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Vortex creep and critical current densities in superconducting (Ba,K)Fe2As2 single crystals
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The surprisingly rapid relaxation of the sustainable current density in the critical state of single-crystalline
Ba1−xKxFe2As2 is investigated for magnetic fields oriented parallel to the c axis and to the ab plane, respectively.
Due to the inadequacy of standard analysis procedures developed for flux creep in the high-temperature
superconducting cuprates, we develop a simple, straightforward data treatment technique that reveals the creep
mechanism and the creep exponent μ. At low magnetic fields, below the second magnetization peak, μ varies only
slightly as a function of temperature and magnetic flux density B. From the data, we determine the temperature
and field dependencies of the effective activation barrier for creep. At low temperatures, the measured current
density approaches the zero-temperature critical current density (in the absence of creep) to within a factor 2, thus
lending credence to earlier conclusions drawn with respect to the pinning mechanism. The comparable values
of the experimental screening current density and the zero-temperature critical current density reveal the limited
usefulness of the widely used “interpolation formula.”
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I. INTRODUCTION

Recently, the measurement of the critical current density
jc of superconducting iron-based compounds has been recog-
nized as a useful tool for the characterization of microscopic1,2

and nanoscale1,3 disorder in these materials. However, the
study of vortex pinning and the critical current density is
compromised by surprisingly large thermally activated flux
creep4–6 in the Bean critical state.7,8 In some materials,
such as single-crystalline (Ba,K)Fe2As2, the logarithmic creep
rate S ≡ −d ln j/d ln t of the sustainable current density j

approaches that previously measured in some of the high-
temperature cuprate superconductors.9–11 Sizable creep rates
influence the magnitude, and, potentially, the temperature
and flux density dependence j (T ,B), thereby compromising
the analysis of fundamental vortex pinning mechanisms in
the iron-based superconductors1,2 and the understanding of
possible phase transitions of the vortex ensemble.2,12,13

A detailed analysis of flux creep in the iron-based super-
conductors is therefore justified. In the cuprates, such analysis
has unveiled the nonlogarithmic nature of vortex creep, a
direct consequence of the nonlinearity of the relevant potential
barrier U (j ) opposing thermally activation as a function of the
driving force Bj . In turn, this nonlinear behavior arises from
the elasticity of the vortex ensemble, i.e., the fact that this
can be deformed continuously on very different length scales.

In contrast to single-particle creep,14 the relevant activation
barrier does not depend algebraically on the driving force, but,
rather, increases steeply at low driving forces because of the
nonlinear increase of the size of the critical nucleus.15–17 In
general, the size of the critical nucleus increases as an inverse
power law in j , leading to the well-known relation15–17

U (j ) = Uc

(
jc

j

)μ

. (1)

The value of the creep exponent μ depends on the di-
mensionality of the critical nucleus as well as that of the
elastic manifold as a whole.15 In the case of single-crystalline
iron-based superconductors to be considered here, the latter
can be either a single one-dimensional (1D) vortex line, or the
three-dimensional (3D) vortex ensemble. The law (1) does not
extrapolate to a zero activation barrier at large driving force;
one therefore frequently resorts to the so-called interpolation
formula16,17

U (j ) = Uc

[(
jc

j

)μ

− 1

]
. (2)

Among the various methods to experimentally establish
the U (j ) dependence,10,18–22 the analysis of the logarith-
mic time dependence of 1/S is the most reliable21,22: for
Eq. (2), one has 1/S ∝ μ ln[(t0 + t)/τ ], with t0 a constant

024515-11098-0121/2012/86(2)/024515(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.024515


M. KONCZYKOWSKI et al. PHYSICAL REVIEW B 86, 024515 (2012)

determined by transients at the onset of relaxation, and
τ = (�jc/E0)(kBT /Uc) a normalization time determined by
the barrier magnitude, a factor E0 (with dimension of electric
field) related to the details of the creep mechanism, and
a sample “inductance” � = μ0a

2 (a is a relevant sample
dimension).23,24 An alternative “dynamic” method based on
the dependence of the sustainable current density on the
sweep rate Ḣa of the applied magnetic field in magnetic
hysteresis loop measurements was used in Refs. 5, 6, 20,
and 25–27. In principle, the product (T/Q)d ln j/dT , with
Q ≡ d ln j/d ln Ḣa , directly yields μ.5,6,25–28 The potential
of local magnetic measurements of the magnetic induction
B was exploited by Abulafia et al.,29 who reconstructed
the current-voltage characteristics of YBa2Cu3O7−δ single
crystals from Ampère’s law j ∼ μ−1

0 dB/dx for the current
density and Faraday’s law

E(x) = −
∫ x

0
(dB/dt)dx ′ (3)

for the electric field (integrating from the sample center to its
perimeter).

