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Decay of persistent precessing domains in 3He-B at very low temperatures
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The B phase of superfluid 3He can support regions of extremely long-lived coherent spin precession at
ultralow temperatures, known as persistent precessing domains (PPD). The domains have been described in
terms of a Bose-Einstein condensate of magnons and in terms of Q balls in field theory. The domains form in
a magnetic field minimum along the vertical axis of a cylindrical cell. When far from the ends of the cell, the
PPD lifetime grows exponentially on decreasing temperature. When the PPD is close to the horizontal end wall
of the cell, an extra surface dissipation mechanism dominates at low temperatures. We present measurements of
the PPD generated at various locations in the cell over a broad range of temperatures below 0.3 TC . We compare
the measured properties with theoretical expectations for spin-wave modes. We present model calculations of
different dissipation mechanisms and we compare these to the measured lifetimes.

DOI: 10.1103/PhysRevB.86.024506 PACS number(s): 67.30.er, 67.30.hj, 76.60.−k

I. INTRODUCTION

In zero magnetic field, the B phase of superfluid 3He
has an isotropic energy gap and there is no nett spin or
orbital angular momentum. However, in an applied field the
Cooper pairs, which form the superfluid condensate, become
polarized resulting in a nett spin S and an orbital angular
momentum L. The spin and orbital degrees of freedom are
coupled by the spin-orbit “dipole” interaction. Spin dynamics
are readily probed by NMR experiments. To date, most
NMR experiments have been performed at relatively high
temperatures where the orbital momentum is heavily damped
by the normal fluid component. In this case, the resulting
spin dynamics are well described by the celebrated Leggett
equations.1 Long-range coherence of the spin degrees of
freedom gives rise to spin supercurrents which can redistribute
the spin (magnetization) throughout the experimental volume.
At very low temperatures, the dynamics of the orbital angular
momentum may also play an important role.2,3

The spectacular effects of spin supercurrents in the B
phase are demonstrated at relatively high temperatures by the
long-lived mode of coherent spin precession known as the
homogenously precessing domain (HPD).2,4,5 The formation
and stability of the HPD is essentially governed by the spin
stiffness of the order parameter and by spin-orbit coupling.
Spin supercurrents provide feedback which acts on the spin-
orbit coupling to stabilize coherent spin precession even in very
inhomogeneous magnetic fields.6 In this sense, superfluid 3He
may be considered as a spin (magnetic) superfluid. Indeed,
the HPD has been described in terms of a Bose-Einstein
condensate of magnons.7,8

The intrinsic decay mechanism of the HPD is provided
by Leggett-Takagi relaxation9 which couples the spins of
the normal fluid and superfluid components. As the normal
fluid component decreases towards lower temperatures, the
HPD lifetime grows. At very low temperatures, the density
of thermal excitations falls exponentially so one might expect
an exponential increase in the lifetime. However, the HPD
becomes unstable at temperatures below ∼ 0.4Tc and decays

quickly at lower temperatures.10 Owing to spin-orbit coupling,
the spatial distribution of the orbital angular momentum direc-
tion (the texture) is significantly modified by the HPD.6,11,12

Furthermore, at low temperatures, the damping is sufficiently
small to allow oscillations in the texture which can destabilize
the HPD.13–15

In the low-temperature limit, an extremely long-lived NMR
signal was observed in Lancaster.16 This was first called the
persistent induction signal (PIS). It is now commonly referred
to as the persistent precessing domain (PPD), but is also
sometimes called a Q ball.7,17 Remarkably, the free decay of
the PPD may exceed half an hour at the lowest temperatures.18

Early experiments revealed several other remarkable prop-
erties of the PPD. First it was found that, unlike HPD, the
frequency of the PPD increases during its decay.16 The PPD
was first generated by pulsed NMR, but in contrast to HPD,
it only required small tipping pulses, of the order of a few
degrees.16 The PPD could also be generated by continuous
excitation, but not by conventional cw NMR. Instead, the PPD
required a new technique, named off-resonant cw NMR.19

Here the continuous excitation is supplied at a different
frequency to the signal. The PPD was only excited if the
excitation frequency was higher than the signal frequency.19

Astonishingly, it was found that the PPD could even be
excited by applying white noise to the excitation coil.20 These
latter properties give a remarkable demonstration of spin
superfluidity and, perhaps, give the strongest indications that
the PPD can be considered as a Bose-Einstein condensate of
magnons, as was suggested by Bunkov and Volovik.7

Experiments show very clearly that the free decay of the
PPD is independent of the method of excitation.19 However, in
early experiments16 the properties of the PPDs showed a broad
variation even under nominally identical external conditions.
The PPD was highly irreproducible, and was only occasionally
excited by pulsed NMR. This shows that the texture plays
an important role. Later experiments, using a cylindrical
cell along the field direction, revealed that under certain
circumstances reproducible PPD signals could be generated.
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Further experiments were performed using two NMR pick-up
coils to give information on the spatial position of the PPD.21

These confirmed earlier suspicions that the reproducible PPDs
are generated in a field minimum along the cell axis.22

Recent experiments in Helsinki,17,23 using a similar cell
geometry, have shown that spin waves in the field minimum can
be excited by conventional cw NMR at higher temperatures.
The spin waves were found to become nonlinear at large spin
deflection angles. Crucially, these experiments showed that
the PPD can be identified as the ground-state mode which
becomes very long lived at the lowest temperatures, whereas
the higher modes become unstable at low temperatures and
quickly decay into the ground-state mode.

