
PHYSICAL REVIEW B 86, 024436 (2012)

Spin-dependent Seebeck coefficients of Ni80Fe20 and Co in nanopillar spin valves
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We have experimentally determined the spin-dependent Seebeck coefficient of permalloy (Ni80Fe20) and cobalt
(Co) using nanopillar spin valve devices, a stack of two ferromagnetic layers separated by a nonmagnetic layer.
The devices were specifically designed to separate heat-related effects from charge-related effects. A heat current,
with no accompanying charge current, through the nanopillar spin valve leads to a thermovoltage proportional
to the spin-dependent Seebeck coefficient SS = S↑ − S↓ of the ferromagnet, where S↑ and S↓ are the Seebeck
coefficient for spin-up and spin-down electrons. By using a three-dimensional finite-element model based on
spin-dependent thermoelectric theory, whose input material parameters were measured in separate devices, we
were able to accurately determine a spin-dependent Seebeck coefficient of −1.8 μV K−1 and −4.5 μV K−1 for
cobalt and permalloy, respectively, corresponding to a Seebeck coefficient polarization PS = SS/SF of 0.08 and
0.25, where SF is the Seebeck coefficient of the ferromagnet. The results are in agreement with earlier theoretical
work in Co/Cu multilayers and spin-dependent Seebeck and spin-dependent Peltier measurements in Ni80Fe20/Cu
spin valve structures.
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I. INTRODUCTION

The interplay between spin and heat transport in mag-
netic structures is studied in the emerging field called spin
caloritronics.1,2 This subfield of spintronics has recently
gained a lot of interest leading to notable experimental3–8 and
theoretical studies.9,10 At the heart of spin caloritronics lie
the spin-dependent Seebeck and the spin-dependent Peltier
effects. In the spin-dependent Seebeck effect, due to the
difference in the Seebeck coefficient of spin-up and spin-down
electrons in a ferromagnetic metal, a pure heat current (with
no accompanying charge current) through a ferromagnetic
layer (F)/nonmagnetic layer (N) interface drives spin angular
momentum (spin current) across the interface thereby creating
a spin accumulation which is proportional to SS . Slachter
et al.6 extracted a spin-dependent Seebeck coefficient SS of
−3.8 μV K−1 in Ni80Fe20/Cu lateral spin valve devices using
a three-dimensional finite-element model (3D-FEM). Here it
is important to point out the fundamental difference between
the spin-dependent Seebeck effect and the so-called “spin
Seebeck effect”.11 Whereas the spin-dependent Seebeck effect
is purely electronic in nature, the latter is now understood
to originate from collective effects involving nonequilib-
rium thermally induced spin pumping due to temperature
differences between, for example, conduction electrons and
magnons.2,12

The spin-dependent Peltier effect, which is the reciprocal of
the spin-dependent Seebeck effect, describes heating/cooling
of a F/N interface by a spin current. More recently, Flipse
et al.7 demonstrated the spin-dependent Peltier effect in
Ni80Fe20/Cu/Ni80Fe20 nanopillar spin valve devices from
which a spin-dependent Peltier coefficient �S of −1.1 mV was
obtained. The spin-dependent Seebeck and Peltier coefficient
reported in Refs. 6 and 7 follow the Thomson-Onsager relation
�S = SSTo, where To is the temperature.

Although the concept of the spin dependency of the Seebeck
coefficient was first discussed by Campbell et al.13 and later
used to explain large magnetothermoelectric powers in Co/Cu
multilayers,14–16 reports on the Seebeck coefficient polariza-

tion PS = SS/SF are relatively scarce. For Ni80Fe20, a PS of
0.20 has been reported from spin-dependent Seebeck6 and
spin-dependent Peltier7 measurements. In case of Co, effective
PS values ranging from 0.1816,17 to 0.4214,18 were reported
from thermopower measurements in Co/Cu multilayers and
diluted Co alloys, respectively. To quantify the size of spin
caloritronic effects, one needs to accurately determine spin-
dependent thermoelectric coefficients. In this paper, therefore,
we provide absolute values of the spin-dependent Seebeck
coefficient and its polarization for cobalt and permalloy from
spin-dependent Seebeck measurements in F/N/F pillar spin
valve devices.