As opposed to the cuprates, the dynamic range over which
creep data can be collected in the iron-based superconductors is
insufficient to reliably determine S(ln t), Q(ln Ḣa), or the cur-
vature of E(j ) = E0 exp[−U (j )/kBT ]. Moreover, the factor
d ln j/dT ∝ [1 − (kBT /Uc)(dUc/dT )] used in the dynamic
method admixes the temperature dependence Uc(T ) with the
creep exponent μ. As a result, it is difficult to distinguish
between a logarithmic U ∼ Uc ln(jc/j ) with a temperature-
dependent Uc, and a so-called “negative-μ” -type barrier U =
Uc[1 − (j/jc)|μ|].27 One should therefore resort to other con-
structions, such as that proposed by Maley et al.,5,13,19,23 which
combine the results of relaxation measurements at different T .

In the following, we show that even though this method
is fraught with shortcomings, it can be suitably adapted to
yield reliable results. In particular, a plot of the average
〈−kBT d ln(|dj/dt |)/dj 〉 versus the average 〈j 〉 unambigu-
ously yields the curvature of the U (j ) relation and therefore
the flux-creep mechanism. Applying this to single-crystalline
(Ba,K)Fe2As2, one finds, first of all, that the creep rate
is insufficient to qualitatively modify the field dependence
j (B) as obtained from magnetic hysteresis. Second, the low-
temperature sustainable current density j is, typically, less than
a factor of 2 lower than the value the critical current density
jc would have in the absence of creep. Finally, the obtained
μ values indicate that the same creep mechanism is relevant
for all temperatures up to the transformation of the vortex
ensemble at the so-called “second magnetization peak.”12 We
discuss the μ value and its increase as a function of magnetic
field in terms of the interplay of strong pinning by nm-scale
heterogeneities and weak collective pinning by atomic-scale
point defects in the material.

II. EXPERIMENTAL DETAILS

The Ba0.6K0.4Fe2As2 single crystals with Tc ∼ 38.1 K
(Fig. 1) were grown by the self-flux method, using FeAs as the
self-flux. Details of the growth can be found in Refs. 30 and 31.
For the experiment, crystals were cut to regular rectangles of
dimensions 350 × 160 × 70 μm3 using a wire saw. The spatial
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FIG. 1. (Color online) (a), (b) In-phase fundamental (T ′
H ) and

amplitude of the third harmonic ac transmittivity (|TH3|) as a function
of the temperature, at an applied field μ0Ha = 1.5 T, for different
indicated frequencies of the ac field. (c) Irreversibility field Hirr , as
determined from the vanishing of |T3H |, indicated by the arrow in (b),
for Ha ‖ c and Ha ‖ ab, respectively.

distribution of the local induction perpendicular to the surface
of the crystals in the critical state was measured using an array
of microscopic Hall sensors, fashioned in a pseudomorphic
GaAlAs/GaAs heterostructure using ion implantation. The 10
Hall sensors of the array, spaced by 20 μm, had an active
area of 3 × 3 μm2, while an 11th sensor was used for the
measurement of the applied field. For measurements with
field parallel to ab, an array of sensors spaced by 10 μm
was used. The Hall sensor array was placed on the center of
the crystal surface, perpendicular to the long crystal edge, and
spanning the crystal boundary. In this manner, hysteretic loops
of the spatially resolved local induction were measured as a
function of the applied magnetic field Ha , and as a function
of temperature. The sweep rate of the applied magnetic field
was 40 G/s (μ0Ḣa = 4 mT/s). In all experiments, the applied
magnetic field was not only much smaller than the upper
critical field Hc2, but also smaller than the field at which the
second magnetization peak occurs.12

