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Theory of the electrical transport in tilted layered superconducting Josephson junctions
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We present a theory of the Josephson effect in a twofold-tilted Josephson junction made by d-wave anisotropic
layered superconductors. We find the appearance of an intrinsic electrical resistance that arises from the
misalignment of the superconductive planes (the CuO2 planes in YBCO) in the two electrodes. This intrinsic
contribution to the tunnel barrier has several nontrivial consequences. The result is relevant for understanding the
electric transport properties of [100] tilt and [100] tilt-tilt Josephson junctions based on d-wave superconductors.
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I. INTRODUCTION

Grain boundary Josephson junctions (GBJs) have been
fabricated and studied immediately after the discovery of high
Tc superconductors.1 Nonetheless, the mechanism of the su-
percurrent transport in these devices is still matter of scientific
investigation and argument of general physical interest.2,3 It is
well known that the dc Josephson effect can be described
by means of a scattering theory using the Bogoliubov-de
Gennes (BdG) equations.4 Characteristic localized states of
quasiparticles, known as Andreev bound states, are found
in the superconductive energy gap region through which the
Josephson supercurrent flows between the two electrodes.5

This kind of theoretical approach has been successfully
used in describing analytically the physics of in-plane grain
boundary cuprate Josephson junctions ([001] tilt) where a
two-dimensional scattering theory6–8 finely incorporates both
the propagation of the quasiparticles along the Cu-O planes
and the anisotropic d-wave-induced symmetry of the pair
potential.9 Moreover, in Ref. 2, a numerical approach, also
based on the BdG equations, has enriched the understanding
of the role of charge inhomogeneities in limiting supercurrents
in [001] GBJs.

However, a number of experiments have been carried out
on [100] YBCO GBJs,10–12 where the Cu-O planes of one
or both electrodes are tilted by an arbitrary angle (φ1 and φ2

in Fig. 1) with respect the substrate surface, implying that
the relevant geometry of the junction is no longer in-plane.
In particular, relatively high values of the IcRn products12–14

have been observed in such YBCO GBJs. [100] junctions seem
to be very promising for developing new sensors of radiation
in the terahertz band15,16 and observing macroscopic quantum
properties.17 Indeed Kawabata et al.18 have pointed out that
macroscopic quantum effects in YBCO devices may be better
observed in junctions showing electrodes with pair potential
lobes aligned each other (d0/d0 junctions). This configuration
can be obtained with out-of-plane [100] GBJs geometries,
whereas [001] GBJs are not suitable for fabricating d0/d0

junctions.9

In spite of all these circumstances, as of today, and
differently from the [001] tilt junction case, a specific theo-
retical treatment of the transport properties in [100] junctions
is lacking.19 One can probably individuate emblematically
the obstacle of developing a model theory for this case
in the nontrivial modification suffered by the quasiclassical

trajectories of the excitations. Indeed, such trajectories are
no longer confined to a single plane as in [001] layered
junctions2,6–8 but lay in planes tilted with respect to the
substrate plane by the misorientation angles φ1,φ2; see Fig. 1.

In this work we take a step toward the effective evaluation
of the peculiar transport properties of YBCO [100] tilt junction
(αL = αR = 0 in Fig. 1) and [100] tilt-tilt junctions (junctions
in which one or both angles αL, αR differ from zero).

We focus on the dc Josephson effect and find that the
influence of the different tilting of the conduction planes with
respect to the barrier plane (on passing from one electrode to
the others) brings about an enhanced normal state electric
resistance of the junction. The key result is an analytical
expression for the Andreev spectrum for the quasiparticles,
which retains the influence of the tilting of the Cu-O planes as
well as the effects of the d-wave anisotropic symmetry of the
pair potential.