Here we present detailed measurements of the PPD at
different locations in the cell. We compare the measured
properties with expectations for spin-wave modes and we
discuss the dissipation mechanisms.

II. THE EXPERIMENTAL ARRANGEMENT

The experimental cell is shown in Fig. 1. The NMR chamber
is formed by a vertical sapphire tube with inside diameter
4.3 mm. The tube is sealed at the top with a rounded sapphire
end cap and open at the bottom to the inner cell of a Lancaster
style nuclear cooling stage.24,25 Surrounding this is an outer
cell which acts as a thermal guard to reduce heat leaks. The cell
is filled with liquid 3He and attached to the Lancaster Advanced
dilution refrigerator.26 The lowest temperature achieved was
∼0.11Tc as inferred from the vibrating wire resonator27,28

situated below the sapphire tube.
NMR measurements are made using the two transverse

pick-up coils shown in Fig. 1. Pick-up coil No. 1 is close to
the rounded end of the NMR chamber, while pick-up coil
No. 2 is located towards the middle of the sapphire tube.
The two pick-up coils are located slightly above the center
of the main solenoid (fixed to the still radiation shield of the
refrigerator) which provides the ∼60 mT vertical magnetic
field for the NMR experiments. Consequently the magnetic
field profile from the main solenoid is slightly curved in the
region of the NMR chamber. In addition to the main solenoid

Coil #1

Coil #2

Vibrating Wire

Thermometer Inner Cell

Outer Cell

Sapphire NMR

Chamber

Magnetic 

Field, B

FIG. 1. (Color online) A schematic of the double walled experi-
mental cell. Two saddle coils are used to excite and detect the PPD
in different locations. The NMR chamber is formed by a cylindrical
sapphire tube extending up from the inner cell.
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FIG. 2. (Color online) A typical PPD signal. The plot shows a
time-dependent Fourier transform of the output signal from the mixer,
giving the relative frequency �f as a function of time. The color scale
indicates the signal amplitude (see text).

is a field gradient coil (fixed to the 20-mK shield of the
refrigerator) which provides a linear field gradient. With an
appropriate combination of currents applied to the solenoids, a
field minimum is generated along the axis of the NMR chamber
and the position of the minimum is easily varied by changing
the applied field gradient.

III. THE FREE DECAY OF PPDS

All of the measurements presented below were made using
pulsed NMR at 0 bar pressure. The pulsed excitation was
adjusted to give a tipping angle of around 15◦ to give the
maximum PPD signal strength (the initial amplitude of the
NMR signal is increased by having a larger tipping pulse,
but this then very quickly decays to a smaller value which
we associate with the long-lived PPD). The PPD signals are
mixed with a reference frequency fref which can be fine tuned
to suit the measurement but is always close to the Larmor
frequency of around 1.25 MHz. The output from the mixer
gives signal frequencies relative to the reference frequency,
�f = |f − fref|. The low-frequency output signal is then
analyzed by taking its Fourier transform as a function of
time, giving information on both the signal strength and its
(relative) frequency. Figure 2 shows an example of a PPD
analyzed by this method. The Fourier transform is plotted in
the frequency-time domain with a color scale to indicate the
strength of the signal: The lighter areas in the plot indicate the
higher signal strengths. The vertical axis gives the frequency
�f relative to the reference frequency which was chosen to be
∼30 Hz below the initial frequency of the PPD. The absolute
value of the signal frequency is easily determined by varying
the reference signal.

IV. SPATIAL DEPENDENCE OF FREELY DECAYING PPDS

In Fig. 3 we plot the lifetime of the PPD, measured with coil
No. 1, as a function of the current applied to the field gradient
coil. The measurements were made at the base temperature
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FIG. 3. (Color online) The lifetime of the PPD as a function of
the current applied to the field gradient coil. The measurements were
taken using coil No. 1. The inset shows calculated field profiles at
two different applied field gradients, showing that the field minimum
is well within the cell at (b) and moves out of the cell as the gradient
falls below the value indicated at (a). The labels A, B, C, D, E, and
F indicate the applied field gradients at which further measurements
are presented in Figs. 4–6.

of the cell, T � 0.11TC . The signal amplitudes do not decay
exponentially (see below) so we define the lifetime to be the
time over which the PPD signal can be observed in the time-
dependent Fourier transform (an example of which is shown
in Fig. 2).

For the larger gradients in Fig. 3, the field minimum is
far from the top of the cell, and the PPD is located below
coil No. 1 (in this case the signal amplitude is larger in coil
No. 2). The signal amplitude falls quickly as the PPD is moved
outside of the pick-up coil. So the apparent decrease in the PPD
lifetime measured by coil No. 1 at the largest field gradients
(for currents above 0.83 A in Fig. 3) is an artifact of the smaller
signal amplitude (the weaker signals disappear into the noise
level earlier). On decreasing the field gradient, the location of
the field minimum and the PPD moves up towards the top of
the cell. The lifetime of the PPD first shows a gradual decrease
as the PPD is moved towards the top of the cell. On further
decreasing the applied field gradient, the field minimum moves
past the top of the cell and the PPD is “pushed” up against the
top wall of the chamber. Now we see a very dramatic decrease
in the PPD lifetime which clearly indicates the presence of an
additional “surface” dissipation mechanism.

