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Pattern formation in the dipolar Ising model on a two-dimensional honeycomb lattice
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We present Monte Carlo simulation results for a two-dimensional Ising model with ferromagnetic nearest-
neighbor couplings and a competing long-range dipolar interaction on a honeycomb lattice. Both structural and
thermodynamic properties are very similar to the case of a square lattice, with the exception that structures reflect
the sixfold rotational symmetry of the underlying honeycomb lattice. To deal with the long-range nature of the
dipolar interaction we also present a simple method of evaluating effective interaction coefficients, which can be
regarded as a more straightforward alternative to the prevalent Ewald summation techniques.
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I. INTRODUCTION

The two-dimensional Ising model with ferromagnetic
nearest-neighbor interactions and long-range antiferromag-
netic interactions is probably the simplest model system
for the formation of magnetic domains, see for instance
T. Garel and S. Doniach.1 Physical systems for which the
application of such a model is justified are, for example,
ultrathin metal films on metal substrates, provided that there
is a strong magnetocrystalline anisotropy which favours spin
alignment perpendicular to the plane of the film.2 In addition
to the nearest-neighbor coupling via exchange interaction, the
magnetic dipole-dipole interaction then realizes a long-range
antiferromagnetic coupling that decreases as r−3. A thin
magnetic film may therefore be described by the following
Hamiltonian:

H = −2J
∑
〈i,j〉

Sz
i S

z
j − g

∑
i,j

i �=j

Sz
i S

z
j

|�ri − �rj |3 − Bz
∑

i

Sz
i , (1)

where Sz
i is the z component of a spin 1/2 operator on site i,

J > 0 corresponds to the ferromagnetic exchange interaction
constant, g defines the strength of the dipolar coupling, and Bz

denotes an external magnetic field oriented along the z direc-
tion. Without loss of generality, we measure distances r in units
of the nearest-neighbor distance. Since the dipolar interaction
is inherently antiferromagnetic (g < 0) and a purely dipolar
Ising model (J = 0) has the usual antiferromagnetic ground
state, an additional antiferromagnetic exchange interaction
would simply increase the transition temperature.3 Therefore,
only the case of a ferromagnetic exchange interaction (J > 0)
is interesting. We also want to assume for the remainder of this
article that the exchange interaction is strong enough so that it
is the dominant coupling between nearest neighbors, therefore
J > |g|.

As metal-on-metal films have many technological ap-
plications, including for example electronics, data storage,
and catalysis,2 extensive studies have been performed to
investigate the properties of Hamiltonian (1). Most of the
metal-on-metal films happen to be square or triangular lattice
systems, so these studies naturally have had their focus on
square3–7 and triangular8 lattices. Two-dimensional magnets
with other lattices are less obvious, but recently the honeycomb
lattice has been discussed9,10 in the context of the (111) bilayer

of LaNiO3, which shows a very rich magnetic phase diagram.
To the best of our knowledge there are no publications dealing
with Hamiltonian (1) on an underlying honeycomb lattice.
This article presents Monte Carlo simulation results for the
thermodynamic and structural properties of such a system.

Let us briefly recall the existing results for the square
lattice (for more extensive reviews, see Refs. 2 and 11): It
has been analytically established4 that the ground state shows
a striped pattern of width h, where h increases exponentially
with the relative strength J/|g| of the exchange interaction
in the limit J � |g|. This implies that even an infinitesimal
antiferromagnetic dipolar interaction will destroy the spon-
taneous magnetization of the purely ferromagnetic ground
state. Intermediate between the low-temperature striped phase
and the high-temperature paramagnetic phase with maximum
entropy, a third phase is found which shows well defined
magnetic domains that form mazelike patterns.3 This phase
has been called the tetragonal phase due to the predominantly
rectangular corners of those domains. Numerical calculations
of the structure factor

σ (�k) =
〈∣∣∣∣∣

∑
j

Sz
j exp(i �k · �rj )

∣∣∣∣∣
2〉

, (2)

where �k is a wave vector in reciprocal space, show the fourfold
rotational symmetry of the tetragonal phase.4 The transition
from the striped phase to the tetragonal phase is accompanied
by a sharp peak in the specific heat at temperatures below
the Shottky anomaly shoulder, which itself can be associated
with the tetragonal-paramagnetic transition.3 Larger values
of J/|g| generally increase all temperatures and make the
striped-tetragonal peak less pronounced relative to the Shottky
shoulder.3 More recent studies6,7 have revealed the existence
of an intermediate nematic phase between the striped phase
and the tetragonal phase that is only stable for very specific
values of J/|g| close to some of the ground-state stripe width
transitions.