II. THEORY

In order to describe charge transport in a meso-
scopic [100] YBCO grain boundary Josephson junc-
tion, we assume a superconductor-normal-insulator-normal-
superconductor (SNINS) model.8,20–22 The superconductive
material considered is a d-wave anisotropic layered cuprate.
The presence of normal regions of the order ∼ξ0 = h̄vF /π�0,
the ballistic coherence length,23 is introduced for mode-
ling the mechanism of the Andreev reflection and a possible
suppression of the order parameter near the junction.

Furthermore, we suppose that the quasiparticles are con-
strained to move exclusively along the Cu-O planes of the
two electrodes. This last assumption is based on the fact
that the normal conductivity in c-axis direction in YBCO is
about 100 times smaller than that along the ab plane. In the
superconducting state this strong anisotropy persists in the
supercurrent distribution due to a large ratio λ2

c/λ
2
ab, where λc

(λab) is the London penetration depth across the planes (in the
planes).3,24

The junction barrier, the plane x = 0 in the frame xyz

indicated in Fig. 1, is assumed to be normal to the sub-
strate and considered perfectly flat. This assumption reflects
schematically the fact that in a “valley”-type morphology
junction, like the one represented in Figs. 1(b) and 1(c), there
is almost perfect matching of the conducting planes at the
grain boundary and the planes themselves face each other
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FIG. 1. (Color online) (a) z-axis view of a layered SNINS [100]
tilt-tilt junction. The thickness of the normal region is a+b, the d-wave
superconducting regions occupy the space defined by x < −a and
x > b. The insulating barrier (I) is represented by the plane x = 0.
(b) 3D view of the conducting planes with the indicated tilt angles φ1

and φ2. The d-symmetry pair potential is represented by �L(θ ) =
�0 cos(2θ − 2αL); �R(θ ) = eiϕ�0 cos(2θ − 2αR), ϕ = ϕR − ϕL is
the global phase difference between the two superconducting regions.
The solid and dashed lines represent the electron-like and the holelike
elementary excitation trajectories extending over the two planes,
respectively. (c) Schematic crystallography of the entire [100] tilt
junction.

along a nearly flat surface which is normal to the substrate.25

The conduction planes are tilted with respect the substrate
plane z = 0, by the angles φ1 and −φ2 in the left (x < 0)
and in the right (x > 0) electrode and parallel to the x ′′-y
plane or to the x ′-y plane, respectively. The propagation
coordinates x ′, x ′′ in the left and right electrode are given
by x ′ = x cos φ1 + z sin φ1,x

′′ = x cos φ2 − z sin φ2. The two
SN interfaces are planes parallel to the junction barrier and
normal to the x axis, as indicated in Fig. 1.

The coupled motion of holelike (v) and electron-like (u)
components of the wave function 
 in the Cu-O planes is
described by the 2D quasiclassical BdG equations.26 For the
x ′-y plane and x ′ > 0 the BdG equations are

⎧⎨
⎩

Eu(x ′,y) = ĥ(x ′,y)u(x ′,y) + �R(k̂)�(x ′ − b)v(x ′,y)

Ev(x ′,y) = −ĥ(x ′,y)v(x ′,y) + �R(k̂)�(x ′ − b)u(x ′,y)

(1)

and, analogously, for the x ′′-y plane and x ′′ < 0 we have⎧⎨
⎩

Eu(x ′′,y) = ĥ(x ′′,y)u(x ′′,y) + �R(k̂)�(x ′′ − b)v(x ′′,y)

Ev(x ′′,y) = −ĥ(x ′′,y)v(x ′′,y) + �R(k̂)�(x ′′ − b)u(x ′′,y)

(2)

where ĥ(x ′,y) = −h̄2(∂2/∂x ′2 + ∂2/∂y2)/2m + V (x ′,y) − EF

and ĥ(x ′′,y) = −h̄2(∂2/∂x ′′2 + ∂2/∂y2)/2m + V (x ′′,y) − EF ,

are the Hamiltonian operators. V (x ′,y) and V (x ′′,y) are the
potential energies in the right and left electrodes, respectively,
�(z) is the Heaviside step function and EF = h̄2k2

F /2m is
the Fermi energy. In the following we assume that the two
interfaces SN and NS are perfectly clean, the only potential
being the one associated with a thin insulating barrier at
x = 0. Hence, V (x ′,y) = V (x ′′,y) = 0, and we model such
a barrier by a δ function potential V (x,y) = U0δ(x). Here U0,
the Hartree potential, is taken to be a constant independent
from φ1 and φ2.