Under all circumstances, the profiles of the flux density
B were well described by the critical state model7,8 (see
Fig. 3), allowing for the straightforward extraction of the local
screening current density j ≈ (2/μ0)dB/dx. The factor 2
takes the finite dimensions of the crystal into account, namely,
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the field gradient on the end surface of a semi-infinite bar
in the critical state is half the field gradient in the interior.32

Measurements were done with the Hall array parallel to the
ab plane and Ha ‖ c, a configuration that measures the usual
screening current density in the ab plane, j = jc

ab, and with
the array ‖ c for Ha ‖ ab, which yields the ab-plane screening
current density jab

ab corresponding to vortices moving parallel
to the c axis (perpendicular to the FeAs layers).

Measurements of the ac screening were performed
with the same setup. A sinusoidally time-varying
field of magnitude 1 Oe and frequency f is applied
collinearly with the dc field. The ac component Bac(f,T )
of the local induction is then measured using the
Hall probe array. Results, presented as the in-phase
fundamental ac transmittivity T ′

H = [Bac(f,T ) − Bac(f,T 

Tc)]/[Bac(f,T � Tc) − Bac(f,T 
 Tc)] and the third
harmonic |T3H | = Bac(3f,T )/[Bac(f,T � Tc) − Bac(f,T 

Tc)],33 are shown in Figs. 1(a) and 1(b), respectively. The
nonzero value of the latter signals the existence of a nonzero
critical current density jc; the vanishing of Bac(3f ) at high
temperature is used to trace the irreversibility field Hirr (T ),
for dc field aligned along the c axis and the ab plane,
respectively [Fig. 1(c)].

As for the magnetic relaxation experiments, these were
carried out on the decreasing field magnetization branch only
(corresponding to flux exit relaxations), in order to prevent
possible influence of surface barrier relaxation. The external
magnetic field was applied at a temperature T > Tc, at which
the Hall probe array was calibrated (with respect to the
applied field). The crystal was subsequently field cooled to
the measurement temperature Te < Tc, and the field reduced
by an amount �Ha to the measurement field. Care was taken
that �Ha exceeded the the field of full flux penetration, so
that a full critical state is established. After waiting 5 s to
allow for the settling of the magnet, the flux-density values
at the different Hall sensor positions were measured as a
function of time, for a period of 5000 s. Furthermore, flux-
creep annealing experiments19 were performed by heating the
sample to Ta > Te, returning to the experimental temperature
Te, and remeasuring S over a period of 600 s. This procedure
is equivalent to performing measurements at the effective time
t = τ exp{U [j (Ta)]/kBTe}, of the order 106 s.

III. RESULTS

Figure 2(a) shows hysteresis loops of the flux-density
gradient dB/dx as function of the local induction B for Ha ‖ c

at T = 10 K. The width of the loop is proportional to the
screening current density jc

ab in the ab plane for field ‖ c. It
has the characteristic shape found in all charge-doped iron-
based superconductors1: a “central peak” of j around B = 0,
followed by a drop j ∝ B−1/2 characteristic of strong vortex
pinning by nm-scale point defects2,34,35 or heterogeneities. As
B increases, the strong-pinning contribution to the critical
current becomes irrelevant, and j (B) saturates to a field-
independent value determined by weak collective pinning of
individual vortices,36 presumably by the K dopant atoms in the
material.1 The magnitude of jc

ab is very similar to that found
in other measurements on the same material.1,37,38
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FIG. 2. (Color online) (a) (Red circles) Hysteresis loop of the
gradient dB/dx ∝ j c

ab versus the local induction B, measured
perpendicular to the long edge of the Ba0.6K0.4Fe2As2 single crystal,
for Ha ‖ c at T = 10 K. The sweep rate of the applied magnetic field
was 0.8 mT/s for the virgin magnetization loop (up to μ0Ha = 0.5 T),
while further measurements were carried out with a sweep rate
of 4 mT/s. The four measurement sequences (blue squares, green
diamonds, black triangles, magenta bullets) illustrate the decay of
the flux gradient at different applied fields, over a period spanning 5
to 5000 s after field cooling, and reduction of the external field Ha

to the measurement field Ha − �Ha (with �Ha = 0.2 T). (b) Time
dependence of the local induction gradient for an applied field of
0.6 T and T = 8 K.