The objectives of this paper are therefore twofold. First,
it describes the spin-dependent Seebeck effect in specifically
designed nanopillar spin valve devices. Second, it presents an
accurate determination of the spin-dependent Seebeck coeffi-
cients for Ni80Fe20 and Co using a 3D-FEM. To that end, the
electrical conductivity and Seebeck coefficient of all materials
were measured in separate devices. The thermal conductivity
of the thin metallic films was obtained from the measured
electrical conductivity by using the Wiedemann-Franz law.19

Thermal conductivity of insulating layers was determined from
heat transport measurements across metal/insulator/metal
structures.

This paper is organized as follows. In Sec. II, we present
general spin-dependent thermoelectrics in the framework of
the two spin-channel model and particularly explain ther-
mally driven spin injection in symmetric F/N/F nanopillar
devices. We also discuss the improvements to the 3D-FEM in
terms of separately measuring the input material parameters.
Section III presents details of the device fabrication and
measurement schemes used in this study. Here we also
explain how we achieve a temperature gradient over the
F/N/F stack and present the two types of measurements that
were performed to fully characterize the devices. Section IV
presents the results of the electrical and thermal spin injection
experiments and discusses how the polarization of the conduc-
tivity and of the Seebeck coefficient were extracted using the
3D-FEM. Finally, Section V presents the conclusions.
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II. SPIN-DEPENDENT SEEBECK EFFECT IN F/N/F
PILLAR SPIN VALVE

In metallic ferromagnets, charge, spin, and heat transport
can be described by two parallel spin channels, one for spin-
up (↑) and another for spin-down (↓) electrons, with each
spin channel having its own conductivity σ↑,↓ and Seebeck
coefficient S↑,↓.13,20 The charge and heat current in each spin
channel are related to their respective potential gradient �∇μ↑,↓
and temperature gradient �∇T as6

⎛
⎜⎝

�J↑
�J↓
�Q

⎞
⎟⎠ = −

⎛
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σ↑ 0 σ↑S↑
0 σ↓ σ↓S↓

σ↑�↑ σ↓�↓ k

⎞
⎟⎠

⎛
⎜⎝

�∇μ↑/e

�∇μ↓/e

�∇T

⎞
⎟⎠ , (1)

where �↑,↓ and μ↑,↓ are the Peltier coefficient and electro-
chemical potential for spin-up and spin-down electrons and κ

is the thermal conductivity. Equation (1) is the basis for our
3D-FEM, which was previously used to describe spintronic
and spin caloritronic phenomena. A detailed procedure for the
modeling can be found in Ref. 21. By separately measuring the
modeling parameters for each material in dedicated devices,19

good agreement between the model and the measurement
was obtained allowing us to accurately determine the spin-
dependent Seebeck coefficients by using the measured electri-
cal and thermal spin signals.

In the following, we describe the spin-dependent Seebeck
effect in a symmetric F/N/F pillar stack with equal layer
thicknesses (t = 15 nm) comparable to the spin relaxation
length in the ferromagnet (λF ) but much smaller than in the
nonmagnetic layer (λN = 300 nm). In a ferromagnet, owing
to the difference in the spin-dependent Seebeck coefficients
S↑ �= S↓, a temperature gradient ∇T across a F/N interface
drives a spin current J↑ − J↓ from the F into the N region6

thereby creating a nonequilibrium spin accumulation μs =
μ↑ − μ↓, which is proportional to the spin-dependent Seebeck
coefficient SS = S↑ − S↓ of the ferromagnet. Here, we define
spin-up electrons as the spins with the higher conductivity,
which in the case of both permalloy and cobalt are the majority
spins. For a F/N/F pillar stack in a temperature gradient,
thermal spin injection at the two F/N interfaces results in a
spin accumulation in the N region that is a function of the
relative alignment of the magnetization of the ferromagnets.
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FIG. 1. (Color online) Spin electrochemical potentials μ↑ (blue)
and μ↓ (green) in a F/N/F stack subjected to a temperature gradient
in the case when the magnetizations are aligned (a) parallel and (b)
antiparallel. (c) shows the difference between (a) and (b). The heat
current and temperature profile are also shown to the left of (a).
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FIG. 2. (Color online) ZY-plane cross-section plot obtained from
the 3D-FEM of the spin accumulation μs = μ↑ − μ↓ through the
middle of a Ni80Fe20/Cu/Ni80Fe20 nanopillar for a temperature change
�T = 7 K across the the stack for the (a) parallel and (b) antiparallel
configurations. The spin accumulation of –1 μV in (b) is significantly
larger than in (a).

