
Fermi surfaces are shown in Fig. 2(a). They are pointy along
x̂ and ŷ, reflecting the existence of saddle points (van Hove
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FIG. 2. (Color online) (a) The spin-split Fermi surfaces. The gray
scale shows the values of the gap functions. The spin splitting is
intentionally enlarged for a better view. (b) The SM-FRG flow of
Spp/ph versus cutoff scale �. Arrows mark the evolution of the wave
vector in the ph channel during the RG flow. (c) The low-energy
BdG eigenspectrum in a strip (open along x̂) as a function of the
momentum qŷ. (d) The phase diagram defined by the upper critical
scale in the pp and ph channels as a function of U . The vertical dashed
line marks the phase boundary.
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singularities) on the Brillouin zone boundary. These features
lead to enhanced ferromagnetic correlations via the Stoner
mechanism. However, this mechanism overestimates the spin
fluctuations by ignoring the overlaps to the other channels.
The FRG method we apply here treats all channels on an equal
footing and provides a mechanism of triplet pairing due to
enhanced ferromagnetic fluctuations. The form factors used in
our SM-FRG extend up to second neighbors in real space.29

The RG flow of Spp/ph is shown in Fig. 2(b) for U = 2.5t . The
arrows associated with the Sph flow record the qph evolution
from q1 = (π,π ) to q2 = 0. By inspecting the spin structure of
the q2 singular mode we find it corresponds to ferromagnetic
fluctuation. The increased ferromagnetic fluctuation around
q2 enhances pairing in the triplet channel via their mutual
overlaps (see the Appendix). The gap function is determined
by the singular mode associated with Spp at the diverging cutoff
scale. The result is a dominant χ component together with a
much smaller φ component. The corresponding gap function
on the two Fermi surfaces is shown in Fig. 2(a) (grayscale).
A sign change is clearly visible. According to the established
criterion,2 this pairing state is topological. To verify this, we
calculate the BdG energy spectrum using the obtained pairing
form factor in a strip geometry (open boundary along x̂). The
resulting eigenenergies as a function of q = ky are shown in
Fig. 2(c). There are two in-gap counterpropagating Majorana
edge modes associated with each edge.

Had we turned off the Rashba coupling, the leading
pairing channel (p wave) would be two-fold degenerate (with
dominant amplitudes on first-neighbor bonds). Under this
condition even an infinitesimal Rashba coupling breaks the
degeneracy by linearly recombining the p waves into �(k) =
i sin kxσ0 + sin kyσ3, or χ (k) = |�γ (k)| in Eq. (2), leading to a
gap function ±χ (k) on the infinitesimally split Fermi surfaces.
Interestingly this gap function has the same symmetry as the
two-dimensional version of the 3He-B phase. In addition, the
Rashba coupling plays a similar role as the parity-invariant
spin-orbit interaction in 3He: they both lift the degeneracy in
the pairing channel.

Figure 2(d) is a phase diagram of the present model,
defined by the upper critical scale in the pp and ph channels.
With t ′ and μ fixed, we find that for U < 2.77t the system
is in the topological triplet superconducting state, while the
ferromagnetic spin-density-wave (SDW) state is realized for
U > 2.77t .

IV. TOPOLOGICAL PAIRING ENHANCED
BY INTERPOCKET SCATTERING

In this section we show another route to topological
pairing. In this case pairing is triggered by inter-Fermi surface
scattering in a way similar to the pairing in the pnictides.14,15

Consider a honeycomb lattice. The single-particle Hamil-
tonian is given by

H0 = −
∑
iδ

�
†
i tδ�i+δ − iλ

∑
iδnn

�
†
i (ẑ × �δnn · �σ )�i+δnn

−μ
∑

i

�
†
i �i. (3)
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FIG. 3. (Color online) (a) The Fermi pockets and the associated
gap functions (gray scale, in units of t). The spin splitting between
each pair of Fermi pockets is enlarged for clarity. The hexagon is
the zone boundary. (b) The SM-FRG flow of Spp/ph versus the cutoff
scale �. Arrows mark sharp changes of qph during the RG flow.
(c) A strip (marked by the thick lines) open along a and periodic
along b directions (a and b are parallel to the primitive lattice vectors).
(d) The low-energy BdG eigenspectrum for (c) as a function of the
conserved momentum q along b. (e) The phase diagram defined by
the upper critical scale in the pp and ph channels as a function of U .
The vertical dashed line marks the phase boundary.

