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Surface impedance of superconductors with magnetic impurities
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Motivated by the problem of the residual surface resistance of the superconducting radio-frequency (SRF)
cavities, we develop a microscopic theory of the surface impedance of s-wave superconductors with magnetic
impurities. We analytically calculate the current response function and surface impedance for a sample with
spatially uniform distribution of impurities, treating magnetic impurities in the framework of the Shiba theory. The
obtained general expressions hold in a wide range of parameter values such as temperature, frequency, mean free
path, and exchange coupling strength. This generality, on the one hand, allows for direct numerical implementation
of our results to describe experimental systems (SRF cavities, superconducting qubits) under various practically
relevant conditions. On the other hand, explicit analytical expressions can be obtained in a number of limiting
cases, which makes possible further theoretical investigation of certain regimes. As a feature of key relevance to
SRF cavities, we show that in the regime of “gapless superconductivity” the surface resistance exhibits saturation
at zero temperature. Our theory thus explicitly demonstrates that magnetic impurities, presumably contained in
the oxide surface layer of the SRF cavities, provide a microscopic mechanism for the residual resistance.
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I. INTRODUCTION

Magnetic impurities in s-wave superconductors have been
a subject of interest for a long time. Shortly after the
development of the Bardeen-Cooper-Schrieffer (BCS) the-
ory of superconductivity,1 Abrikosov and Gor’kov (AG)
demonstrated2 that magnetic impurities introduced into the
sample in moderate concentrations lead to the suppression of
superconductivity. If the magnetic scattering rate 1/τs > 1/τ ∗

s

exceeds the critical value 1/τ ∗
s ≈ 0.88Tc0, where Tc0 is the

transition temperature of a sample without magnetic impurities
(we set h̄ = 1 throughout the paper), the superconductivity
is completely suppressed at all temperatures. In contrast,
much stronger nonmagnetic disorder is required to suppress
superconductivity: the scattering rate 1/τ ∼ εF must be on the
order of the Fermi energy εF ∼ 103Tc0.

According to the AG and subsequent3–10 theories, even
below the critical value, 1/τs < 1/τ ∗

s , the presence of magnetic
impurities can result in the regime of “gapless superconduc-
tivity” (GSC), where the superconducting order parameter �

is nonzero, yet the single-particle density of states (DOS) ν(ε)
does not vanish down to the Fermi level ε = 0 (Fig. 1). The
GSC regime is predicted to occur quite generically, although
the magnitude of the “subgap” DOS is parameter-dependent.
Even for low scattering rate 1/τs � 1/τ ∗

s and weak exchange
coupling J , νF J � 1 (νF is the normal state DOS at the
Fermi level per one spin projection), optimal fluctuations in
the impurity distribution produce “tails” in the DOS8–10 below
the “hard gap” predicted by the AG theory [Fig. 1(a)]. The
GSC regime becomes much more pronounced with increasing
the exchange coupling and/or scattering rate [Fig. 1(b)], as
the Shiba theory4,7 demonstrates. This is also supported by
a recent numerical study11 of a different, but mathematically
equivalent model.

In the GSC regime, gapless quasiparticle excitations give
rise to dissipation even at zero temperature.12 Although
this dissipation mechanism (caused either by the natural
presence of magnetic impurities or unintentional/unavoidable

contamination of the sample with them) may be negligible
for most practical applications of superconductors, it could
play an important role in devices that require high-quality
performance. One example of such systems is the super-
conducting radio-frequency (SRF) cavities, widely used in
particle accelerators (see Ref. 13 for a review, and references
therein; another notable system is superconducting qubits).
The SRF cavities are characterized by exceptional quality
factors, which are, however, limited to a finite residual
value ∼1010 at temperatures T � Tc much smaller than
the superconducting transition temperature Tc, where the
contribution from thermally excited quasiparticles vanishes.

