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Collapse of skyrmions in two-dimensional ferromagnets and antiferromagnets
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Collapse of a skyrmion due to the discreteness of a crystal lattice in isotropic two-dimensional ferromagnets
and antiferromagnets has been studied analytically and by numerical solution of equations of motion for up to
2000 × 2000 classical spins on a square lattice coupled via Heisenberg exchange interaction. Excellent agreement
between analytical and numerical results has been achieved. The lifetime of the skyrmion scales with its initial
size λ0 as (λ0/a)5 in ferromagnets and as (λ0/a)2.15 in antiferromagnets with a being the lattice parameter. This
makes antiferromagnetic skyrmions significantly shorter lived than ferromagnetic skyrmions.
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Skyrmions1,2 are topologically stable configurations of a
fixed-length three-component vector field n(r) in the coordi-
nate space of two dimensions. Due to the constraint n2 = 1,
the n field has two independent components. This permits
unique mappings of n = (nx,ny,nz) onto r = (x,y), described
by classes of homotopy.3 Each homotopy class corresponds to
a nontrivial field configuration characterized by a conserved
topological charge. The emergence of a conserved charge
from a continuous field theory prompted numerous studies
of skyrmions in problems of high-energy and condensed-
matter physics.4 They include cosmology,5 Bose-Einstein
condensates,6 quantum Hall effect,7,8 and anomalous Hall
effect,9 liquid crystals.10

The interest in skyrmions in ordered spin systems received
much attention soon after the discovery of high-temperature
superconductivity in copper oxides11–17 and have been further
explored recently.18–21 It is related to the fact that supercon-
ductivity in copper oxides occurs in doped CuO2 layers that,
when undoped, are square lattices of antiferromagnetically
ordered spins. Initially, there was some hope that interaction
of electrons and holes with skyrmions could play some role in
Cooper pairing, but this was never successfully demonstrated.
Some indirect evidence of skyrmions in the magnetoresistance
of lanthanum copper oxide has been recently reported,22

but direct observation of skyrmions in 2d antiferromagnetic
(AFM) lattices is still lacking.

In a continuous field model, such as, e.g., the nonlinear σ

model,23 the ground-state energy of the skyrmion does not
depend on its size λ. This follows from the invariance of
the model with respect to the scale transformation r → kr,
where k is an arbitrary constant. If the skyrmion lives on
a lattice, however, the scale invariance becomes broken due
to the presence of a lattice parameter a. Thus, the energy
of the skyrmion depends on its size. This, in general, must
lead to the collapse or expansion of the skyrmion, making
it unstable. The nature of the exchange interaction on a
lattice makes the skyrmion energy decrease with its size,
which leads to skyrmion collapse. A number of authors
looked for interactions that could stabilize skyrmions in 2d

ferromagnets (FMs).24–26 It was argued that an anisotropic
crystal field added to the isotropic exchange model may,
in principle, dynamically stabilize the skyrmion. In reality,
however, anisotropic interactions are of relativistic origin,
whereas, the lattice effect that leads to the collapse of the

skyrmion is of the exchange origin and, thus, much greater.
The same is true about magnetic dipole-dipole interactions. In
ferromagnets, macroscopic skyrmions could, in principle, be
a part of a stable domain structure. This, however, would not
apply to microscopic skyrmions. In antiferromagnets, long-
range dipole-dipole interactions are negligible, and they cannot
stabilize skyrmions of any size. Therefore, it is important first
to understand what is the mechanism of skyrmion collapse in
a generic exchange model.

In this paper, we study the dynamics of skyrmions and the
dependence of their collapse time tc on their initial size in a
2d square lattice of classical spins coupled via Heisenberg FM
or AFM exchange interaction. The accuracy of the continuous
approximation increases with the size of the skyrmion λ. One
should, therefore, expect that the lattice skyrmion becomes
stable in the limit of λ → ∞. We find that tc of the AFM
skyrmion scales as tc ∝ (λ0/a)2.15 with its initial size λ0.
We compute the dynamics of the collapse using both the
analytical field model for the Néel vector and a direct numerical
calculation on lattices of up to 2000 × 2000 exchange-coupled
spins. The two approaches show excellent agreement with
each other. For a 2d ferromagnet, we obtain (up to logarithmic
corrections) the (λ0/a)5 scaling of the lifetime. This makes
skyrmions significantly shorter lived in a 2d AFM than in a
2d FM.

We begin with an antiferromagnet described by the Hamil-
tonian for the Néel vector L,23

H0 = 1

2
JS2

∫
dx dy

[
1

c2
L̇2 + (∇L)2

]
. (1)

Here, L is normalized as L2 = 1, (∇L)2 ≡ (∂xL)2 +
(∂yL)2, JS2 > 0 is the exchange energy associated with the
interaction of spins of length S, and c is the speed of AFM
spin waves that equals 2

√
2Ja/h̄ in a square lattice. The term

with L̇2 can be understood as a kinetic energy responsible for
the inertia of antiferromagnets.