V. PROPERTIES OF THE FREELY DECAYING PPDS

The frequency rise of the PPD, f (t) − f (0), as a function
of time during its decay is shown in Fig. 4. The frequency is
obtained from the Fourier transform of the signal. Six different
decays are shown corresponding to different applied field
gradients. The applied field gradients used are indicated by
labels A–F in Fig. 3. The shortest lived PPD signal, labeled A
in the figure, corresponds to the smallest applied field gradient,
where the field minimum is furthest above the top of the
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FIG. 4. (Color online) The increase in the frequency of the PPD
as a function of time during its free decay. The curves A, B, C, D, E,
and F correspond to different applied field gradients as indicated in
Fig. 3.

cell. The longest lived PPD signal, labeled F in the figure,
corresponds to the largest applied field gradient, where the
field minimum is now located within the experimental cell.
The total change in frequency during the PPD decay is seen
to be very similar in all cases despite the large variation in the
lifetime. Note that the frequency is almost constant at the end
of the PPD decay, which is also evident in Fig. 2.

The amplitude of the PPD as a function of time during its
decay is shown in Fig. 5. The vertical axis shows the voltage
amplitude of the output signal from the mixer. The signal
amplitude can also be obtained from the Fourier transform of
the signal, but the noise is much higher in this case. The six
curves shown correspond to the same PPD signals plotted in
Fig. 4. For each curve, the data points end at the point where
the signal is no longer visible on the Fourier transform (note
that the PPD remains visible in the Fourier transform well after
the direct signal voltage has bottomed out at the noise level).
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FIG. 5. (Color online) The amplitude of the PPD signal, measured
directly from the voltage data, as a function of time during its decay.
The data show the same PPDs used in Fig. 4.
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FIG. 6. (Color online) The amplitude of the PPD signal as a
function of its rise in frequency, f (t) − f (0). The data show the
same PPDs used in Figs. 4 and 5.

In Fig. 6 we plot the amplitude of the PPD signal against its
frequency rise, again for the same six PPDs shown in Figs. 4
and 5. The data collapse very accurately onto a single curve,
particularly at later times (smaller amplitudes). So the depen-
dence of the signal amplitude on the frequency shift is an in-
trinsic property of the PPD, independent of the dissipation rate.

VI. LINEAR SPIN WAVES IN A COMBINED
FIELD-TEXTURE POTENTIAL WELL

Here we present a theory for small amplitude spin waves
excited along the axis of a flare-out texture in the presence of a
shallow axial field minimum. In subsequent sections, we will
compare the predictions of this theory to the measurements of
the PPD.

The role of the field minimum was investigated theoretically
by Kupka and Skyba.29 They considered a one-dimensional
model a uniform l texture parallel to the magnetic field. They
found a solution in which the spin precesses coherently in
a parabolic field minimum. For a shallow field minimum,
∇2ωL � ω3

L/c2
L, a series of modes were found corresponding

to spin waves excited along the field axis.
Along the radial direction of the cylindrical cell, spin-wave

modes can also form in the potential provided by the spatially
varying texture as was studied in detail by Bunkov and
Volovik7 and later by Eltsov et al.23

Below, we derive expressions for spin-wave modes in three
dimensions for a cylindrical cell along the vertical z axis.
The cell is assumed to have a static flare-out texture in which
the orbital momentum is aligned along the field direction along
the cell axis, and smoothly deflects along the radial direction
to be perpendicular to the vertical cell walls. Close to the
cell axis, the flare-out texture produces a parabolic potential
for spin waves in the radial direction and the field minimum
provides a parabolic potential along the axial direction.

The B-phase order parameter is characterized by a matrix
describing relative rotations of spin and orbital spaces. Usually
the orbital degrees of motion are assumed to be frozen
by orbital viscosity. This approach is clearly valid at high

temperatures, but orbital viscosity decreases exponentially at
very low temperatures30 and the resulting spin-orbit dynamics
become very complex.3 In the following we neglect orbital
dynamics but we will return to this issue in Sec. XI.

The order parameter can be written in terms of three Euler
angles: α, β, and γ . The angle γ describes rotations around
the spin direction, β gives the deflection of the spin from
the vertical axis, and α is the azimuthal angle. In Cartesian
coordinates the spin is given by

Sx = χ

g2
ωp cos α sin β,

Sy = χ

g2
ωp sin α sin β, (1)

Sz = χ

g2
ωp cos β,

where χ is the susceptibility and g ≈ 2 × 108 rads−1T−1 is
the gyromagnetic ratio of 3He. It is often useful to define a
fourth angle φ = α + β. To describe spin waves, we start with
the Lagrangian function introduced in Ref. 29, generalized for
the three dimensions. We search for the stationary spin-wave
solutions of the form,

α̇ = −ωp, φ̇ = 0, β̇ = 0,
(2)

∇α = ∇φ = 0,

where ωp is the spin precession frequency.
Following the approach developed by Kupka and Skyba,29

we assume a parabolic field minimum which we can express
in terms of the local Larmor frequency,