In the parallel (↑↑) configuration [Fig. 1(a)], spins are
injected at the first interface while being extracted at the second
resulting in a flow of constant spin current across the whole
stack. This constant spin current flow dictates that there is
negligible spin accumulation at the two F/N interfaces; that
is, the individual spin chemical potentials μ↑ and μ↓ are
equal. In the antiparallel configuration (↑↓), however, spins
of similar kind are injected from both interfaces into the N
region. In such configuration, the spin current in the bulk of the
ferromagnets is opposite to each other giving rise to a large spin
accumulation in the N region. This large spin accumulation
results in the splitting of the spin electrochemical potentials
[see Fig. 1(b)]. A cross-sectional plot of the spin accumulation
μs obtained from the three-dimensional FEM (shown in Fig. 2)
demonstrates the significant difference in the size of the spin
accumulation for the two different configurations.

An expression for μs , based on a one-dimensional spin-
diffusion equation, in the limit t � λF ,λN , can be found
elsewhere.6,10 Here we extend this limit to devices with
thicknesses t comparable to λF and λN and find the expression
given in Eq. (B4) of the appendices, which is similar to the
expression in Ref. 6 except for the resistance mismatch factor.
The interfacial spin thermoelectric voltage drop �μ = Pσμs ,
which is different for the two configurations, can then be
expressed as a function of the spin accumulation at the two F/N
interfaces. In an experiment, one measures this open-circuit
thermovoltage as a function of an external magnetic field. The
spin valve signal VSV = (�μ↑↑ − �μ↑↓)/|e| is thus given by

VSV = −2λF SS∇T PσRmismatch, (2)

where ∇T is the temperature gradient in the F region and e is
the electronic charge. The term Rmismatch denotes the resistance
mismatch factor for a symmetric spin valve given by

Rmismatch = cosh
(

t
λF

) − exp
(− 2t

λF

)
RF

RN
cosh

(
t

λF

)
tanh

(
t

2λN

) + sinh
(

t
λF

) , (3)

where RF = λF /(1 − P 2
σ )σF and RN = λN/σN are the spin

resistances of the ferromagnet and the normal metal, respec-
tively. In the limit t �λF ,λN , Rmismatch reduces to the single
F/N interface result which is often close to one. Note, however,
that in the analysis we use the numerical results from the
three-dimensional finite-element modeling based on Eq. (1) to
extract Pσ and PS .

024436-2



SPIN-DEPENDENT SEEBECK COEFFICIENTS OF Ni . . . PHYSICAL REVIEW B 86, 024436 (2012)

(a) 3

1

6

5

7

8

2 4

500nm

(b)

8

5

I

Joule heater

6
1

2
4

3

Top contact

  Bottom 

contact

FM

FM
NM

V

Insulating

barrier

+ -

Joule

heaters

FIG. 3. (Color online) (a) Schematic representation of the mea-
sured device showing a F/N/F stack sandwiched between a Au-top
contact (yellow) and Pt-bottom contact (gray). Platinum Joule heaters,
which are electrically isolated from the bottom contact by an AlOx

barrier (green), are used to heat the bottom of the nanopillar.
Homogeneous heating is achieved by two Pt Joule heaters on either
side of the nanopillar. (b) Colored scanning electron microscope
image of the measured device. Cross-linked PMMA matrix (blue)
surrounding the pillar (red) is used to isolate the bottom contact from
the top contact.

III. EXPERIMENTS

The nanopillar spin valve devices were prepared in one
optical lithography step followed by nine electron-beam
lithography (EBL) steps. Materials were deposited by e-
beam evaporation at a base pressure of 2 × 10−6 Torr on a
thermally oxidized Si substrate with a 300-nm-thick oxide
layer. Figures 3(a) and 3(b) show a schematic and scanning
electron microscope image of the measured device. The device
consists of a F/N/F stack sandwiched between a bottom and
top contact. The experimental methods and device fabrications
are similar to the ones reported in Ref. 7.