Despite the high practical relevance of the problem, there
is no commonly accepted theoretical explanation of the origin
of the residual Ohmic losses in SRF cavities. Given the above
properties, it was recently argued in Ref. 14 that they could
indeed be attributed to the presence of magnetic impurities in
the system. Although the bulk of Nb samples used for SRF
cavities is typically very clean, a disordered oxide surface
layer forms due to exposure to atmosphere15 (Fig. 2). Most
importantly, magnetic moments can develop16 in the oxygen
vacancies of the substoichiometric Nb2O5 layer of thickness
∼5 − 10 nm. Since the typical penetration depth of the
electromagnetic field is ∼45 nm, this means that superconduc-
tivity could be partially suppressed in a considerable fraction
of the operating region. Scanning tunneling spectroscopy
measurements of the SRF cavity samples performed in Ref. 14
revealed the surface tunneling DOS with appreciable “subgap”
contribution, considerably greater than one would expect from
a high-purity Nb material. Combined with good fits to the
Shiba theory, these data suggested magnetic impurities in the
oxide surface layer as an important contributing factor to the
dissipation in SRF cavities.

To support this idea, in the present work, we develop
a microscopic theory of the surface impedance of s-wave
superconductors with magnetic impurities. According to the
surface chemistry of the air-exposed Nb samples15 (Fig. 2),
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FIG. 1. (Color online) Regimes of “gapped” [(a), (c), (e), weaker exchange coupling νF J and lower scattering rate 1/τs ; parameters of the
Shiba theory used: 1/(τs�) = 0.04, γ = 0.95] and “gapless” [(b), (d), (f), stronger exchange coupling and/or higher scattering rate; parameters
used: 1/(τs�) = 0.17, γ = 0] superconductivity. (a) and (b) The single-particle density of states (DOS) ν(ε), obtained from the Shiba theory
Eqs. (4.8)–(4.12), and (6.1). The inset in (a) schematically shows (in red) the “tail” of the DOS produced by optimal fluctuations of impurity
distribution—exponentially small nonperturbative effect, not captured by the AG-Shiba theory and not considered in the present paper. (c) and
(d) The function Q̄2(ε,k) [Eq. (5.3)] describing the dissipative contribution to the current response from a given energy ε; see Secs. V and VI
for details. The plots are presented for k = 0; the inset in (d) shows the full range of Q̄2(ε,k). The function Q̄2(ε,k) is nonzero if and only if
ν(ε) is nonzero. (e) and (f) The temperature dependence of the surface resistance R(ω), obtained from the main equations (3.1), (3.3), (4.1),
(4.15), (4.16), and (4.17) of the paper by numerically calculating the integrals over ε and k. In the gapped regime (e), R(ω) ∝ exp(−�∗/T ) is
exponential at lower temperatures and vanishes at T = 0. In the gapless regime (f), for moderate “subgap” DOS, the surface resistance R(ω)
is exponential at lower but finite temperatures and saturates to a nonzero value at T = 0. The latter case reproduces the commonly observed
experimental behavior (Ref. 22).

the real SRF cavity material is most appropriately described
by a model of disordered surface layer that contains both
magnetic and nonmagnetic impurities, while the rest of the
sample is weakly disordered or pure. In principle, such model
can be studied in the framework of the quasiclassical approach
to superconductivity based on the Eilenberger equation.17,18

However, this involves solving a self-consistency problem for a
system of differential equations, which, for realistic parameter
values, is challenging even using numerical methods.

Instead, here we consider a simpler model of a supercon-
ducting sample with uniform in space distribution of magnetic
and nonmagnetic impurities (Fig. 3). The main practical
advantage is that for this model we are able to analytically
obtain the general expressions for the current response function
and surface impedance. The expressions are valid, within the
approximations of the theory, in a wide range of parameter
values and, in the general case, only the resulting integrals
need to be calculated numerically. This generality allows for
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FIG. 2. (Color online) Typical structure of the surface layer of the
air-exposed Nb samples used for SRF cavities. Localized magnetic
moments (shown as green arrows) can form (Ref. 16) in oxygen
vacancies of the Nb2O5 layer of thickness ∼5–10 nm. Typical pene-
tration depth of the radio-frequency electromagnetic field is ∼45 nm.

the application of our theory to the description of experimental
systems, such as SRF cavities and superconducting qubits, in
various practically relevant regimes. On the other hand, if
necessary, explicit analytical expressions can be obtained in
numerous limiting cases.