Here i labels lattice sites, δ runs over the first- and second-
neighbor bonds, with tδ = t,t ′. The spin-dependent hopping,
the Rashba term, is limited to the nearest-neighbor bonds δnn.
Choosing a lattice site as the origin, the point group is C3v .
For the SM-FRG calculation, we choose the form factors up to
the second neighbors.29 (Since the honeycomb lattice has two
sites per unit cell the labels of the form factors in Fig. 1 include
the sublattice indices.27) The Fermi surfaces for t ′ = 0.357t ,
λ = 0.02t , and μ = 1.664t are shown in Fig. 3(a). There
are a few interesting features of the band structure that are
worth noting: (1) The Fermi surfaces encircle either the zone
center (�) or the zone corners (K and K ′). However, only
� is T-invariant, hence according to Ref. 2 only the � Fermi
surfaces are topologically relevant. (2) The � and K pockets
have nearby segments and hence allow small-momentum-
transfer particle-hole scattering. If such scattering is magnetic,
it corresponds to nearly ferromagnetic fluctuations and hence
can induce triplet and topological pairing.

In the following we show for U = 1.26t this is exactly what
happens. During the RG flow shown in Fig. 3(b), the strength
of Sph increases and qph evolves from q1 = (0.667,1.152)π
to q2 = 0, q3 = (0.250,0.048)π , and finally settles down at
q4 = (0.333,0.192)π . We have checked that q4 corresponds to
the scattering between nearby parallel segments between the �

and K pockets. Inspection of the spin structure of the singular
mode associated with q2,3,4 reveals that it corresponds to spin
fluctuations. As such fluctuations are enhanced, they cause Spp

to grow in magnitude and eventually diverge at a relatively high
critical scale. The resulting gap function is shown in Fig. 3(a)
in grayscale. It is fully gapped on all Fermi surfaces and has
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opposite sign on each pair of spin-split pockets. Since the K

pockets are topologically irrelevant, the sign change between
the � Fermi surfaces implies the pairing is strong-topological.
To verify this we consider a strip schematically shown in
Fig. 3(c). It is open along a and periodic along b directions. The
BdG energy spectrum as a function of the momentum q = k · b̂

is shown in Fig. 3(d). There are two branches of Majorana
modes at each edge. Figure 3(e) is a phase diagram for the
present model with fixed μ. The topological superconducting
phase is realized for U < 1.365t , while ferromagneticlike
SDW instability is realized for U > 1.365t .

V. DISCUSSION

Thus in both of the above examples we have seen

small momentum magnetic fluctuations

⇒ degenerate triplet pairing, and

degenerate triplet pairing + Rashba coupling

⇒ topological pairing.

We notice that in each case there is a finite range in the
parameter space where topological pairing is realized. The
fact that ferromagnetic fluctuations enhance triplet pairing
has a long history. These include the works on the pairing of
3He,8,31,32 and the extension of the Kohn-Luttinger theorem to
p-wave pairing for 2D and three-dimensional (3D) electron gas
in the dilute limit.33,34 Examples of works on lattice systems
include Refs. 35–37.

It is important to emphasize that if pairing is predominantly
singlet a weak Rashba coupling can only induce a small triplet
component and hence is insufficient to induce the desired sign
change in the gap function. Of course this does not rule out
the possibility of topological pairing in the presence of strong
spin-orbit interaction.

Many noncentrosymmetric superconductors appear near
the antiferromagnetic rather than the ferromagnetic phase.
These include CePt3Si, CeRhSi3, CeIrSi3, and CeCoGe3.
For these materials topological superconductivity is un-
likely. There are also many materials where supercon-
ductivity appears near ferromagnetism. Examples include
Li2Pd3B, Li2Pt3B, URhGe, HoMo6Se8, ErRh4B4,38 iron
under pressure,39 and the interface superconductivity of
LaAlO3/SrTiO3.23 In these systems it should be more likely to
find topological pairing.

In conclusion, our functional renormalization group investi-
gations indicate that T-invariant topological superconductivity
in symmetry class DIII should occur in systems close to
the ferromagnetic (or small-wave-vector magnetic) instability.
Band-structure-wise, in the absence of Rashba coupling, these
systems should have an odd number of spin-degenerate Fermi
pockets (each enclosing a T-invariant momentum) in order for
strong topological pairing to occur.
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APPENDIX

Here we provide the technical details of the SM-FRG
method.27,28 We begin by reviewing the definition of the vertex
functions used in the main text. Consider a generic fully
antisymmetrized irreducible four-point vertex function �1234

in �
†
1�

†
2(−�1234)�3�4. Here 1,2,3,4 represent momentum

and spin (and sublattice) indices. Figures 4(a)–4(c) are
rearrangements of �1234 into the pairing (P ), crossing (C),
and direct (D) channels, each characterized by a collective
momentum q. The rest momentum dependence of the vertex
function can be decomposed as

�
μνσλ

k+q,−k,−p,p+q →
∑
mn

f ∗
m(k)Pmn(q)fn(p),

�
μνσλ

k+q,p,k,p+q →
∑
mn

f ∗
m(k)Cmn(q)fn(p), (A1)

�
μνσλ

k+q,p,p+q,k →
∑
mn

f ∗
m(k)Dmn(q)fn(p).