At all magnetic fields, the sustainable current relaxes as
a function of time, with S ∼ −0.06 [Fig. 2(b)]. Creep is
logarithmic in time, with curvature indicative of a nonlinear
U (j ) relation. However, contrary to the cuprate supercon-
ductors, and as illustrated by the near-linear evolution of the
experimentally determined flux-creep activation barrier in the
inset to Fig. 3, the accessed dynamical range of S[j (t)] is too
small in the iron-based superconductors to reliably extract a
value of μ directly. The effect of flux-creep annealing is also
illustrated in Fig. 3, which shows the relaxation of the trapped
flux profile at T = 8 K together with profiles obtained after
annealing at various temperatures.

The time-dependent current density is analyzed using the
method of Maley et al.19 This yields the experimental current
density-dependent activation barrier as

Ue(j ) = −kBTe ln

(∣∣∣∣djdt

∣∣∣∣
)

+ cTe, (4)

with c a temperature-independent constant, to be chosen so that
segments corresponding to the Ue(j ) relation measured at dif-
ferent temperatures line up to form the U (j ) relation represen-
tative of the vortex-creep mechanism governing the magnetic
relaxation. For the collective creep mechanism of Ref. 15,

j = jc

{(kBT /Uc) ln[(t0 + t)/τ ]}1/μ
, (5)

so that the method gives23

− kBTe ln

(∣∣∣∣djdt

∣∣∣∣
)

= U (j ) − kBTe ln

[
kBTe

U (j )

j

μτ

]
; (6)
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FIG. 3. (Color online) (a) Relaxation of the critical state flux
profile in the Ba0.6K0.4Fe2As2 crystal, for Ha ‖ c, at T = 8 K. Open
symbols show the flux-density profile across the Ba0.6K0.4Fe2As2

single crystal for four successive times, while closed symbols
illustrate the flux-density profiles obtained after the annealing of the
critical state to the indicated temperatures. (b) Flux-creep activation
barrier as a function of the screening current density, as extracted
using Eq. (4).

hence, c ≡ kB ln[kBTej/U (j )μτ ] actually depends
logarithmically on temperature. For a putative
logarithmic dependence U = Uc ln(jc/j ),39,40 yielding
j = jc[(t0 + t)/τ ]−kBT /Uc , one has23

− kBTe ln

(∣∣∣∣djdt

∣∣∣∣
)

= U (j ) − kBTe ln

(
kBTe

Uc

jc

τ

)
. (7)

The following shortcomings of the method of Ref. 19 are
identified. While, at low temperature, only a single c value will
satisfy the requirement of lining up the measured segments, at
higher T the temperature dependence of c becomes important.
Second, the prefactor Uc(T ) ≡ Uc(0)f (T ), as introduced
in Eqs. (1) and (2), itself introduces a more important
temperature dependence. This can be recovered by dividing
the result of Eq. (4) at each Te by phenomenological factors
f (Te), with, again, a degree of arbitrariness. Correcting for the
temperature dependencies of c and Uc in different ways results
in different final results for the compiled U (j ) curve. Finally,
the method supposes that the same U (j ) mechanism governs
flux creep at all the temperatures used to reconstitute the
experimental U (j ) curve. In the present set of experiments,
we find that applying different procedures to cope with these
different temperature dependencies yield an error bar on μ

that amounts to 50% to 100% of its value.
Because it involves the integral (3) rather than the local

value dj/dt , the method of Ref. 29 has the merit of yielding
more accurate U (j ) values. In our experiments, we determine
the electric field by integrating to the sample boundary; in
accordance, the relevant value of the current density is that
which corresponds to the slope dB/dx at the boundary.
Figure 4 shows −kBT ln E thus determined, for various
temperatures, and μ0Ha = 0.2 T ‖ c. However, if one wishes
to extract flux-creep activation energies, one is faced with
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FIG. 4. (Color online) Treatment of creep data for μ0Ha = 0.2
T ‖ c, using the method of Ref. 29. The data at the bottom of
the frame show the j dependence of the product of Te and the
the logarithm of the electric field, extracted using Eq. (3), for
different experimental temperatures Te (left-hand axis). The master
curve at the top (right-hand axis) was compiled from these data
using a temperature-independent and current density-independent E0;
however, as in Ref. 29, E0 was assumed to be proportional to B; this
yields a μ value of 0.8.

the same arbitrariness concerning the factor c in Ref. 19,
now contained by the factor E0. Compiling a full U (j ) curve
using a temperature and current density independent E0 yields
the illustrated master curve, suggesting that U (j ) ∝ j−μ with
μ = 0.8. However, if one takes E0 to be proportional to Bj ,
as in Ref. 29, one obtains a curve that fits U (j ) ∝ j−0.25.