First, a pair of 40-nm-thick Pt Joule heaters, which are
400 nm apart, were deposited. Then an 8-nm-thick AlOx

layer was deposited over the sides and surfaces of the Pt
Joule heaters followed by the deposition of the bottom contact
(60-nm-thick Pt). The AlOx barriers electrically isolate the
bottom contact from the Pt heaters to avoid charge-related
effects. Then, the nanopillar spin valve with a structure
F(15)/Cu(15)/F(15)/Au(10), where F = Ni80Fe20 or Co and
the numbers between the parentheses are the thicknesses in
nanometers, was deposited without breaking the vacuum of
the deposition chamber to obtain clean interfaces. In the next
two EBL steps, a top contact hole was defined followed
by crosslinking a polymethyl methacrylate (PMMA) matrix
around the nanopillar to isolate the bottom contact from the
top contact. Finally, the top contact (130-nm-thick Au) was
deposited.

The measurements presented in this paper are all performed
at room temperature using standard lock-in techniques. A low-
frequency (f = 17 Hz) ac current I = I0sin(2πf t) was used
for the measurements to allow for efficient thermalization and
a steady-state condition. To fully characterize the samples, two
different measurements were performed. First, in the spin valve
measurements, the four-probe resistance of the nanopillar was
measured as a function of magnetic field. To that end, a 0.1 mA
current was sent through the nanopillar from contact 3 to 4
while the voltage is measured using contacts 1 and 2. From
the spin valve signal, the bulk spin polarization Pσ , which is

later used in the determination of PS , was extracted. In thermal
spin injection measurements, the open-circuit voltage across
the nanopillar was measured using contacts 1 and 2 while a
current of 1 mA was sent through the Pt Joule heaters (contacts
5-6 and 7-8). The measured voltage was fed to two different
lock-in amplifiers which were set to record the first harmonic
V (1f ) ∝ I and second harmonic V (2f ) ∝ I 2 responses of the
signal. In the spin valve measurements, we looked at V (1f )

while in the thermal spin injection measurements we were
mainly interested in V (2f ) since the spin-dependent Seebeck
effect scales quadratically with the current through the Pt Joule
heaters.6,7,22

IV. RESULTS AND DISCUSSION

Figure 4 shows the four-probe resistance R(1f ) = V (1f )/I

measurements for Ni80Fe20 and Co nanopillar devices as a
function of the in-plane magnetic field. The spin valve signal
is defined as R

(1f )
s = R↑↑ − R↑↓, where R↑↑ and R↑↓ are the

resistance of the pillar in the parallel and antiparallel configura-
tions, respectively. For Ni80Fe20 [Fig. 4(a)], a spin valve signal
of −75 m� was observed on top of a background resistance,
R

(1f )
b = (R↑↑ + R↑↓)/2, of 2.13 �. By using the measured

spin signal as the only fitting parameter in the 3D-FEM, a
conductivity polarization Pσ of 0.46 was extracted, which is
in agreement with Andreev reflection measurements.23 The
calculated background resistance R

(1f )
b of 1.77 � calculated

with the finite-element model is in reasonable agreement with
the measured background resistance.

The input parameters to the finite-element model, which are
σ , S, κ , and �, were all known from measurements in separate
dedicated devices. The spin relaxation lengths λF for Ni80Fe20

and Co were obtained from Ref. 24. We used a spin relaxation
length λF of 5 nm for Ni80Fe20 and 40 nm for Co, respectively.
These values were systematically chosen by calculating the
spin signal for different values of spin relaxation lengths and
fitting it to the measured spin signals (see Fig. 8).
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FIG. 4. (Color online) Spin valve resistance V (1f )/I for (a)
Ni80Fe20 and (b) Co at a current of 0.1 mA. Magnetostatic or dipolar
coupling between the two magnetizations in the nanopillar favors the
AP configuration at zero magnetic field.
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FIG. 5. (Color online) Spin-dependent Seebeck resistance
V (2f )/I 2 for (a) Ni80Fe20 and (b) Co at a current of 1 mA. Clear
jumps in the measured voltage across the nanopillar occur at fields
where the two magnetizations switch.

Following a similar analysis procedure for Co [Fig. 4(b)],
from a spin signal R

(1f )
s of −60 m�, we found a conductivity

polarization Pσ = 0.45 in agreement with Andreev reflection
measurements in metallic point contacts23 and values reported
elsewhere.17 The background resistance, R

(1f )
b = 1.82 �, ob-

tained from the measurement is a factor of two higher than
the calculated background resistance of 0.99 �. This points to
the presence of a possible interfacial resistance at the bottom
Pt/Co or top Co/Au interfaces, which can effectively increase
the resistance of the stack. Such resistive layer may arise,
for example, from interfacial disorder due to some lattice
mismatch and/or atomic or magnetic disorders.25 If we account
for such interfacial resistance, for a conductivity polarization
Pσ = 0.52, we obtain a background resistance R