Here {fm} is a set of orthonormal lattice form factors. The
spin (and sublattice) indices are contained in the label of the
form factors as shown in Figs. 4(a)–4(c). The decomposition
in Eq. (A1) is exact if the form factors are complete, but in
practice a few of them are often enough to capture the leading
instabilities.27,28 Because of full antisymmetry, the matrices C

and D satisfy D = −C and are therefore not independent. In
the following, D is used for bookkeeping purposes.

Ignoring the spin and sublattice labels for the moment, the
form factors are given by

fm(k) =
∑

r

fm(r) exp(−ik · r), (A2)

where fm(r) transforms according to an irreducible representa-
tion of the point group, and r are the bond vectors connecting
the two �’s (or two �†’s) in Fig. 4(a) and one � and one
�† in Figs. 4(b) and 4(c). In our calculation we choose form
factors up to the second-neighbor bonds. We have checked
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FIG. 4. A generic 4-point vertex �1234 is rearranged into P -, C-,
and D-channels in (a)–(c), respectively. Here k,q,p are momenta,
μ,ν,σ,λ denote spins, and m,n denote the form factors. On each side
of the diagrams, the spin (and sublattice) labels are absorbed into the
form factor labels wherever applicable. The one-loop diagrams that
contribute to ∂P , ∂C and ∂D are shown in (d)–(f), respectively.
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that longer-range form factors do not change the results
qualitatively. To be specific, for a square lattice, the real-space
form factors we used are (1) f1 = 1 for on-site; (2) f2 = 1/2,
f3 = (1/2) cos 2θr, f4 = √

1/2 cos θr, and f5 = √
1/2 sin θr

for first neighbors, where θr is the azimuthal angle of r; and
(3) f6 = 1/2, f7 = (1/2) sin 2θr, f8 = √

1/2 cos(θr − π/4),
and f9 = √

1/2 sin(θr − π/4) for second neighbors. For
hexagonal lattices, the form factors we used are (1) f1 =
1 for on-site; (2) f2 = √

1/3, f3 = √
2/3 cos θr, and f4 =√

2/3 sin θr for first neighbors; and (3) f5 = √
1/6, f6 =√

1/3 cos θr, f7 = √
1/3 sin θr, f8 = √

1/3 cos 2θr, f9 =√
1/3 sin 2θr, and f10 = √

1/6 cos 3θr for second neighbors.
Notice that the first-neighbor bonds stem from different
sublattices and are negative to each other.

In the case where sublattices are involved, the form factor
label m also includes the sublattice indices associated with
the two �’s (or �†’s), or the � and �†. However, once r is
fixed only one of these sublattice indices is independent. We
include the independent sublattice index in the form factor
label, (m,a) → m. Here a labels, e.g., the fermion field 1 or
4 in Fig. 4(a), 1 or 4 in Fig. 4(b), and 1 or 3 in Fig. 4(c). The
sublattice index is an independent label because point-group

operations do not mix sublattices when the origin is chosen to
be a lattice site.

The total number of form factors, N , in a calculation
is determined by the number of real space neighbors, the
number of sublattices, and the four spin combinations (μ,ν) =
↑↑,↑↓,↓↑,↓↓ associated with two � (P channel) or the �

and �† (C and D channels). Thus P , C, and D are all N × N

matrix functions of momentum q.
The Feynman diagrams associated with one-loop con-

tributions to the flow of the irreducible four-point vertex
function are given in Figs. 4(d)–4(f). They represent the partial
changes ∂P , ∂C, and ∂D, respectively. [Notice that the three
diagrams in Figs. 4(d)–4(f) become the usual five diagrams in
the spin-conserved case.] The internal Green’s functions are
convoluted with the form factors hence in matrix form,

∂P/∂� = Pχ ′
ppP/2,

∂C/∂� = Cχ ′
phC, (A3)

∂D/∂� = −Dχ ′
phD,

where we have suppressed the dependence of the collective
momentum q, and

(χ ′
pp)mn = ∂

∂�

∫
dωn

2π

∫
d2p
SBZ

fm(p)G(p + q,iωn)G(−p,−iωn)f ∗
n (p)θ (|ωn| − �)