To avoid ambiguities, we evaluate the averaged current
density derivative 〈−kBTed ln |E|/dj 〉 at each Te. This pro-
cedure has the advantage of eliminating the prefactor c (or,
equivalently, E0) from the analysis. For Eq. (1), one has〈

kBT d ln |E|
dj

〉
= −

〈
(μ + 1)kBTe

j
− dU (j )

dj

〉
(8)

≈ μ
Uc

jc

(
jc

〈j 〉
)1+μ

(Uc � kBT ),

while for power-law creep39,40

〈
kBT d ln |E|

dj

〉
= Uc

〈j 〉 (Uc � kBT ). (9)

A double-logarithmic plot (Fig. 5) of the average
〈−kBTed ln |E|/dj 〉 versus 〈j 〉 for all different temperatures
Te therefore directly reveals the creep mechanism, as well as
the value of μ, from the deviation of the linear slope from
1. Whether the condition Uc � kBT is verified can be easily
checked from the Bean (straight-line) like nature of the flux
profiles in Fig. 3.41

From the slopes in Fig. 5, we find that Eqs. (1) and (2)
describe the data satisfactorily. The corresponding μ values are
rendered in Fig. 6. For Ha ‖ c, μ = μc ≈ 0.65 at low fields,
slowly increasing towards μc ≈ 0.8 at higher fields, while for
Hab ‖ ab, μab ≈ 1.5 at low fields, decreasing towards μab ≈ 1
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magnetic field.

at higher fields. The results for Ha ‖ c are remarkably similar
to those found in Ba(Fe0.92Co0.08)2As2 by Shen et al.6

The obtained μ values are checked by plotting −kBTe ln |E|
versus j−μ for all temperatures and fields. Figure 7 shows
that this yields straight lines for both field orientations, as
required. Deviations from linearity are only apparent below
8 K, and above 24 K, which means that μ is T independent
for the greater part of the investigated temperature range.
That is, the same mechanism governs vortex creep for all
T < 24 K. The slopes in Fig. 7 yield Ucj

μ
c , while the

intercept with the abscissa corresponds to j
−μ
e , where je =

jc{Uc/kBTe ln[kBTej/U (j )μτ ]}1/μ. With the uncertainty re-
garding μ removed, the curves obtained for different Te can
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FIG. 6. (Color online) Experimental values of the creep exponent
μ for the two orientations of the applied magnetic field.
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U (j ) for thermally activated vortex creep in the Ba0.6K0.4Fe2As2

crystal, for (a), (b) μ0Ha = 0.6 T ‖ c, μ = 0.75; and (c), (d) μ0Ha =
0.5 T ‖ ab, μ = 1.13. (b) and (d) show the (logarithm of) raw electric
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versus (dB/dx)−μ ∝ j−μ. (a), (c) Show the full, compiled curves of
the creep barrier, obtained by adding the relevant factor kBTe ln E0

for each temperature.

now be compiled into a “zero-temperature” curve by adding
factors kBTe ln E0, and dividing by f (Te). For the lowest
two temperatures, we set f (Te) = 1 to obtain an unequivocal
E0 = 0.019. For higher Te, the value of f (Te) is adapted
in order to line up the relevant data segments to obtain a
continuous compiled curve, with continuous derivative. The
result is given in Fig. 9, which shows the extracted activation
barrier U (j ) as a function of j−μ (top panel) and as function
of j (bottom panel), for various magnetic fields ‖ c. The
extracted temperature dependence Ucj

μ
c for Ha ‖ c is depicted

in Fig. 8.
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FIG. 8. (Color online) Comparison of the temperature depen-
dence of the activation barrier Uc(T )[jc(T )/jc(0)]μ (open symbols)
extracted from the creep experiments, with that of the measured
screening current density j (T ) at the onset of relaxation (closed
symbols). The j (T ) values (closed symbols) are tantamount to those
one would measure in magnetic hysteresis experiments. Large closed
symbols on the left-hand abscissa denote the jc(T = 0) values,
determined from the extrapolation of the activation barrier to zero in
Fig. 9. Drawn lines denote Eq. (5), evaluated using the experimental
values of the product Ucj

μ
c , and ln(t0 + t/τ ) = 21. Dashed lines are

guides to the eye.