(1f )
b of 1.5 �

and a spin valve signal R
(1f )
s of −56 m� in good agreement

with the measurement.
Figure 5 shows the spin-dependent Seebeck measurements

for a charge current of 1 mA through each Pt Joule heater
(contacts 5 to 6 and 7 to 8) in opposite directions. The
heat generated from the dissipated power in the Pt Joule
heaters diffuses through the AlOx insulating barrier and heats

the bottom of the nanopillar thereby creating a temperature
gradient over the stack. The temperature gradient across the
pillar creates a Seebeck voltage V (2f ) that depends on the
relative orientation of the two magnetizations in the nanopillar.

For Ni80Fe20 [Fig. 5(a)], a spin-dependent Seebeck signal
R

(2f )
s of −0.6 V A−2 was measured on top of a background re-

sistance R
(2f )
b = −2.4 V A−2. From the measured spin signal,

we obtain a spin-dependent Seebeck coefficient SS = S↑ − S↓
of −4.5 μV K−1 corresponding to a Seebeck coefficient
polarization PS = (S↑ − S↓)/SF of 0.25 in agreement with
previous reports,6,7 where SF = (σ↑S↑ + σ↓S↓)/σF .6,7 The
negative sign indicates that the Seebeck coefficient of spin-up
electrons, which are the majority spins in Ni80Fe20 and Co,
is more negative than that of the spin-down electrons. The
calculated background resistance R

(2f )
b of −2.43 V A−2

is in good agreement with the measured background
resistance.

For cobalt [Fig. 5(b)], for a heating current of 1 mA, a spin
signal R

(2f )
s of −0.12 V A−2 was obtained. Similar analysis

gives a spin-dependent Seebeck coefficient SS of −1.7 μV K−1

that corresponds to a Seebeck polarization PS = 0.07. This
result is comparable with a tight-binding calculation of the
Seebeck coefficient of Co/Cu multilayers26 where, from the
energy derivative of σ and Mott’s relation for the Seebeck
coefficient, a Seebeck coefficient difference of −1.76 μV K−1

between the parallel and antiparallel configurations was
obtained. The measured background resistance R

(2f )
b of

1.93 V A−2 is lower than the calculated R
(2f )
b of 6.23 V A−2.

This discrepancy can be again attributed to the extra interfacial
resistive layer that can modify the heat current (temperature
profile) across the stack. Taking this interfacial thermal
resistance in to account, we obtain a background resistance
R

(2f )
b of 2.4 V A−2 in good agreement with the measurement.

The Seebeck coefficient polarization PS of 0.14 obtained is
however two times higher than that obtained without including
the interfacial resistance (PS = 0.07). In Fig. 5(b), there exists
a visible asymmetry in the two parallel configurations due to
possible contributions from the anomalous Nernst effect,27 the
thermal analog of the anomalous Hall effect. The transverse
voltage resulting from the heat flow, which is proportional to
the magnetization, is additive or subtractive depending on the
orientation of the magnetization, causing an asymmetry.

TABLE I. Results of measurement on six other samples. The measured spin signals R(1f )
s , R(2f )

s , and background resistances R
(1f )
b , R

(2f )
b

are presented together with the calculated R
(1f )
b,calc and R

(2f )
b,calc. The extracted polarization of the conductivity Pσ and the Seebeck coefficient PS

are also shown.

R(1f )
s R(2f )

s R
(1f )
b R

(1f )
b,calc R

(2f )
b R

(2f )
b,calc S↑ − S↓

Sample (m�) (V A−2) (�) (�) (V A−2) (V A−2) Pσ = σ↑−σ↓
σF

PS= S↑−S↓
SF

(μV K−1)

Py (Presented in main text) − 75 − 0.60 2.12 1.77 − 2.4 − 2.43 0.46 0.25 − 4.50
Py1 − 61 − 0.70 1.85 1.76 − 4.0 − 2.48 0.42 0.26 − 4.68
Py2 − 70 − 0.60 2.26 1.76 − 3.9 − 2.43 0.45 0.25 − 4.50
Py3 − 80 − 0.65 1.90 1.77 − 4.0 − 2.45 0.47 0.25 − 4.50