ωL(z) = gB(z) = ω0 + z2∇2ωL, (3)

where ω0 is the Larmor frequency at the field minimum. The
potential due to the orbital texture in the radial direction
is determined by the dipole potential, which for small spin
deflections can be written as23,31

Edip = 4
χB

γ 2
	2

(
2

5
sin2 βl

2
sin2 β

2
− sin4 βl

2
sin4 β

2

)
, (4)

where βl is the angle between the orbital momentum vector
and the z axis and 	 is the Leggett frequency for the B phase.
In the flare-out texture, the angle βl varies linearly with radial
distance r close to the axis of the cell. So close to the axis
of the cell, βl is small and can be written as βl = β ′

l r , where
β ′

l = ∂βl/∂r is the gradient of the orbital deflection angle close
to the cell axis.

For these conditions, the Lagrangian function reduces to

L = −1

2

χB

γ 2
c2
||(∇β)2 + 1

2

χB

γ 2
ωp(ωp − ωL(z))β2 − Edip, (5)

and the corresponding Lagrange equation is

d

dt

∂L

∂β̇
+ ∂

∂r
∂L

∂∇β
− ∂L

∂β
= 0. (6)

Using the conditions specified above, and assuming the spin
deflection β is small, the Lagrange equation can be written
explicitly in cylindrical coordinates (r ,ϕ,z) as

−c||∇2β + ωp∇2ωLz2β + 4
5	2β ′

l
2
r2β − ωp(ωp − ω0)β = 0.

(7)
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The solution of this equation can be written as

β = β0ψ(z)θ (r,ϕ), (8)

representing a product of axial and radial harmonic oscillator
solutions.

The axial component ψ(z) is a solution to the axial part of
Eq. (7):

−d2ψ

dz2
+ ωp∇2ωL

c2
||

z2ψ = ωp(ωp − ω0)

c2
||

ψ. (9)

The normalized solution is

ψn(z) =
(

1

2nn!π1/2Z

)1/2

Hn

(
z

Z

)
exp

(
− z2

2Z2

)
, (10)

where n is an integer and the axial extent of the spin wave is
characterized by

Z =
(

c2
||

ω0∇2ωL

) 1
4

, (11)

where Hn is the nth order Hankel function. This corresponds
exactly to the solution derived in Ref. 29. The frequency shift
associated with the axial mode is

δωz = δω0
z (2n + 1), (12)

where

δω0
z = c||

√
∇2ωL

ω0
. (13)

The radial component describes a two-dimensional oscilla-
tor which obeys the radial part of Eq. (7):

−∂2θ

∂r2
− 1

r

∂θ

∂r
− 1

r2

∂2θ

∂ϕ2
+ 4

5

	2

c2
||

β ′
l

2
r2θ = ωp(ωp − ω0)

c2
||

θ.

(14)

The normalized solution is

θ (r,ϕ) =
√

k!

π�(k + l + 1)

rl

Rl+1
Ll

k

(
r2

R2

)

× exp

(
r2

2R2

)
exp(±ilϕ), (15)

where k and l are positive integers (quantum numbers), �(k +
l + 1) is the gamma function, Ll

k(r2/R2) is the generalized
Laguerre polynomial, and the radial extent of the spin-wave
mode is characterized by

R =
(

5

4

)1/4 √
c||

β ′
l	

. (16)

The corresponding frequency shift is

δωr = δω0
r (k + l + 1), (17)

where

δω0
r = 4√

5

	

ω0
c||β ′

l . (18)

We note that this expression differs by a numerical prefactor of
approximately 3 compared to the expression given in Ref. 23.

The total frequency shift of linear spin waves is given by
the sum of the radial and axial shifts:

δωnkl = ωp − ω0 = δω0
z (2n + 1) + δω0

r (k + l + 1). (19)

VII. COMPARISON OF THE PPD WITH LINEAR
SPIN-WAVE MODES

Recent experiments17,23 clearly show that the PPD emerges
from the fundamental spin-wave mode at low temperatures.
However, the linear spin-wave theory given above is only ap-
plicable for small spin deflection angles, so we can only make
a direct comparison to the late-time properties of the PPD, that
is at the end of its decay where its amplitude tends to zero.

The fundamental spin-wave resonance, corresponding to
the quantum numbers n,k,l = 0, is given by

β = β0exp

(
− z2

2Z2

)
exp

(
− r2

2R2

)
, (20)

where β0 is the spin deflection at the center of the PPD, and Z

and R are given by Eqs. (11) and (16), respectively.
To make a quantitative comparison with experiments, we

assume that the spin-wave velocity is given by32

c|| = vF

√
3

10

(
1 + Z0

4

)
, (21)

where Z0 is the Fermi liquid parameter. At 0 bar pressure,
Z0 = −2.69 and vF = 59 ms−1,33 giving a spin-wave velocity
of c|| = 18.5 ms−1. For our experimental conditions we
estimate that β ′

l ∼ π/D, where D = 4.3 mm is the diameter
of the cell, which is consistent with the simulations given in
Ref. 17. From measurements of the spatial manipulation of
the PPD22 we estimate the field minimum to have ∇2ωL ≈
2π × 6 MHzm−2. The Leggett frequency at 0 bar pressure
is 	 ≈ 2π × 100 kHz34 and ω0 is approximately equal to
the PPD frequency, ω0 ≈ 2π × 1.25 MHz. Inserting these
parameters into Eqs. (11) and (16) gives the axial extent of
the fundamental spin-wave mode to be 2Z ≈ 2.1 mm and the
diameter is 2R ≈ 0.42 mm.