IV. DISCUSSION

Inspection of the creep barrier in Fig. 9 shows deviations
from power-law behavior at low temperature <8 K and
above 24 K. In all cases, the dependence U (j ) at the lowest
temperature appears to be linear in the current density j .
This behavior is interpreted as being due to the proximity
of the measured screening current density to the (pinning)
critical current density. A linear extrapolation of the U (j )
curves to zero (dotted lines in Fig. 9) thus provides an
estimate of the critical current density jc(0) in the limit
T → 0. The obtained values range between jc(0; 0.6 T) =
6.7 × 109 Am−2 to jc(0; Ha = 0) = 9.7 × 109 Am−2 for field
‖ c, and jc(0; 0.5 T) ≈ 2.3 × 1010 Am−2 for Ha ‖ ab (Fig. 8).
These values can be factored out from the slopes of the
curves in Figs. 9(a) and 9(b) to yield creep-barrier values
of Uc(0)/kB = 60–85 K, decreasing with increasing values
of field ‖ c (see Fig. 8), and Uc(0)/kB = 24 K for Ha ‖ ab.
The low-temperature values of the measured screening current
density j closely approach jc(0). These values therefore yield
a good order-of-magnitude estimate of the bulk pinning force.

The inset of Fig. 9(c) compares the high- and low-current
limiting behavior of the current-density-dependent creep
barrier for μ0Ha = 0.2 T ‖ c to the often-used interpolation
formula (2). It is clear that the current-density range over
which the experimental barrier crosses over from the high-
current, linear-in-j , to the low-current behavior given by
Eq. (1) is much narrower than what can be described using
Eq. (2). In fact, the dashed-dotted curve shows that applying
the interpolation formula (2) yields a gross overestimate of
the pinning critical current density, as well as a possible
overestimate of μ. It therefore seems imperative to use Eq. (1),
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FIG. 9. (Color online) (a) Plot of −kBTed ln |E| vs (dB/dx)−μ ∝
j−μ for different magnetic fields strengths ‖ c. (b) Flux-creep
activation barrier compiled from relaxation experiments at different
temperatures for the same fields as (a). The dotted lines show the linear
extrapolation of the low-temperature barrier to jc(0). The drawn lines
show fits to the collective creep theory, Eq. (1). (c) Data for applied
field μ0Ha = 0.2 T, showing the inadequacy of the interpolation
formula (2) (dashed-dotted line).

which was derived on physical grounds,15 rather than the
phenomenological formula (2).

The extracted parameter values can be used to crosscheck
the analysis. The drawn lines in Fig. 8 render a numerical
evaluation of Eq. (5) using the experimentally extracted Ucj

μ
c

products and ln(t0 + t/τ ) = 21. In the intermediate tempera-
ture range, at which creep is described by the barrier (1), the
agreement with the temperature-dependent screening current
density values j (T ) at the onset of the relaxation (such as these
might be measured during a field-sweep measurement) is more
than satisfactory. Given that at all times the current density
is, to good approximation, given by the equation U (j ) =
kBT ln(t0 + t/τ ),23,24,40 one has ln(t0 + t/τ ) = U (j )/kBT ,
where the numerator and denominator can be simply read
from Figs. 4 and 9. At the onset of relaxation (t ∼ 5 s), one
finds values ranging from 20.5 (for 4.2 to 12 K) to 52 (at
T = 26 K). Thus, the value ln(t0 + t/τ ) = 21 is reasonable
in the intermediate temperature range. The expression τ =
(�jc/E0)(kBT /Uc) ∼ 10−8 s allows one to estimate ln(t0 +
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t/τ ) independently; for t ∼ 5 s, one again has a value of 20. For
measurements performed with a commercial superconducting
quantum interference device-based magnetometer, t ∼ 100 s,
so that ln(t0 + t/τ ) is slightly larger.