In the present work we examine the domain pattern
formation on a honeycomb lattice in the framework of the
dipolar Ising model and compare the obtained results to
the square lattice case. In particular we want to determine
whether a change of the underlying lattice only modifies
transition temperatures or also changes the system’s behavior
qualitatively. For this purpose, we present an efficient method
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to numerically evaluate effective interaction coefficients. This
method can be regarded as a simple alternative to the known
Ewald summation techniques.

II. METHODS

Monte Carlo simulations of spin systems with long-range
interactions are inherently difficult. The reason for that lies in
the nontrivial implementation of periodic boundary conditions.
Also, the O(N2) number of couplings, where N denotes the
number of spins, make the evaluation of energy differences
computationally expensive. In the following we will describe
the methods we used to obtain our results.

As the tetragonal and striped phases that occur on a
square lattice clearly reflect the rotational symmetries of the
underlying lattice, special care should be taken in case of
the honeycomb lattice to ensure that the shape and boundary
conditions of the finite system allow the formation of structures
with the expected rotational symmetries. Fig. 1 illustrates the
three rotational symmetries of the honeycomb lattice.

Finite size effects can be reduced through the use of
periodic boundary conditions. For systems with long-range
interactions, periodic boundary conditions can be implemented
by tiling the entire space with replicas of the original finite
system.5 Note that this is equivalent to the treatment of an
infinite system, where only states with certain translational
invariances are considered.

Both the rotational symmetries and the requirement of the
system to be properly tileable are satisfied if one chooses
the simulated system’s shape to be a regular hexagon. This
hexagon unit as well as the hexagons’ tiling is illustrated in
Fig. 2.

Let us introduce the name “aggregation” for the combi-
nation of the original system and all of its replicas. Note
the equivalence between the tiling of the system’s replicas
to form the aggregation and the tiling of the unit cells within
the original system. It is convenient to use the side length of
the original system in number of unit cells as a measure for the
size n of the simulated system. Since the aggregation itself is
also a regular hexagon, it is then straightforward to measure its
size m as the length of its sides in units of replicas. In this way,
the entire size and shape of the aggregation is specified by a pair
(n,m) of integers. Note that the original system as well as the

FIG. 1. (Color online) Rotational symmetries of the honeycomb
lattice: threefold symmetry for rotations around one of the basis atoms
(point 1), sixfold rotational symmetry around the center of the unit cell
(point 2) and twofold symmetry around the center of nearest-neighbor
connections (point 3).

FIG. 2. Periodic boundary conditions on a honeycomb lattice.
The original finite system’s shape is approximated by the central
black hexagon. Its replicas form a triangular Bravais lattice, whose
basis vectors are marked in black. According to our nomenclature
this would be a (3,3) aggregation.

entire aggregation are sixfold rotationally symmetric around
their center, which implies threefold and twofold symmetry.

Now that we have reduced the infinitely large system
to a finite system with replicas, we can make use of this
new periodicity. Ignoring for the moment the coupling to
an external magnetic field, we rewrite the Hamiltonian (1)
by using Sz

i ≡ Sz(�ri) = Sz( �R + �ri) where �R is the translation
from the original system to any of the replicas:

H = −
∑
i,j

∑
�R

[�(�ri, �R + �rj ) + �(�ri, �R + �rj )]Sz
i S

z
j . (3a)

Here the function � is a nonzero constant for nearest
neighbors (NN) only, whereas � takes care of the dipole-dipole
interaction without the unphysical interaction of a spin with
itself. Note, however, that a spin does interact with its own
copies in the replicated systems at �R:

�(�ri, �R + �rj ) =
{
J if �ri and �R + �rj are NN,

0 otherwise,

(3b)