The total frequency shift of the fundamental spin-wave
mode is

δω000 = δω0
z + δω0

r . (22)

Using the values estimated above for our experimental con-
ditions, the axial contribution to the frequency shift is quite
small, δω0

z/(2π ) ≈ 6.4 Hz. The radial contribution is larger,
δω0

r /2π ≈ 308 Hz (we note that the expression given in Ref. 23
gives a somewhat smaller value of δω0

r /2π ≈ 93 Hz). The
total shift is thus expected to be δω000/2π ≈ 314 Hz, and is
dominated by the radial contribution. This frequency shift is
roughly twice as large as the time-dependent shifts observed
in the PPD measurements shown in Fig. 4. This implies that
the initial frequency shift of the PPD is roughly half of the
shift predicted for linear spin waves.

VIII. NONLINEAR SPIN WAVES

The spin-wave modes described above are linear; the
frequency shift does not depend on the spin deflection. In
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contrast the PPD is clearly nonlinear with an amplitude depen-
dent frequency shift, shown in Fig. 6. The spin-wave modes
excited by conventional cw NMR at higher temperatures
display similar nonlinearities.7,23 The frequency increases
with decreasing signal amplitude. The nonlinear response
can be semiquantitatively understood by taking into account
the “back-reaction” on the texture as formulated by Bunkov
and Volovik.7 For large spin deflection angles (large signal
amplitudes), the l texture is flattened (β ′

l is reduced) which
reduces the frequency shift and increases the size of the
precessing domain. As the signal decays the orbital texture
relaxes back towards the equilibrium flare-out texture, the
precessing domain shrinks, and the frequency increases.

The size of the PPD signal provides information on the
spatial extent of the PPD and the deflection of its precessing
spins. The initial size of the PPD signals is typically 1%–
2% of the initial size of HPD signals which are observed
in the same cell at higher temperatures. The HPD corresponds
to the entire active region precessing coherently with β =
104◦. The volume of the active region within the NMR pick-up
coils is V ≈ L0πD2/4 where L0 ≈ 10 mm is the length of the
coils. The fraction of the active volume which is taken up
by the ground-state linear spin-wave mode is thus (2Z/L0) ×
(2R/D)2 ≈ 2 × 10−3. This is roughly 10 times smaller that the
initial PPD signal relative to the HPD. We therefore conclude
that the initial size of the PPD must be considerably larger than
the linear spin-wave mode described in the previous sections.

We can compare the amplitude-dependent frequency shift
with estimates given in Ref. 7 for nonlinear spin waves.
For low-amplitude spin waves of roughly equal radial and
axial dimensions Z ∼ R the nonlinear frequency shift (the
frequency shift from the linear spin-wave mode) was estimated
to be7

�ω ∼ −	3

ω0

L0

c||

(
M⊥

MHPD

)2

, (23)

where M⊥ is the strength of the spin-wave signal (the
transverse magnetization) and MHPD is the corresponding
signal which would be measured if HPD filled the experimental
cell. The magnitude of the nonlinear shift given by Eq. (23)
is comparable to experimental observations of the PPD.
However, in contrast to Eq. (23), the PPD frequency varies
quite linearly with amplitude towards the end of its decay.

IX. TEMPERATURE DEPENDENCE OF FREELY
DECAYING PPDS

The temperature dependence of the PPD lifetime is shown
in Fig. 7. We define the lifetime to be the time after which
the Fourier-transformed signal amplitude falls below the noise
level. At higher applied field gradients, the field minimum
is relatively far from the end of the cell and the PPD
lifetime increases exponentially with decreasing temperature
as the thermal quasiparticle excitation density is exponentially
suppressed. As the applied field gradient is decreased, the
field minimum moves closer to the end of the cell and the
PPD lifetime tops out at low temperatures. The closer the field
minimum to the top of the cell, the shorter the PPD lifetime
at the lowest temperatures. Clearly the behavior suggests two
distinct dissipation mechanisms. An intrinsic mechanism due
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FIG. 7. (Color online) The lifetime of the PPD as a function of
reduced temperature, T/TC , for various applied field gradients. Data
at 0 bar pressure are shown for five different applied field gradients,
labeled (a)–(e) as indicated in the inset. The inset shows the lifetime
at the lowest temperatures as a function of the current applied to the
gradient coil. Open circles show data taken at 3.95 bar pressure for
PPD held well away from the end of the cell. Lines give fits to the
data using Eqs. (24) and (25) with different values for the surface
relaxation lifetime τs as indicated. The dashed line corresponds to
3τDF, where τDF is given by Eq. (50); see text.

to thermal quasiparticles and an additional surface mechanism
associated with the close proximity to the end wall of the cell.
The surface mechanism is seen to be relatively temperature
independent. Comparing with the single data set taken at
3.95 bar (open red circles in the figure) shows that the intrinsic
mechanism is quite insensitive to pressure when plotted as a
function of T/TC .