The current response function and surface impedance of
superconductors without magnetic impurities are provided by
the Mattis-Bardeen19 and Abrikosov-Gor’kov-Khalatnikov20

theories (see also Refs. 21 and 22), in the presence and absence
of nonmagnetic disorder, respectively. The surface impedance
of superconductors with magnetic impurities was previously
studied in Refs. 23 and 24 in the limit νF J � 1 of weak
exchange coupling of the AG theory. In the present work,
we consider the case of arbitrary exchange coupling strength
νF J , treating the interactions of conduction electrons with
magnetic impurities within the framework of the Shiba theory.
This sufficiently widens the range of impurity concentrations,
where the GSC regime (of particular interest to us) with
appreciable DOS at the Fermi level occurs.

As the feature of key relevance to SRF cavities, we
demonstrate that the presence of magnetic impurities does lead
to the saturation of the surface resistance at zero temperature
in the GSC regime.

FIG. 3. (Color online) Studied system: a half-infinite (z > 0)
superconducting sample with magnetic (green) and nonmagnetic
(red) impurities uniformly distributed over its volume. Relation
between the wave vector k, electric E and magnetic H fields, and
the vector potential A is shown.

Our theory employs the linear response formalism and is
therefore valid as long as the superconducting state is not
appreciably suppressed by the magnetic field H . For type-
II superconductors in thermal equilibrium, the upper bound
for this is set by the first critical field Hc1, above which the
system becomes unstable towards creation of vortices. Real
SRF cavities, however, are known to operate in a metastable
vortex-free state that persists up to a higher “superheating”
field Hsh > Hc1.25–28 Thus, our theory should be applicable in
the range H � Hsh.

At higher fields H ∼ Hsh one could, in fact, expect a co-
operative effect of the two dissipation mechanisms: magnetic
disorder could create “hot spot” regions29 of locally suppressed
superconductivity at the surface and thus trigger proliferation
of vortices. Such a regime deserves a separate study.

The rest of the paper is organized as follows. In Sec. II, the
studied system is presented and the main approximations are
formulated. In Sec. III, the surface impedance and current
response function are introduced. In Sec. IV, the current
response function is calculated. In Sec. V, the low-frequency
expansion is performed. In Sec. VI, the key result pertaining
to the presence of magnetic impurities—finite residual surface
resistance in the GSC regime—is demonstrated. Concluding
remarks are presented in Sec. VII.

II. MODEL

We assume the superconducting sample occupies the half-
space z > 0 and contains both nonmagnetic and magnetic
impurities, which are distributed uniformly in space with
densities n and ns , respectively (Fig. 3). Within the framework
of the BCS theory,1,30 the Hamiltonian of the system can be
written as

Ĥ =
∫

z>0
d3r

{
ψ̂†

σ

[
E

(∣∣∣∣p̂− e

c
A

∣∣∣∣
)

− εF +
∑

a

uδ(r−ra)

]
ψ̂σ

+
∑

b

J sb(ψ̂†
σσ σσ ′

ψ̂σ ′)δ(r−rb)+�[ψ̂↑ψ̂↓ + ψ̂
†
↓ψ̂

†
↑]

}
.

Here, ψ̂σ = ψ̂σ (r) is the electron field operator, σ,σ ′ =↑,↓
are the spin indices, σ = (σx,σy,σz) is the vector of Pauli
matrices, and summation over repeated spin indices is implied;
E(p) is the electron spectrum, which we assume isotropic in
momentum p, p = |p|, p̂ = −i∇; A = A(t,r) is the vector
potential of the electromagnetic field penetrating the sample;
and � is the superconducting order parameter, which has to be
found self-consistently in the presence of magnetic impurities.