Co (Presented in main text) − 60 − 0.12 1.82 0.99 1.93 6.23 0.45 0.07 − 1.68
Co1 − 60 − 0.12 1.89 0.99 1.64 6.23 0.45 0.07 − 1.68
Co2 − 62 − 0.13 1.82 0.99 2.0 6.28 0.45 0.08 − 1.92
Co3 − 65 − 0.12 1.83 1.02 1.95 6.23 0.46 0.07 − 1.68
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The results presented above were for two samples, one
for Ni80Fe20 and one for Co, from a total of eight samples
which were measured in a similar manner. Table I shows
the measurement results of the remaining six samples. The
polarization of the conductivity Pσ and Seebeck coefficient
PS were extracted by fitting the measured spin signals to
the 3D-FEM. The modeled background resistances are in
reasonably good agreement with the measurements and are
consistent with the samples presented in the text.

V. CONCLUSION

In summary, we have performed all-electrical spin-
dependent Seebeck effect measurements in Ni80Fe20 and Co
nanopillar spin valve devices. We found that the polarization
of the Seebeck coefficient for Ni80Fe20 (∼25%) and Co
(∼8%) are in agreement with earlier experimental studies in
Ni80Fe20/Cu spin valve structures and earlier theoretical works
in Co/Cu multilayers, respectively. With the method presented
here, it is in principle possible to measure the polarization of
the conductivity and Seebeck coefficient of any ferromagnetic
metal that makes up a symmetric or asymmetric spin valve.
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APPENDIX A: TEMPERATURE PROFILE
ACROSS F/N/F STACK

Figure 6 shows the temperature gradient and temperature
profile of a symmetric F/N/F stack. From the 3D-FEM, for
a heating current of 2 mA through the Pt Joule heaters, a
temperature gradient up to 40 K μm−1 can be achieved in our
devices [see Fig. 6(a)] corresponding to a �T = 8 K across the
F/N/F stack [see Fig. 6(b)]. The red line in Fig. 6(a) shows the
temperature gradient across a Ni80Fe20/Cu/Ni80Fe20 pillar spin
valve. From continuity of the heat current �Q = −κ �∇T at the
F/N interfaces, the temperature gradient in the ferromagnetic
region ∇TF is related to that of the N region ∇TN as

�∇TF = κN

κF

�∇TN, (A1)
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FIG. 6. (Color online) (a) Temperature gradient in a F/N/F pillar
spin valve stack and (b) the temperature profile across the F/N/F stack
for a heating current of 2 mA through both Joule heaters. For 1 mA
current, the scale reduces by a factor of four.

where κF and κN are the thermal conductivity of the F and N
regions, respectively.

APPENDIX B: EXPRESSION FOR
THE SPIN ACCUMULATION

To obtain an expression for the spin accumulation μs =
μ↑ − μ↓, we first need to solve the Valet-Fert 1D-spin dif-
fusion equation ∂2(μ↑ − μ↓)/∂z2 = (μ↑ − μ↓)/λ2

sf for each
region in the F/N/F stack,6 where λsf is the spin relaxation
length. The general solution for each region reads
Region I (−t < z < 0):

μ↑,↓ = A + Bz ± C

σ↑,↓
e−z/λF ± D

σ↑,↓
ez/λF , (B1)

Region II (0 < z < t):

μ↑,↓ = Fz ± 2G

σN

e−z/λN ± 2H

σN

ez/λN , (B2)

Region III (t < z < 2t):

μ↑,↓ = K + Lz ± M

σ↑,↓
e−z/λF ± N

σ↑,↓
ez/λF , (B3)

where + and − denote the spin-up and spin-down, respectively,
and λF and λN are the spin relaxation length in the F and N
regions.

The spin accumulation μs at z = 0 and z = t can then be
expressed as a function of these coefficients as μs(z = 0) =

4
σN

(G + H ) and μs(z = t) = 4
σN

(Ge−z + Hez), respectively.
For a symmetric spin valve the spin accumulation, for example,
at interface z = 0 for the ↑↑ and ↑↓ configurations reads

μ↑↑
s (z = 0) = −eλF SS∇T

[
coth

(
t

λN

) + exp
(
− 2t

λF

)
sinh

(
t

λN

) − tanh
(

t
2λN

)
cosh

(
t

λF

)]
RF

RN
+ [ − sinh

(
t

λF

) + tanh
(

t
λF

)]

cosh
(

t
λF

)[R2
F

R2
N

+ 2coth
(

t
λN

)
tanh

(
t

λF

)
RF

RN
+ tanh

(
t

λF

)
2
] , (B4)