To model the combined effects of intrinsic and surface
relaxation mechanisms, we write the measured lifetime of the
PPD as

τ = (
τ−1
i + τ−1

s

)−1
, (24)

where τs is the surface limited lifetime which dominates at the
lowest temperatures close the end wall of the container, and
τi is the lifetime limited by intrinsic relaxation mechanism
which dominates far from the end wall of the container. The
solid lines in Fig. 7 show fits to the data with different values
of τs for the different applied field gradients, as indicated. The
lines have a common intrinsic lifetime given by

τi = A

√
kBT

�0
exp

(
�0

kBT

)
, (25)

where A = 2.62 × 10−3s is a fitting parameter adjusted to
fit the data at higher temperatures and �0 is the energy gap.

X. RELAXATION MECHANISMS AT LOW
TEMPERATURES

Below we discuss some possible spin relaxation mecha-
nisms in the low-temperature ballistic quasiparticle regime.
In particular, we present model calculations of the lifetimes
of the fundamental linear spin-wave modes according to

024506-6



DECAY OF PERSISTENT PRECESSING DOMAINS IN . . . PHYSICAL REVIEW B 86, 024506 (2012)

Leggett-Takagi and spin diffusion mechanisms, and we com-
pare these with the measured lifetimes of the PPD. We also
briefly discuss the surface relaxation.

The lifetime of the spin precession can be obtained by
comparing the total energy of the precessing domain with
the power dissipated, τ ∼ E/(dE/dt). We can define the
Hamiltonian as H = EV = α̇ ∂L

∂α̇
− L. The energy density

within precessing domain is dominated by the energy required
to deflect the spins from the field direction, so

EV ≈ 1

2

χB

γ 2
α̇2

s β
2 ≈ 1

2

χB

γ 2
ω0

2β2. (26)

The total energy of the fundamental spin-wave mode is the
volume integral of the energy density:

E =
∫

EV dV ≈ π3/2

2
ZR2 χB

γ 2
ω0

2β0
2. (27)

This gives the energy which is dissipated during the relaxation.
In general, the energy dissipated can be written in terms of a
dissipation function Rd as

dE

dt
= −2

∫
RddV. (28)

The dissipation function may have several components,
Rd = ∑

i Ri , corresponding to different relaxation mecha-
nisms. The corresponding decay time of the precessing struc-
ture can be written as τ = (

∑
i 1/τi)−1. In the bulk superfluid,

far from the container walls, there are two main mechanisms
for dissipation which have been identified experimentally:
Leggett-Takagi relaxation and spin diffusion.

To derive the corresponding dissipation functions, we
use the methods developed by Markelov35,36 for Leggett-
Takagi relaxation and by Markelov and Mukharsky37 for spin
diffusion. We start with the nonlinear kinetic equation obtained
by Combescot:38

∂δν

∂t
+ (vF∇)δμ + δμ × δE = − δμ

τqp
, (29)

where

δμ = δν − ∂ϕ

∂E
δE, (30)

ϕ = − tanh
E

2kBT
, (31)

δE = kiAi + ξ

E
X −

(
1 − ξ

E

)
d(d(kiAi − X)), (32)

X = V + ωL − γ 2

χn0
Fa

0S. (33)

Here E = √
(ξ 2 + �2) is the unperturbed quasiparticle energy,

ξ � vf (k − kF ), and ϕ is the distribution function correspond-
ing to global equilibrium defined by the temperature and
the pressure. Spin precession in a spatially varying magnetic
field changes the quasiparticle excitation energies and induces
motion of the order parameter: The change in the excitation
energies in spin space is given by δE; the angular velocities
of order parameter in spin space is V; spatial gradients of
the order parameter generate superfluid spin velocities Ai ; the
local value of the equilibrium distribution becomes ∂ϕ

∂E
δE; and

δν gives the actual quasiparticle distribution function in spin

space. So δμ = δν − ∂ϕ

∂E
δE is the deviation of the quasiparticle

distribution function from local equilibrium.
At very low temperatures, the quasiparticle relaxation time

τqp becomes dominated by collisions with the container walls.
If we neglect Andreev scattering and assume only diffuse
scattering at the wall, then we can estimate the ballistic
quasiparticle lifetime to be

τqp ≈ D/vg = D

vF

√
�0

kBT
. (34)

The order parameter and spin velocities are connected by
the relation,

∂Ai

∂t
= 1

m∗ ∇iV − Ai × V. (35)

To calculate the dissipation function in Eq. (28) we need to
determine the change in the quasiparticle distribution function,
δμ. The quasiparticle (nonequilibrium) contribution to the spin
and spin current are given by

δS =
∑

k

{
ξk

Ek

δμ +
(

1 − ξk

Ek

ξk

Ek

)
d(dδμ)})

}
, (36)

Ji = 1

2

∑
k

vFi

[
δμ −

(
1 − ξ

E

)
d(dδμ)

]
. (37)

We further note that in Eq. (29) we may write the time
derivative of the distribution function as ∂δν/∂t = iωpδμ

where ωp ∼ ωL is the precession frequency. In addition, for
the low-temperature regime applicable to PPD experiments
we may assume that the excitations are highly ballistic,
ωpτqp � 1.