Next, ra and rb are random positions of nonmagnetic and
magnetic impurities, respectively. We use the conventional dis-
order averaging technique30 (“noncrossing” approximation)
and, to keep calculations simpler, assume contact interaction
potential of impurities (“point disorder”). We (i) treat magnetic
impurities as classical spins described by the unit vectors sb and
assume them unpolarized and (ii) consider arbitrary exchange
coupling strength νF J , summing the full perturbation series
for a single impurity. These are the approximations of the
Shiba theory.4

Note that the exponentially small subgap contribution
(“tail”) to the DOS arising from the optimal fluctuations of
magnetic disorder8–10 is not captured within the noncrossing
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approximation. This nonperturbative effect is dominant only
in the limit of weak exchange coupling νF J � 1 and small
impurity concentration, such that 1/(τsTc0) � 1. In this work,
we concentrate on more significant contributions to the DOS
that arise at larger impurity concentration and/or stronger
exchange coupling.

III. SURFACE IMPEDANCE

The complex surface impedance

Z(ω) = R(ω) + iX(ω) (3.1)

(see, e.g., Refs. 22 and 31) relates the electric E(z)e−iωt and
magnetic H(z)e−iωt fields at frequency ω at the interface z = 0
between the vacuum and sample as

E(0) = c

4π
Z(ω)[H(0) × n0], (3.2)

where n0 = (0,0,1) is the unit vector normal to the surface
pointing into the sample (Fig. 3). The real part R(ω) of the
impedance (3.1) determines the energy flux (averaged over the
oscillation period)

W = 1

2

(
c

4π

)2

R(ω)|H(0)|2

of the electromagnetic field per unit area from the vacuum into
the sample and is referred to as the “surface resistance.”

The general32 expression for the surface impedance of a
uniformly disordered system reads

Z(ω) = −i
4πω λ(ω)

c2
,

λ(ω) = 2

π

∫ +∞

0

dk

k2 + 4πQ(ω,k)/c2
. (3.3)

Here, Q(ω,k) is the linear current response function of an
infinite sample in Fourier representation, dependent on the
frequency ω and the absolute value k = |k| of the wave vector
k. In Eq. (3.3), we also introduce the complex penetration

depth λ(ω): its real part Re λ(ω) is the actual penetration
depth that determines the decay scale of the electromagnetic
field into the bulk. The Ohmic dissipation is determined
by the imaginary part Q2(ω,k) of the current response
function

Q(ω,k) = Q1(ω,k) − iQ2(ω,k). (3.4)

According to Eq. (3.3), the surface resistance R(ω) is finite,
only if Q2(ω,k) is nonzero.

The response function Q(ω,k) defines the relation

j(ω,k) = −1

c
Q(ω,k)A(ω,k) (3.5)

in the Fourier representation between the electric current
j(ω,k) and the electromagnetic field, described by the vector
potential A(ω,k). The trivial tensor structure of Eq. (3.5) holds
for cubic crystal symmetry and, in particular, for the isotropic
electron spectrum E(|p|) assumed here. It is convenient to
work in the gauge of absent scalar potential ϕ(ω,k) = 0.
Additionally, the vector potential A(ω,k) may be assumed
to satisfy the constraint

A(ω,k)k = 0, (3.6)

which significantly simplifies the calculations. This is equiv-
alent to the local electroneutrality condition, which is a
very good approximation for superconductors. The geometric
relation between the wave vector k, vector potential A(ω,k),
and electric E(ω,k) = iω

c
A(ω,k) and magnetic H(ω,k) =

[ik × A(ω,k)] fields is shown in Fig. 3. In the next section, we
calculate the current response function Q(ω,k), which fully
determines the surface impedance (3.3).