The spatial dependence of the pair potential is assumed
to have a step-functional form described by �(k̂,r) =
�(−a − x)�L(k̂) + �(x − b)�R(k̂). The bound states so-
lutions of Eqs. (1) for 
(x ′) and 
(x ′′) [
(x ′,y) =

(x ′) exp (ikyy),
(x ′′,y) = 
(x ′′) exp (ikyy)] in the SL, NL,
NR , and SR regions, including normal and Andreev reflections
of holes and electrons, then are, respectively,
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u
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v
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+

)
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(

0
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−ikh
1 x ′′)
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0
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SR (x ′) = cB(E)
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u
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0

v
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0 e−i(ϕR
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eik
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(
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)
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(3)

with

u
β,±
0 =

[
1

2

(
1 + i

�
β
±

E

)]1/2

v
β,±
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[
1

2

(
1 − i
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±

E

)]1/2

k
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±
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�
β
± = (|�β

±|2 − E2)1/2

ke
1 =

(
k2
F − k2

y + 2mE

h̄2

)1/2

kh
1 =

(
k2
F − k2

y − 2mE

h̄2

)1/2

(4)

with β denoting right (R) or left (L), k
β,e
± , k

β,h
± are the

wave numbers of the electron-like and hole-like quasiparticles,
respectively, see Fig. 1(a), that move in the superconducting
regions, with ke

1, kh
1 the wave numbers of the electrons and

holes in the normal regions, respectively, and E � |�β
±|.

For d-wave symmetry the effective pair potential is mod-
eled as �L

± = �0|cos[2(θ ∓ αL)]|eiϕL
± ,�R

± = �0|cos[2(θ ∓
αR)]|ei(ϕ+ϕR

±),6,7 where ϕ
β
± are the phases as felt in a normal

reflection by the electrons ( + ) and holes (−), ϕ is the global
phase difference between the two superconducting regions,
and αL, αR are the angles between the crystallographic a axis
of the left and right superconductors and the normal to the y

axis. θ is the incident angle of the quasiparticle trajectories to
the y axis.

Boundary conditions have to be specified at the three
different interfaces, x = −a, x = 0, and x = b, to determine
the 12 unknown coefficients in 
(x ′) and 
(x ′′). These con-
ditions are the continuity of the function 
 and its derivatives,
d
/dx ′ and d
/dx ′′, across the clean interfaces x = −a, x =
b, respectively. Moreover, at the normal-insulator-normal
interface (plane x = 0) where the change in the propagation
direction from x ′′ to x ′ occurs, boundary conditions are the
continuity of 
 and the discontinuity of d
/dx imposed by
the presence of the δ-function barrier insulator. Then, since
d/dx = cos φ1d/dx ′ and d/dx = cos φ2d/dx ′′, we write the
matching conditions at x = 0 as


NL
(0) = 
NR

(0) cos φ2
d
NR

(0)

dx ′′ − cos φ1
d
NL

(0)

dx ′

= 2mU0

h̄2 
NL
(0). (5)

III. RESULTS AND DISCUSSION

Using Eq. (3) and imposing the above conditions, under
the assumption of perfect retro-reflectivity (EF � E,|�β

±|) of
the Andreev reflections,27 we derive an homogeneous linear
system of equations for the the 12 unknown coefficients. The
condition of existence of solutions, in addition to the trivial
one, provides the following spectral equation:

[�L
−�R

− − e−i(γ−+ϕ)e−iDr ][�L
+�R

+ − ei(γ++ϕ)e−iDr ]

+Z2
eff(�

L
−�L

+ − e−iγLe−2iAr )(�R
−�R

+ − eiγR e−2iBr ) = 0 (6)

with

�
β
± = E − i�

β
±

|�β
±|

, γβ = ϕ
β
+ − ϕ

β
−, γ± = ϕR

± − ϕL
±

r = kF

cos θ

E

EF

, A= a

cos φ2
, B = b

cos φ1
, D =A+ B

(7)

and where the effective barrier parameter Zeff , defining the
electrical transparency of the junction Teff = 1/(1 + Z2

eff),
appears as

Zeff(θ,φ1,φ2) =
√

4Z(θ )2 + (cos φ1 − cos φ2)2

4 cos φ1 cos φ2
(8)

with Z(θ ) = Z0/cos θ and Z0 = kF U0/2EF the usual barrier
parameters. With the definition Eq. (8) we may write the
spectral equation in the same form which holds for the [001]
case described in Refs. 27 and 22. However, Eq. (8) shows
a new contribution to the barrier, coming from the specific
geometrical configuration depending on the angles φ1 and φ2.

Equation (6) provides the quasiparticle energy levels as a
function of the superconducting phase difference ϕ for the
case of layered SNINS d-wave [100] tilt-tilt junctions and
other limits (SIS, SNS, INS). When the junction is in the clean
limit (Z0 = 0), the transparency of [100] junctions does not
reach the unitary value but it is still limited to

T 0
eff = 4 cos φ1 cos φ2

(cos φ1 + cos φ2)2
, (9)

which is θ independent. Equation (9) embodies the pure
effect on the junction transparency of the misalignment of
the conducting planes between the two electrodes. The zero-
temperature normal-state conductance Gn is evidently also
affected by the angles φ1 and φ2 and can be written, in terms
of the average transparency 〈Teff〉, as

Gn = 2
e2kF Ly

h
〈Teff〉

(10)

〈Teff〉 = T 0
eff

[
1 − C2 coth−1(

√
1 + C2)√

1 + C2

]
,

where C = 2Z0/(cos φ1 + cos φ2) and 2〈Teff〉 = ∫ π/2
−π/2 dθ

cos(θ )Teff(θ,φ1,φ2). Therefore, the effect of the tilting of the
planes in SNINS junction manifests as an excess of electrical
resistance in the normal state. This effect persists also in the
limit of zero size normal regions (a = b = 0).

One of the consequences is that the Andreev level spectra
are strongly modified. Indeed, in Fig. 2 the Andreev spectra
for two different GBJ configurations are reported. In particular,
we have considered, most representatively, the case of a [100]
tilt-tilt mirror (αL = −αR = α) GBJ, with φ1 = 0, φ2 = π/4,
and α = π/8 (dashed line), and the analogous mirror [001]
junction (solid line) both in the clean limit (Z0 = 0). As
is well known, in mirror junctions, for a given symmetric
rotation α (0 < α < 45◦) around the c axes, depending on the
quasiparticle incidence angle θ (−π/2 < θ < π/2), two kinds
of bound levels exist:21,28 midgaplike states, for ±π/4 − |α| <

θ < ±π/4 + |α| and edgegaplike states in the complementary
intervals. The formation of midgap states, i.e., the formation
of zero energy states when the phase difference across
the junction is zero is characteristic of d-wave Josephson
junction.29 Both kinds of levels determine the magnitude of the
Josephson current as well as the dependence of the maximum
Josephson current on the temperature.7 The two kinds of
Andreev levels, selected for two illustrative θ values, have
been derived according to Eq. (6). In particular, when the
levels are degenerate in energy, i.e., at φ = π , an asymmetric
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FIG. 2. Comparison between Andreev level spectra of d-wave
SNS 45◦ mirror (αL = −αR = 22.5◦) grain boundary junctions cal-
culated in the clean limit (Z0 = 0) for [001] and [100] configurations,
respectively. Solid and dashed curves refer to [001] GBJs with
φ1 = φ2 = 0 and [100] GBJs (φ1 = 0 and φ2 = 45◦), respectively.
(a) edgegaplike state Andreev levels for a trajectory with quasiparticle
incidence angle θ = π/10; (b) midgaplike state Andreev levels with
θ = 3π/16.