A. Leggett-Takagi relaxation

Leggett-Takagi relaxation occurs when the superfluid spin
component precesses at a different frequency to the local
Larmor frequency.39 In this case the normal and superfluid
components of the spin move out of equilibrium with each
other which generates a dissipative viscous torque.

To derive the Leggett-Takagi relaxation coefficient we
consider in Eq. (29) only spatially homogeneous terms.
Following the procedures developed in Refs. 35 and 36 we
obtain the Leggett-Takagi dissipation function:

RLT = 1
2KLT[(ωp − ωL)2 sin2 β + β̇2], (38)

where

KLT = 216

√
10π

3

χB

γ 2

(
kBT

�0

)2
vF

D
exp

(
− �0

kBT

)
. (39)

The first term on the right-hand side of Eq. (38) dominates at
low temperatures since the frequency shift δω = ωp − ωL is
much larger than the inverse relaxation time 1/τ ∼ β̇/β. So
for small deflection angles,

RLT ≈ 1
2KLTδω2β2. (40)

Inserting this expression into Eq. (28), we find that the
energy dissipation is

dE

dt
= π3/2

2
ZR2KLT δω2β2

0 . (41)
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Substituting for the energy of the spin-wave mode given by
Eq. (27) gives us the following decay equation for Leggett-
Takagi relaxation:

χB

g2
ω2

0β̇0 = −KLTδω2β0. (42)

This describes an exponential decay of the spin deflection:

β0(t) = β0(0)exp

(
− t

τLT

)
. (43)

Substituting for KLT from Eq. (39) gives us the Leggett-Takagi
relaxation time:

τLT = 1

216

√
3

10π

(
�0

kBT

)2 (ω0

δω

)2 D

vF

exp

(
�0

kBT

)
. (44)

Inserting the values corresponding to our experimental con-
ditions gives τLT ≈ 7 × 107 s at T = 0.14TC . This is more
than 5 orders of magnitude larger than the measured PPD
lifetime. Although we have made this calculation specifically
for the fundamental spin-wave mode, a similar result would be
obtained for any similar coherently precessing structure since
the important quantity which controls the relaxation is the
frequency shift δω. We therefore conclude that Leggett-Takagi
relaxation is entirely negligible at these temperatures.

B. Spin diffusion

Spin diffusion occurs wherever there is spatial inhomogene-
ity. Often the dynamics of the superfluid component of the spin
remains coherent in spite of inhomogeneity due to the rigidity
of the order parameter. The normal component, however, does
not have this property, so the various kinds of inhomogeneity
(e.g., from the external field, from the influence of cell walls,
or from textures) generate dissipative currents.

Following the procedures used by Markelov and
Mukharsky,37 retaining just the gradient terms in Eq. (29),
we obtain the diffusion dissipation function,

RDF = 1
2KDF[sin2 β(∇αs)2 + (∇β)2], (45)

where

KDF = 3

10

χB

g2
v2

F ω0

√
2πkBT

�0
exp

(
− �0

kBT

)
. (46)

Inserting this expression into Eq. (28) we find that, for small
spin deflections, the energy dissipated by the fundamental spin-
wave mode is

dE

dt
= −π3/2KDFβ0

2 R2 + 2Z2

2Z
. (47)

Substituting for the energy of the spin-wave mode given
by Eq. (27) gives us the following decay equation for spin
diffusion:

χB

g2
ω2

0β̇0 = −KDF
R2 + 2Z2

2Z2R2
β0. (48)

This describes an exponential decay of the spin deflection
angle,

β0(t) = β0(0)exp

(
− t

τDF

)
, (49)

with a relaxation time constant of

τDF = 10

3

ω0

v2
F

√
�0

2πkBT
exp

(
�0

kBT

)
Z2R2

R2 + 2Z2
. (50)

In contrast to the linear spin-wave calculation given above,
the PPD decays are clearly not exponential (see Fig. 5) so it
is not possible to make a direct comparison. A more accurate
description must take into account the back-reaction of the
precession on the orbital texture as discussed above. However,
we can attempt to make a rough comparison as follows. In
Fig. 7 we plot the total lifetime of the PPD, defined as the
length of time that it remains visible on the fft (see Fig. 2).
The PPD signal falls by a factor of 20 ≈ exp(3) during its
visible decay as shown in Fig. 5. So as a crude approximation,
we should compare the measured lifetimes of the PPD with
3τDF. This is plotted as the red line in Fig. 7. The agreement
with the experimental data is extremely good at intermediate
temperatures, but the PPD show a longer lifetime at the higher
temperatures. The data are fit far better by the black lines which
have an intrinsic time constant given by Eq. (25).

C. Surface relaxation

An additional surface relaxation mechanism appears when
the applied field gradient is such that the field minimum
occurs close to the top of the NMR chamber so that the
PPD is in partial contact with the domed end cap of the
cell, shown in Fig. 1. In this case, the PPD lifetime is
considerably shortened, and fits well to Eqs. (24) and (25)
with a temperature-independent surface relaxation time τs as
indicated in Fig. 7. Since the temperature range where the
surface mechanism dominates is quite narrow, the data would
also be consistent with τs having a moderate (e.g., power-law)
temperature dependence.