IV. CURRENT RESPONSE FUNCTION

According to the general Kubo formalism,30,31 the expres-
sion for the linear current response function [Eq. (3.5)] can be
written as

Q(ω,k) = Q0
−3i

2

∫ +∞

−∞
dε

[(
tanh

ε+
2T

−tanh
ε−
2T

)
〈jj 〉RA(ε,ω,k) + tanh

ε−
2T

〈jj 〉RR(ε,ω,k) − tanh
ε+
2T

〈jj 〉AA(ε,ω,k)

]
, (4.1)

〈jj 〉ab(ε,ω,k) =
〈
n2

α

∫
dξ

2π
[Ga(ε+,p+)Gb(ε−,p−) + Fa(ε+,p+)Fb(ε−,p−)]

〉
n
, a,b = R,A. (4.2)

In Eq. (4.1), we introduced

Q0 = 2(evF )2νF /3, (4.3)

where vF = (dE/dp)p=pF
is the Fermi velocity, pF is the

Fermi momentum, E(pF ) = εF , and νF = p2
F /(2π2vF ). The

quantity Q0 = Q(0,0)|T =0,clean is the value of the current
response function for a clean system at ω = 0, k = 0, and
T = 0; it can be related to the formal London penetration depth
λL0 (which can be introduced as a characterization parameter,
regardless of whether the London limit actually applies) as

1/λ2
L0 = 4πQ0/c

2. (4.4)

The quantities Q0 and λL0 describe the corresponding clean
system and are determined only by the band-structure param-
eters.

In Eq. (4.2),

GR(ε,p) = ε̃ + ξ

ε̃2 − ξ 2 − �̃2
, FR(ε,p) = �̃

ε̃2 − ξ 2 − �̃2
,

(4.5)
GA(ε,p) = [GR(ε,p)]∗, FA(ε,p) = [FR(ε,p)]∗

are the retarded (R) and advanced (A) “normal” (G) and
“anomalous” (F ) Green’s functions, averaged over disorder,
where the conventionally introduced2,4 functions ε̃ and �̃ are
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defined below. For point disorder and due to the property (3.6),
the “ladder” contribution30 vanishes, and the current-current
correlation functions (4.2) are determined by the products of
disorder-averaged Green’s functions.

Further, in Eqs. (4.1), (4.2), and (4.5), ε is the energy relative
to the Fermi level εF , and ε± = ε ± ω/2, p± = p ± k/2. We
split the integration over momentum∫

d3p
(2π )3

. . . = νF

〈∫
dξ...

〉
n
, 〈. . .〉n =

∫
|n|=1

dn
4π

. . . ,

in a standard way into the integration over its absolute value
p = |p|, expressed in terms of ξ = E(p) − εF , and averaging
over its direction, expressed in terms of the unit vector
n = p/p.

Equation (4.2) defines the correlation functions of the
current components perpendicular to k [see Eq. (3.6)], and
so, nα are the components of n = (nx,ny,nz) perpendicular
to k: if k = (0,0,k), as in Fig. 3, then α = x,y. Since the
spectrum is isotropic, the integral I (nk) = ∫ dξ

2π
. . . in Eq. (4.2)

depends just on nk = nzk and angular averaging is reduced to
calculating the integral

〈
n2

αI (nk)
〉
n = 1

4

∫ 1

−1
dnz

(
1 − n2

z

)
I (nzk). (4.6)

Note that for the integration order as in Eqs. (4.1) and (4.2)—
first over ξ and then over ε—the contribution to Q(ω,k) arising
from the dependence of the current operator on the vector
potential is already compensated for.

It is convenient to introduce the (retarded) quasiclassical
Green’s functions17,18

{g,f }(ε) = i

π

∫
dξ{GR,FR}(ε,p), (4.7)

which, according to Eq. (4.5), equal

g(ε) = ε̃√
ε̃2 − �̃2

= v√
v2 − 1

, (4.8)

f (ε) = �̃√
ε̃2 − �̃2

= 1√
v2 − 1

. (4.9)

Within the Shiba theory,4 the function

v = v(ε) ≡ ε̃

�̃
= g(ε)

f (ε)
(4.10)

satisfies the equation

v� = ε + 1

τs

√
1 − v2

γ 2 − v2
v. (4.11)

Here,

γ = 1 − (πνF J )2

1 + (πνF J )2
(4.12)

is the parameter of the Shiba theory characterizing exchange
coupling strength and τs is the scattering time on magnetic
impurities,

1

τs

= ns

2πνF

(1 − γ 2) = 2πνF ns

J 2

[1 + (πνF J )2]2
.