�(�ri, �R + �rj ) =
{

0 if �ri = �R + �rj ,
g

|�ri− �R−�rj |3 otherwise. (3c)

As the sum over all replicas depends only on the indices i and
j , but not on the orientation of those spins, it can be calculated
in advance, which reduces the Hamiltonian to the general Ising
model Hamiltonian with effective interaction coefficients:

H = −
∑
i,j

J eff
ij Sz

i S
z
j − Bz

∑
i

Sz
i , (4a)

J eff
ij =

∑
�R

[�(�ri, �R + �rj ) + �(�ri, �R + �rj )]. (4b)
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In addition to the exchange interaction, if Sz
i and Sz

j (or any
of its copies) are nearest neighbors, this effective interaction
coefficient J eff

ij also includes the dipole-dipole interaction of
Sz

i with Sz
j and all copies of Sz

j .
It is obvious that, once the effective interaction coefficients

have been calculated, the time required to perform a Monte
Carlo step for a (n,m) aggregation will only depend on the
number of spins and therefore on the size n of the original
system. The accuracy of the effective interaction coefficients
depends on the size m of the aggregation though, but since the
J eff

ij only have to be calculated once, the aggregation size m

can be quite large. Note that an increase in the system size n for
constant values of m also leads to an increase in the accuracy
of the effective interaction coefficients, as it corresponds to
larger absolute values of the translation vectors �R and therefore
increases the distance at which the sum is truncated.

Due to the finite size of the aggregation, the dipolar part
of the effective interaction strength will systematically be
underestimated. Assuming a (n,m) aggregation, one can try
to compensate for this by calculating the effective interaction
J eff

ii of a spin with its own copies for a (n,m′) aggregation,
where m′ � m. As Sz

i will certainly not be its own nearest
neighbor, the coefficient J eff

ii contains only dipolar interactions.
In the limit m′ → ∞, the difference between J eff

ii for (n,m)
and (n,m′) aggregations will just be the remaining dipole
interaction that has been neglected with the (n,m) aggregation.
One can now add this difference to all effective interaction
coefficients to compensate approximately for the systematic
underestimation. Note that this correction, which has been
calculated for the interaction J eff

ii with the spin’s own copies,
is added to all other coefficients, including J eff

ij with i �= j . It
therefore also accounts approximately for the interaction with
copies of all other spins. This approximation is justified by the
fact that the dipolar potential is almost flat for very large r and
therefore not sensitive to the exact relative positions. Because
the actual calculation with the larger (n,m′) aggregation only
has to be performed for a single spin and its own copies, the
computational effort is negligible.

A significant speedup in the calculation of the effective
interaction coefficients can be achieved if one manages to
exploit symmetries to reduce the number of coefficients that
have to be calculated. As only relative positions matter, it is
quite obvious that not all of the N2 coefficients in a system
with N spins will actually be different. In principle, one could
also reduce the memory footprint of the coefficient table in
this way, but one would have to evaluate very carefully if the
overhead of selecting the right coefficient does not slow down
the Monte Carlo step significantly.

This direct calculation of the effective interaction coef-
ficients is, compared to the alternative Ewald summation
techniques,12 a very simple and straightforward method.
For this particular system it works very well, since it is
a two-dimensional system where the long-range interaction
decreases with r−3. This dependence makes the series un-
problematically convergent. Using the proposed methods, we
were able to replicate the known results for the square lattice
within the statistical uncertainty. All of our honeycomb lattice
simulations were performed on a (24,24) aggregation, which
corresponds to a system of N = 3314 spins. A (24,1000)
aggregation was used to compensate for the underestimation.

This calculation resulted in a relative increase in the effective
coefficients of about 10−2 for couplings of spins that are far
away from each other, and about 10−6 for nearest neighbors.

Metropolis dynamics13 with uniformly distributed sin-
gle spin-flip attempts were used to evolve the system.
Markov chain correlation was dealt with using binning and
bootstrapping14 techniques. The energy and temperature scale
is defined by measuring J and kBT in units of −g.