As discussed in Ref. 40, surface relaxation can arise due to
time-dependent spatial variations of the order parameter ex-
cited by spin precession close to a wall. In this case, the lifetime
of precession can be estimated from general considerations.
Ohmi et al.40 derived an estimate for the lifetime of the spin
precession in the slab geometry (perpendicular to the field):

τs ∼
(

χB

χN − χB

)2
c

ω2ξ 2
L, (51)

where χN and χB are the susceptibilities of the normal and
B phases, respectively, ξ is the superfluid coherence length, c

is the spin-wave velocity (neglecting anisotropy), and L is the
slab spacing. For the case of spin-wave modes in close contact
with a horizontal wall, we expect a similar expression with L

replaced by the vertical extent of the domain Z. Inserting the
parameters relevant to our experiment conditions gives us a
minimum value of the surface relation time of τmin

s ≈ 0.02 s.
This is sufficiently short to account for the PPD data shown
in Fig. 7. As the precessing domain is brought closer to the
surface, the surface relaxation mechanism plays a greater role
and the PPD lifetime is shortened dramatically.

XI. ORBITAL DYNAMICS

Due to spin orbit coupling, the spin precession generated in
NMR experiments will, in general, produce a “dipole” torque

024506-8



DECAY OF PERSISTENT PRECESSING DOMAINS IN . . . PHYSICAL REVIEW B 86, 024506 (2012)

acting between the spin and orbital angular momenta. The
most visible effect of this torque is to increase the frequency
of the spin precession as was discussed in Sec. VI. This torque
also acts on the orbital angular momentum. Damping of the
orbital motion arises from scattering with thermal quasipar-
ticle excitations. A magnetic field induces anisotropy in the
quasiparticle dispersion curve: The quasiparticle energies are
split by the Zeeman energy along the orbital momentum axis.
The energy gap also becomes slightly anisotropic but the
gap distortion only varies quadratically with field and so is
negligible for the low magnetic fields typically used in NMR
experiments.

Due to the anisotropy, orbital precession results in an oscil-
lation of the quasiparticle energies and produces dissipation.
The process can be conveniently described in terms of an
orbital viscosity analogous to that used to describe orbital
dynamics in the A phase.41 The orbital viscosity has been
calculated in Ref. 30 for both hydrodynamic and ballistic
temperature regimes. The viscosity is very large at higher
temperatures where the majority of experiments have been
performed to date. Consequently the orbital momentum is
heavily damped and orbital dynamics can be largely ignored
in most NMR experiments.30 At lower temperatures, in the
ballistic regime, the orbital viscosity is roughly proportional
to the quasiparticle density, becoming vanishingly small at
the lowest temperatures. So in this case orbital motion may
become important and one should consider coupled spin-orbit
dynamics.

The equations of motion for spin-orbit dynamics are far
more complicated than for spin dynamics alone.3 Solving these
for nonlinear spin-wave modes is a substantial challenge for
future research. We note that for uniform textures, solutions
have been found in which the orbital momentum precesses.3

The orbital precession can either be coherent (phase locked)
with the spin precession at the NMR frequency or it can
be at some other frequency. Orbital precession at the NMR
frequency may be very long lived30 but since the dipole torque
is relatively small it is only possible for very small amplitudes.
Larger amplitudes of orbital motion are possible at lower
frequencies.

XII. DISCUSSION

We have presented detailed measurements of PPDs excited
by pulsed NMR at temperatures down to below 0.11 TC .
Reproducible PPDs are excited in a field minimum which can
be manipulated with an applied field gradient. When located
far from the end wall of the NMR chamber, the PPDs are

very long lived, with lifetimes exceeding 1000 s at the lowest
temperatures. We have compared the properties of the PPD
with spin-wave modes excited in the potential well generated
by a field minimum combined with a flare-out orbital texture.
The linear spin-wave theory gives reasonable estimates for
the size and the frequency shift of the PPD at late times,
towards the end of its decay. However, the theory is clearly
inadequate to describe the detailed time-dependent amplitude
and frequency shift during the decay.

We have presented calculations for the relaxation times for
the linear spin-wave modes due to the Leggett-Takagi and
spin diffusion mechanisms. The Leggett-Takagi mechanism is
found to be entirely redundant for these modes. Our estimates
of the relaxation due to spin diffusion have a very similar
magnitude to our measurements but with a slightly different
temperature dependence.

As the PPD is moved towards the end wall of the cell
an additional surface relaxation mechanism dominates at
the lowest temperatures and the lifetimes are dramatically
shortened. The additional relaxation does not significantly
affect the amplitude of the PPD as a function of its frequency
shift. This suggests that the amplitude-frequency response is
an intrinsic property of the PPD. The surface relaxation time
can be crudely estimated from general arguments, but it will
be interesting to study the surface relaxation mechanism in
more detail, especially in light of recent work on Majorana
fermions at the surface of 3He-B which may have interesting
magnetic properties.42,43 It is also interesting to note that the
relaxation times at the lowest temperatures may be influenced
by quantum vortex lines.17

A fuller theoretical description of the PPD requires a theory
of nonlinear spin waves including a self-consistent description
of the orbital degrees of the freedom which are crucial to the
development and stability of the PPD. This is an interesting
challenge for future research.
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