In the weak-coupling limit νF J � 1 of the AG theory2,
γ 2 = 1.

We also introduce the function h(ε) as
√

ε̃2 − �̃2 = h(ε) + i

2τ
, (4.13)

which is related to g(ε) and f (ε) as

h(ε) = 1

2

(
ε

g(ε)
+ �

f (ε)

)
. (4.14)

In Eq. (4.13), τ is the scattering time on nonmagnetic
impurities,

1

τ
= 2πνF nu2.

Solving Eq. (4.11) for v (in the general case—numerically),
one obtains g(ε), f (ε), and h(ε). Integration over ξ in Eq. (4.2)
is straightforward and we obtain

〈jj 〉RA(ε,ω,k) = 1

2
[g(ε+)g∗(ε−) + f (ε+)f ∗(ε−) + 1]〈jj 〉RA(ε,ω,k), 〈jj 〉RA(ε,ω,k) =

〈
in2

α

h(ε+) − h∗(ε−) + i/τ − vF nk

〉
n
,

(4.15)

〈jj 〉RR(ε,ω,k) = 1

2
[1 − g(ε+)g(ε−) − f (ε+)f (ε−)]〈jj〉RR(ε,ω,k), 〈jj 〉RR(ε,ω,k) =

〈
in2

α

h(ε+) + h(ε−) + i/τ − vF nk

〉
n
,

(4.16)

and 〈jj 〉AA(ε,ω,k) = [〈jj 〉RR(ε,ω,k)]∗, 〈jj 〉AA(ε,ω,k) =
[〈jj 〉RR(ε,ω,k)]∗. Angular averaging in Eqs. (4.15) and (4.16)
can also be performed explicitly according to Eq. (4.6):

〈jj 〉RR,RA(ε,ω,k) = −i

4vF k

[
(1 − l2

0) ln
l0 − 1

l0 + 1
− 2l0

]
,

(4.17)

where

l0 = 1

vF k
×

{
h(ε+) − h∗(ε−) + i/τ, for RA,

h(ε+) + h(ε−) + i/τ, for RR.

Equations (4.1), (4.15), (4.16), and (4.17), combined with
Eqs. (4.8)–(4.14) of the Shiba theory, provide the answer for
the current response function Q(ω,k) and constitute the main
result of our work. Within the approximations of the theory,
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these equations are valid at arbitrary values of frequency ω,
temperature T , and six microscopic parameters characterizing
the system. Three standard parameters19,20 describe the clean
system: (i) the superconducting transition temperature Tc0

or, equivalently, the superconducting order parameter �0 at
T = 0 for a system without magnetic impurities; (ii) the
current response Q0 [Eq. (4.3)] or, equivalently, the formally
introduced London penetration depth λL0 [Eq. (4.4)] for a
clean system at T = 0; and (iii) the Fermi velocity vF . The
other three parameters describe disorder: (i) the nonmagnetic
scattering time τ ; (ii) the magnetic scattering time τs ; and (iii)
the exchange coupling strength νF J or, equivalently, the Shiba
parameter γ [Eq. (4.12)].

In the general case, Eqs. (4.1), (4.15), (4.16), and (4.17)
provide the most explicit analytical form of the current
response function Q(ω,k) possible. The function is given by
the integral over energy ε in Eq. (4.1), where the dependence of
the integrand on the absolute value of momentum k is explicit
in Eqs. (4.17), while the dependence on ε is obtained from
the well-known Shiba equation (4.11), the solution to which
determines the functions g(ε), f (ε), and h(ε).

For arbitrary values of parameters, the solution to the Shiba
equation and the integrations over ε for the current response
Q(ω,k) and over k for the surface impedance Z(ω) [Eq. (3.3)]
need to be carried out numerically. The generality of the
obtained results, however, should make them applicable to
a variety of realistic experimental regimes.