μ↑↓
s (z = 0) = −eλF SS∇T

[
coth

(
t

λN

) + exp
(
− 2t

λF

)
sinh

(
t

λN

) − coth
(

t
2λN

)
cosh

(
t

λF

)]
RF

RN
+ [−sinh

(
t

λF

) + tanh
(

t
λF

)]

cosh
(

t
λF

)[R2
F

R2
N

+ 2coth
(

t
λN

)
tanh

(
t

λF

)
RF

RN
+ tanh

(
t

λF

)
2
] . (B5)
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FIG. 7. (Color online) The electrochemical potential profile for
spin-up μ↑ and spin-down μ↓ electrons and the average electrochem-
ical potential μaverage = (μ↑σ↑ + μ↓σ↓)/σF for (a) ↑↑ and (b) ↑↓
configurations.

In the limit λN,λF 
 t , Eq. (B5) reduces to the result obtained
for a single F/N interface given in Refs. 6,10. Figure 7
shows the chemical potential profile across a F/N/F spin
valve for the ↑↑ and ↑↓ configurations as obtained from
the 3D-FEM. At the F/N interfaces, for both ↑↑ and ↑↓
configurations, a discontinuity in the average electrochemical
potential μaverage leads to an electrochemical potential drop
�μ = Pσμs . The spin valve signal VSV is expressed in terms
of these electrochemical potential drops as

VSV = [(�μ
↑↑
z=0 + �μ

↑↑
z=t ) − (�μ

↑↓
z=0 + �μ

↑↓
z=t )]/|e|. (B6)

APPENDIX C: MATERIAL PARAMETERS
USED IN THE 3D-FEM

One important aspect of the finite-element modeling is
good knowledge of the temperature and voltage profiles in
the F/N/F pillar devices. This requires usage of appropriate
material parameters in the 3D-FEM, which can often lead to
underestimating background electrical and thermal voltages
if bulk material parameters were used.6,22 Table II shows
material parameters used in the model. Electrical conductivity
of each material was measured using a standard four-probe
geometry. The thermal conductivity was then calculated
using the Wiedemann-Franz law. For device dimensions

TABLE II. Material parameters used in finite-element modeling.
The spin relaxation length λs was taken from various sources of
literature (Refs. 24 and 28).

t σ κ S λs

Material (nm) (106 S m−1) (W m−1 K−1) (μV K−1) (nm)

Ni80Fe20 15 2.9 17 −18 5
Co 15 6.0 40 −22 40
Cu 15 15 10 1.6 300
Pt 40 4.2 32 −5 5
Pt 60 4.8 37 −5 3
Au 120 27 180 1.7 80
AlOx 8 10−18 0.12 0
SiO2 300 10−19 1 0

discussed in the main text, the electronic contribution to the
thermal conductivity is dominant over the lattice (phononic)
conductivity.19 The Seebeck coefficients were measured by
using the technique presented in Ref. 19. One parameter
which was not measured but obtained from the literature is
the spin relaxation length λF of the ferromagnets. The spin
relaxation length for Ni80Fe20 of 5 nm is well established
in the literature.24–28 However, the reported spin relaxation
length of Co at room temperature varies from 20 nm to
60 nm.24,28 The spin valve signals that are extracted from
the model depend on the spin relaxation length and the
polarization of the conductivity. To tackle the uncertainty
in the spin relaxation length in Co, we performed a calcu-
lation of the spin signal for varying spin relaxation length
values of the ferromagnet. Figure 8 shows the dependence
of the spin signal on the spin relaxation length for dif-
ferent values of the conductivity polarization Pσ ranging
between 0.42 and 0.47 (for Ni80Fe20) and 0.42 and 0.48
(for Co).

The shaded region in the figures indicates the region in
which the measured spin signal values fall. For a choice of
spin relaxation lengths of 5 nm (for Ni80Fe20) and 40 nm (for
Co), the measured spin valve signals can be well fitted with the
model. Hence, we used these two values for the determination
of the spin-dependent Seebeck coefficients.
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FIG. 8. (Color online) Dependence of the spin valve signal on the spin relaxation length λF of the FM for (a) Ni80Fe20/Cu/Ni80Fe20 and
(b) Co/Cu/Co nanopillar spin valves. A λF of 5 nm for Ni80Fe20 and 40 nm for Co fits the measured spin signal, shown by the shaded region.
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