tilt of [100] junctions (φ1 
= φ2) opens up an energy gap
(Egap) in both kinds of Andreev level spectra, similarly to
what happens in the presence of impurities. For selected
trajectories (θ = 0 and θ = π/4), the entity of this band gap
may be simply expressed as Egap/�0 = 2

√
1 − T 0

eff|sin 2α|
for edgelike energy states and Egap/�0 = 2

√
T 0

eff|cos 2α| for
midgaplike states, respectively.

The Josephson current may be derived directly from the
energy spectrum. As a consequence it is sensitive to the

(a)

(b)

(c)

FIG. 3. Comparison of the temperature dependence of the abso-
lute value of the Josephson critical current in d-wave [001] tilt (solid
curves) and [100] tilt-tilt mirror (αL = −αR = α) grain boundary
junctions with barrier parameter Z0 = 0.7 for three representative
misorientation angles α. (a) α = 13◦, (b) α = 18◦, and (c) α = 21◦.
For α = 18◦ arrow indicates the sign inversion of the critical current
(0 − π crossover) in [001] GBJs. The remaining curves in (b) show a
shift of the crossover temperature with the tilt angle φ2 in [100] GBJs.
The sign of the critical current Ic is positive for curves (a), negative
for curves (c).

modifications derived so far. In the short junction limit, for
which a + b � ξ0, the discrete Andreev levels determine all
the Josephson current through the expression8,30

Ix(ϕ,φ1,φ2)

= 2e

h̄

kF Ly

2π

∑
n

∫ π/2

−π/2
dθ cos(θ )

dEn(θ,ϕ)

dϕ
f [En(θ )],

(11)

where the index n labels the bound Andreev energy levels and
f [En(θ )] is the Fermi function.

As a matter of fact it turns out that the Josephson current
shows a dependence on the angles φ1 and φ2 in [100]
geometries. Figure 3 shows a comparison of the dependence on
the temperature of the maximum Josephson current between
asymmetric [100] and [001] mirror junctions. The current
is normalized with respect to I0 = 2ekF Ly�0/h, which is
the zero temperature maximum Josephson current through an
s-wave SNS junction in the clean limit.30 The superconductive
gaps in the two electrodes are assumed to obey a Bardeen-
Cooper-Schrieffer temperature dependence. It is well known
that in this kind of junction the interplay between midgap
and edgegap states may lead to a temperature sign inversion
of the maximum Josephson current [Fig. 3(b)], i.e., to a
temperature-dependent 0-π crossover7,21 (arrow in Fig. 3). For
the chosen value of the barrier strength parameter Z0 = 0.7,
the modifications for increasing values of the tilt angle φ2 are
evident, showing a shift toward higher temperatures of the 0-π
crossover as φ2 increases from 0◦ to 45◦; see Fig. 3(b).

IV. SUMMARY

We have presented a theoretical model for the description
of electrical transport in YBCO [100] tilt “valley” type GBJs
based on the quasiclassical BdG equations. We have compared
our results with the well-studied [001] tilt case. We have
derived the spectral relation in the case of [100] tilt-tilt
junctions. The Andreev bound states calculated through this
equation show modifications analogous to those caused by the
presence of an insulating layer. However, the nature of this
modifications differs: It depends on the geometrical mismatch
between conducting planes. We have evaluated the temperature
dependence of the maximum Josephson current in the case of
[100] mirror junctions and found a dependence of the 0-to-π
crossover temperature on the interelectrode misorientation
angles.
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