On the other hand, in a number of limiting cases, the
general formulas can be further simplified and in many
cases explicit analytical expressions for the current response
function and surface impedance can be obtained. Analysis of
such limiting cases is straightforward and we do not present
it here.

In the weak-coupling limit νF J � 1 of the AG theory2

(γ = 1), the results of Refs. 23 and 24 are (presumably)
recovered, and in the complete absence of magnetic impu-
rities [1/τs = 0, h(ε) = √

ε2 − �2, g(ε) = ε/h(ε), f (ε) =
�/h(ε)] the Mattis-Bardeen theory19 is reproduced. In the
next two sections, we consider the low-frequency limit ω � �,
most relevant for practical applications to SRF cavities, and
concentrate on the key property pertaining to the presence of
magnetic impurities—finite residual surface resistance in the
GSC regime.

V. LOW-FREQUENCY EXPANSION

The typical operating frequencies of the SRF cavities are
ω ∼ c/L ∼ 10−2 meV � � ∼ 1 meV, where L ∼ 10 cm is
the typical size of the cavity. Thus for practical applica-
tions to SRF cavities, one may perform the low-frequency
expansion in ω � �. Separating the real (“nondissipa-
tive”) and imaginary (“dissipative”) parts [Eq. (3.4)] of
Q(ω,k) [Eq. (4.1)], in the leading order in ω for each, we
obtain

Q1(k) = Q0
3i

2

∫ +∞

−∞
dε tanh

ε

2T

{
[f (ε)]2〈jj 〉RR(ε,0,k) − [f ∗(ε)]2〈jj 〉AA(ε,0,k)

}
, (5.1)

Q2(ω,k) = Q0ω

∫ +∞

−∞
dε

(
−dn0(ε)

dε

)
Q̄2(ε,k), (5.2)

Q̄2(ε,k) = 3
2

{
[f (ε)]2〈jj 〉RR(ε,0,k) + [f ∗(ε)]2〈jj 〉AA(ε,0,k) + [1 + |g(ε)|2 + |f (ε)|2]〈jj 〉RA(ε,0,k)

}
. (5.3)

Here, n0(ε) = 1/[exp(ε/T ) + 1] is the Fermi distribution
function.

The real part Q1(k) [Eq. (5.1)] is finite at ω = 0 and
determines the penetration depth λ(ω = 0) [Eq. (3.3)] of the
quasistatic magnetic field (Meissner effect). On the other hand,
the imaginary part Q2(ω,k) ∝ ω [Eqs. (5.2) and (5.3)], which
determines the dissipation, is nonzero only at finite frequency
and is linear in it35 at 1/τs � ω. Since Q2(ω,k) is smaller
than Q1(k) at least in ω/�, one may also expand Eq. (3.3) in
Q2(ω,k) to obtain

Z(ω) = 32 πω

c4

∫ +∞

0
dk

Q2(ω,k)

[k2 + 4πQ1(k)/c2]2
. (5.4)

Thus the surface resistance R(ω) ∝ ω2 is quadratic in fre-
quency, which is the most common dependence observed
experimentally in SRF cavities.13

VI. RESIDUAL SURFACE RESISTANCE

We now turn to the key finding of our work. The function
Q̄2(ε,k) [Eq. (5.3)] describes the contribution to the dissipative
part Q2(ω,k) [Eq. (5.2)] of the current response function from

quasiparticles with a given energy ε, while the derivative
−dn0(ε)/dε constrains their distribution to the range |ε| � T

around the Fermi level. As is well known,18,30 the real part
g1(ε) of the normal Green’s function g(ε) = g1(ε) − ig2(ε)
[Eq. (4.8)] determines the DOS

ν(ε) = νF g1(ε). (6.1)

Inspecting Eqs. (5.2) and (5.3), we notice that

Q̄2(ε,k) = 0 ⇔ ν(ε) = 0. (6.2)