Figure 8 shows that the field dependence of the screening
current density, as expressed by Eq. (5), is contained by
the parameter Ucj

μ
c . Hence, the j (B) dependence is not the

consequence of a field dependence of the creep process, which
would be reflected by a strongly field dependent μ; rather,
it reflects the intrinsic field dependence of the pinning force.
The B−1/2 dependence of the screening current density in
iron-based superconductors was recently interpreted in terms
of strong pinning34,35 by nm-sized heterogeneities.1–3 In this
respect, the creep exponent μ ∼ 0.6–0.8 at low fields parallel to
the c axis, comparable to μ = 0.5 found for single vortex creep
in the Bragg-glass phase in single crystals of the cuprate high-
temperature superconductor Bi2Sr2CaCu2O8+δ ,42,43 comes as
somewhat of a surprise. Namely, vortex pinning at low fields
in Bi2Sr2CaCu2O8+δ is thought to be not in the strong-pinning
limit, but in the opposite, weak-pinning limit.44 In the field
values under scrutiny, the field dependence observed in Fig. 2
suggests that one is dealing with strong pinning (see also
Ref. 13). A possible explanation for the similarity of the creep
exponents in the two cases is that the velocity of the flux lines
at low and intermediate currents is limited by the progression
of roughened vortex segments spanning the region between
strong pins through the background of weak pins. This would
seem natural given that weak pinning in the iron-pnictide
superconductors is thought to be due to the local fluctuations of
the dopant atom density, while strong pinning would originate
from inhomogeneity of the dopant atom density on a much
larger length scale. Thus, vortex segments would progress
more or less continuously through areas of homogeneous
doping, before becoming stuck on a “strong pin,” that is, a
region in which the dopant atom density averaged over several
dozen nm significantly deviates from the overall mean. The
critical current density, and the screening current density at
low temperature, would then be determined by the strong pins,
while creep at intermediate and high temperatures would be
determined by the weak-pinning background. An alternative
hypothesis is that the creep exponent would be determined by
the shape of the energy distribution of the vortices pinned by
large-scale heterogeneity, much in the same way as this was
proposed for creep through columnar defects in the so-called
variable-range hopping regime.45

Finally, we remark that the consistently larger μ values
found for Ha ‖ ab are not unexpected because, in the investi-
gated orientation, j ‖ ab but ⊥ Ha . Vortex lines are therefore
oriented in the ab plane, but are forced to move parallel to the
crystalline c axis. This is the hard direction for vortex motion,

requiring the nucleation of vortex loops in the c direction,
a process limited by the value of the out-of-plane vortex
lattice tilt modulus c⊥

44 ∼ ε−3
λ c̃44. This exceeds the nonlocal

tilt modulus c̃44 for vortices ‖ c by the inverse cube of the
anisotropy factor ελ ∼ 0.4.

V. SUMMARY AND CONCLUSIONS

Iron-based superconductors show a surprisingly large value
of the relaxation rate S of the irreversible magnetization.
Since the relaxation rate is too small to directly extract
the current-density dependence of the flux-creep activation
barrier from the time dependence of 1/S, an alternative,
straightforward analysis method is proposed, that directly
yields the relevant creep mechanism and the temperature
dependence of the pinning parameters in the absence of
creep. Applying this to single-crystalline Ba0.6K0.4Fe2As2,
we find evidence for nucleation-type (collective) flux creep,
with a weakly field-dependent creep exponent μ = 0.6–0.8
for magnetic fields oriented along the c axis, and a slightly
larger μ = 1.2–1.5 for field along ab. Several hypotheses
leading to such μ values, among which, the combined action
of strong- and weak-pinning centers, and a nontrivial pinning
energy distribution function are proposed. At low temperature,
the screening current approaches the pinning critical current;
therefore, meaningful information on flux pinning in the
iron-pnictide superconductors can be directly extracted from
low-temperature (T � 5 K) magnetic hysteresis experiments.
The field dependence of the screening current density is
found to arise from the underlying mechanism of pinning,
and not from varying creep rates due to the flux-creep
process. Finally, it is found that the crossover between low-
current and high-current behavior of the flux-creep activation
barrier is poorly described by the so-called “interpolation
formula.”
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