III. RESULTS

In order to perform a Monte Carlo simulation over the
whole temperature range, one first has to determine which
states have the lowest energies. Initializing the equilibration
period of a low temperature simulation with a state that is
typical for high temperatures will not correctly equilibrate
the system: An almost steepest descent in energy will most
likely trap the system in a local minimum from which no
physical information can be extracted. Therefore we have first
performed a simulated annealing to relax the system to a low
energy state, which was then used to initialize the equilibration
period of the simulations.

We have found the simulated annealing to result in a striped
state if the system’s temperature is decreased linearly from
T = 5 to 0 over the course of 107 Monte Carlo steps. This
indicates that the ground state of the dipolar Ising model on
the honeycomb lattice is indeed striped, similar to the state
that is plotted in Fig. 3(a).

Note that one has to be very careful to choose the system
size to be compatible with the width of the stripes that the
system would like to form, in order not to introduce an artificial
frustration. As the width of the stripes is determined by the
relative strength of exchange and dipolar interaction, one can
also adjust J to make the stripe width compatible with the
given system size. We have found J = 6 to result in a stripe
width that is compatible with the system size of n = 24 which
was used in all our simulations. Naturally, the stripes become
wider if the strength of the ferromagnetic exchange interaction
is increased.

Having determined the low-temperature states to be striped
by simulated annealing, we have equilibrated the system at
constant temperatures for 2 × 105 Monte Carlo steps and
recorded thermodynamic and structural properties for 8 × 106

FIG. 3. (Color online) (a) Striped phase for J = 6 at kBT = 0.4
and (b) hexagonal phase for J = 6 at kBT = 1.25.
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FIG. 4. (Color online) Structure factor σ (�k) in the hexagonal

phase at kBT = 1.25 and J = 6.

time steps. We find that the low-temperature striped phase is
followed by a phase with a complex domain structure which
is plotted in Fig. 3(b).

We call this phase hexagonal, due to the sixfold rotational
symmetry that is visible in the structure factor σ (�k) plotted in
Fig. 4. The six-peaked shape of the structure factor remains
unchanged if the sum in Eq. (2) is restricted to one of the two
basis atoms in the honeycomb unit cell. We can conclude from
this that the hexagonal phase shows the rotational symmetry
of the triangular Bravais lattice that underlies the honeycomb
lattice. It is interesting to note that a change of the lattice
from square to honeycomb changes only the intermediate-
temperature phase from tetragonal to hexagonal, while the
low-temperature phase is striped for both lattices.

We do not observe the three-peaked structure of the energy
histrogram that was used by Cannas et al.6 to identify the
square lattice’s nematic phase. We therefore have to conclude
that there is no nematic phase for the particular value of J/|g|
used in our calculations.

Similar to the striped-tetragonal transition on the square
lattice, the striped-hexagonal transition manifests itself in
a sharp peak in the specific heat capacity at temperatures
below the expected Shottky anomaly shoulder as shown in
Fig. 5. We expect the striped-hexagonal peak to become less
pronounced for larger J , as is the case on a square lattice.
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FIG. 5. (Color online) Specific heat capacity per spin c(kBT ) as
a function of temperature for a relative interaction strength of J = 6.
The line is just a guide to the eye.

In summary, by means of Monte Carlo simulations we have
investigated the temperature dependence of domain pattern
formation in a dipolar Ising model on a two-dimensional
honeycomb lattice. Taking into account the symmetries of
the honeycomb lattice, we have reduced the infinite system
to a finite system with replicas, which can be described by the
general Ising model Hamiltonian with effective interaction
coefficients. We have presented a straightforward method
of calculating the effective interaction coefficients and a
procedure to compensate approximately for their systematic
underestimation. We find that the honeycomb lattice shows
two distinct phase transitions: from a striped phase at low tem-
peratures via a hexagonal phase at intermediate temperatures
to a disordered phase at high temperatures. Both transitions
are associated with maxima in the specific heat. While the
thermodynamic properties of the honeycomb lattice system are
found to be virtually identical to its square lattice counterpart,
the emerging patterns clearly reflect the different rotational
symmetry of the underlying lattice.

Future work should focus on obtaining the entire phase
diagram of the model in order to determine the values of
J/|g| at which the ground state shows transitions in stripe
width. For those values one can then systematically search for
the honeycomb lattice’s analogon to the nematic phase6,7 in
between the striped and the hexagonal phases.
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