Indeed, if g1(ε) = 0, i.e., g(ε) = −ig2(ε) is imaginary,
then, according to Eqs. (4.8), (4.9), and (4.14), so are

f (ε) = −if2(ε) = −i
√

1 + g2
2(ε) and h(ε). In this case,

〈jj 〉RA(ε,0,k) = 〈jj 〉RR(ε,0,k) = 〈jj 〉AA(ε,0,k) and the
function (5.3) vanish:

Q̄2(ε,k)= 3
2 〈jj 〉RA(ε,0,k)

[−2f 2
2 (ε)+1+g2

2(ε)+f 2
2 (ε)

]=0.

We do not present a more cumbersome rigorous proof of the
converse here. Instead, the property (6.2) is clearly illustrated
in Figs. 1(a)–1(d).
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Thus, as one would intuitively expect, only the energies ε

at which the DOS ν(ε) is nonzero contribute to dissipation. At
T = 0 the envelope function −dn0(ε)/dε → δ(ε) becomes
a delta-function and only the excitations at the Fermi level
ε = 0 contribute:

Q2(ω,k)|T =0 = Q0ωQ̄2(ε = 0,k). (6.3)

According to Eq. (6.2), as the central result, we obtain that
the system exhibits finite surface resistance (5.4) at T = 0 if
and only if the DOS at the Fermi level is nonvanishing, i.e.,
the system is in the GSC regime.

R(ω)|T =0 > 0 ⇔ ν(ε = 0) > 0.

The result is illustrated in Fig. 1. If the spectrum has a
gap �̄ (DOS “tails”8–10 are not captured by the AG-Shiba
theory) [Figs. 1(a), 1(c), and 1(e)], the surface resistance obeys
an activation law R(ω) ∝ e−�̄/T at temperatures T � �̄,
eventually vanishing at T = 0.

On the other hand, in the gapless regime [Figs. 1(b), 1(d),
and 1(f)], the surface resistance R(ω) saturates to a finite value
at T = 0. We note that in experiments it is quite typical22 for
R(ω) to exhibit both the saturation at T = 0 and an activation
behavior R(ω) ∝ exp(−�∗/T ) at finite but low temperatures
T � �∗, with �∗ close to the value of the superconducting
order parameter � of a clean sample. Such behavior can
be realized, if the finite DOS ν(ε = 0) � νF at the Fermi
level is much smaller than the DOS ν(ε � �) ∼ νF above the
“nominal” gap. In the framework of the Shiba theory, this is
possible in the limit of low magnetic scattering rate 1/τs � �

and stronger exchange coupling νF J ∼ 1, the case shown in
Figs. 1(b), 1(d), and 1(f). Thus, our microscopic model can
reproduce the typical experimental temperature dependence
of the surface resistance.

VII. CONCLUSION

In conclusion, we developed a microscopic analytical
theory of the surface impedance of s-wave superconductors
with magnetic impurities. The theory can potentially be
applied to a variety of superconducting systems and is of direct
relevance to the problem of the residual surface resistance of
SRF cavities. We explicitly demonstrated that, in the regime
of gapless superconductivity, the system exhibits saturation
of the surface resistance at zero temperature—a routinely
observed, but largely unexplained experimental feature. This
substantiates the recent conjecture14 that magnetic impurities,
formed at the surface of the oxide surface layer, could be the
dominant dissipation mechanism limiting the performance of
the SRF cavities. Our theory is valid in the wide range of
parameter values and can be used for direct comparison with
experimental data, as will be presented elsewhere.36

Note added. After a preprint37 of the present work became
available, a paper38 came out, in which the same problem was
studied in the diffusive limit (τ� � 1) and for weak exchange
coupling (νF J � 1), with an emphasis on the quasiparticle
contribution from the vicinity of the spectral gap. The approach
of Ref. 38 based on the Keldysh formalism and Usadel
equation is equivalent to ours in that limit and most of the
analytical results of Ref. 38 can be obtained as asymptotic
expansions of our general formulas.
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