= − 1

2π

∫
d2p
SBZ

fm(p)G(p + q,i�)G(−p,−i�)f ∗
n (p) + (� → −�),

(χ ′
ph)mn = ∂

∂�

∫
dωn

2π

∫
d2p
SBZ

fm(p)G(p + q,iωn)G(p,iωn)f ∗
n (p)θ (|ωn| − �)

= − 1

2π

∫
d2p
SBZ

fm(p)G(p + q,i�)G(p,i�)f ∗
n (p) + (� → −�), (A4)

where G is the free fermion Green’s function, and SBZ is
the total area of the Brillouin zone. Here � > 0 is the
infrared cutoff of the Matsubara frequency ωn. As in usual
FRG implementation, the self-energy correction and frequency
dependence of the vertex function are ignored.

Since ∂P , ∂C, and ∂D come from independent one-loop
diagrams, they contribute independently to the full d�1234,
which needs to be projected onto the three channels. Therefore,
the full flow equations are given by, formally,

dP/d� = ∂P/∂� + P̂ (∂C/∂� + ∂D/∂�),

dC/d� = ∂C/∂� + Ĉ(∂P/∂� + ∂D/∂�), (A5)

dD/d� = ∂D/∂� + D̂(∂P/∂� + ∂C/∂�),

where P̂ , Ĉ, and D̂ are the projection operators in the sense
of Eq. (A1). Here we have used the fact that K̂(∂K) = ∂K for
K = P,C,D. In Eq. (A5) the terms preceded by the projection
operators represent the overlaps of different channels. For two
channels to overlap, the spatial coordinates of all four fermion
fields must lie within the range set of the form factors. In the
actual calculation the projections in Eq. (A5) are performed in
real space.

The effective interaction in the particle-particle (pp) and
particle-hole (ph) channels are given, respectively, by Vpp =
−P/2 and Vph = C. By singular value decomposition, we
determine the leading instability in each channel,

V mn
X (qX) =

∑
α

Sα
Xφα

X(m)ψα
X(n), (A6)

where X = pp,ph; Sα
X is the singular value of the αth singular

mode; and φα
X and ψα

X are the right and left eigenvectors of VX,
respectively. We fix the phase of the eigenvectors by requiring
Re[

∑
m φα

X(m)ψα
X(m)] > 0 so that Sα

X < 0 corresponds to an
attractive mode in the X channel.

In the pp channel qpp = 0 corresponds to the zero center-of-
mass momentum Cooper instability. The matrix gap function
�k in the spin and sublattice basis is determined as follows. A
singular mode φα

pp leads to a pair operator (in the momentum
space),

�
†
k�k�

†T
−k =

∑
m=(m,a,μ,ν)

ψ†
aμ(k)φα

pp(m)fm(k)∗ψ†
amν(−k). (A7)

Here a is the independent sublattice index, am is the second
sublattice index determined by a and m as discussed earlier,
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and μ,ν are spin indices. The parity of �k under space
inversion determines the singlet and triplet components. The
gap function in the band eigenbasis can be determined by the
unitary transformation

�̃
†
k = �

†
kU

†
k, (A8)

where the columns of U
†
k are the Bloch states {|k,n〉} (n is the

band index). Under Eq. (A8) the pairing matrix transforms into

�̃k = Uk�kU
T
−k. (A9)

In the weak-coupling case (i.e., when the magnitude of the
superconducting gap is much smaller than the bandwidth),
only the diagonal part of �̃ (i.e., intra-Fermi surface pairing)
is important. Since Eq. (A9) involves Bloch states at two
different momenta, the phases of the associated Bloch states
enter �̃. Since there is time-reversal symmetry we fix the

Bloch-state phase at k and −k by demanding T̂ |k,n〉 = |−k,n〉
and T̂ 2|k,n〉 = −|k,n〉, where T̂ = iσ2K is the time-reversal
operator.

In the particle-hole channel, we calculate the singular
values associated with Vph(q) at all momenta q. Unlike the
Cooper channel, the most negative singular value can occur at
nonzero momentum qph. The associated particle-hole operator
is given by

�
†
k+q�k�k =

∑
m=(m,a,μ,ν)

ψ†
aμ(k + q)φα

ph(m)f ∗
m(k)ψamν(k).

(A10)

Usually the on-site form factor dominates in the particle-hole
channel. By inspecting the spin structure of the on-site form
factor one can easily determine whether the instability is
chargelike or spinlike.
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