The absolute minimum of the energy corresponds to the
uniform AFM background L = const. Nonuniform configura-
tions of L are characterized by the topological charge,

Q = 1

4πa2

∫
dx dy L · (∂xL × ∂yL), (2)

that takes values Q = 0, ± 1, ± 2, . . . . Within, e.g., the homo-
topy class Q = −1, the minimum energy static configuration
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is a skyrmion given by

L =
(

2λx

r2 + λ2
,

2λy

r2 + λ2
,
r2 − λ2

r2 + λ2

)
, (3)

where r2 = x2 + y2. Its energy E = 4πJS2 is independent
of λ.

Equation (1) can be derived from the Heisenberg exchange
interaction between nearest-neighbor classical spins |sA| =
|sB | = 1,

H = S2
∑
ij

Jij sA
i ·sB

j = −S

2

∑
i⊂A

sA
i ·HA

i − S

2

∑
j⊂B

sB
j ·HB

j , (4)

where A and B denote AFM sublattices and HA,B
i =

−δH/δ(SsB,A
i ) = −S

∑
j Jij sB,A

j are the effective fields acting
on the spins. As spins in each sublattice rotate smoothly
through space, one can expand the effective fields as

HA
i = −JS

[
4sB

i + a2∇2sB
i + a4

12

(
∂4
x + ∂4

y

)
sB
i + · · ·

]
, (5)

and similarly for HB
i . This allows one to go over to the

continuum description in which there are two spin fields
sA and sB . Switching to the magnetization M = (sA + sB)/2
and the Néel vector L = (sA − sB)/2, satisfying M2 + L2 = 1
and M · L = 0 with the help of equation of motion h̄ṡA,B =
[sA,B × HA,B], one obtains

H = H0 − 1

24
JS2a2

∫
dx dy

[(
∂2
x L

)2 + (
∂2
y L

)2]
, (6)

which differs from Eq. (1) by the second term due to the
discreteness of the lattice. If the size of the skyrmion λ is large
compared to a, this term can be treated as a perturbation. Using
the “rigid” skyrmion profile of Eq. (3), one obtains the energy
due to this term,

Ediscr = −(2πJS2/3)(a/λ)2, (7)

that violates the scale invariance of the skyrmion. Equation (7)
can be interpreted as a potential energy responsible for the
skyrmion collapse. During the collapse, it is transformed
into the kinetic energy defined by the integral of L̇2 =
4r2(r2 + λ2)−2λ̇2. With an account of energy conservation,
Eq. (6) gives

3

c2

(
ln

r2
max + λ2

λ2
− r2

max

r2
max + λ2

)
λ̇2 =

(
a

λ

)2

−
(

a

λ0

)2

, (8)

where λ0 is the initial size of the skyrmion and rmax has
been introduced because of the logarithmic divergence of the
integral in the kinetic energy. The natural choice is rmax = λ0 +
ct , which describes a front of AFM spin waves propagating
away from the collapsing skyrmion. This is confirmed by direct
numerical calculations, see Fig. 4 below. The logarithmic terms
with time dependent rmax require numerical integration of
Eq. (8). The resulting collapse curves are shown in Fig. 1.

We now turn to the direct numerical solution of the
dynamics of the skyrmion provided by the microscopic
Hamiltonian (4). The dynamics is determined by the coupled
equation of motion for spins h̄ṡi = −[si × δH/δ(Ssi)]. We
chose the initial state as a staggered skyrmion texture sst,
given by Eq. (3) for the A sublattice and by the same

FIG. 1. Collapse of antiferromagnetic skyrmions as described by
the numerical solution of Eq. (8).

formula but with a minus sign for the B sublattice. The
size of the skyrmion numerically can be defined as λ2

m =
(m − 1)(2mπ )−1 ∑

i(1 − sst
zi)

m, where m > 1 is an integer. If
one replaces the summation by integration over dx dy/a2 and
uses the skyrmion texture (3) for sst

z , this formula becomes
an identity λm = λ. The results presented below have been
obtained with m = 4. Other options make little difference.

As the dynamics of the skyrmion is entirely due to small
terms arising from the lattice discreteness, the time dependence
is slow, and sufficient accuracy can be achieved even for a
large time step of integration. Increasing the step is limited
by stability rather than by required accuracy. The challenge of
the numerical solution is the 1/r decay of the skyrmion profile
that requires rather big lattice sizes even for moderate values of
λ/a. Free or periodic boundary conditions introduce spurious
λ-dependent energies that compete with the small energy due
to the lattice discreteness, leading to the expansion of the
skyrmion instead of collapse. To make boundary conditions
more resembling an infinite lattice, we have included the
missing outside neighbors of the boundary spins with the
values approximated by the second-order extrapolation from
the inside of the working region. Still, the lattice size has to
be large: 1000 × 1000 for λ0/a up to 16 and 2000 × 2000 for
λ0/a = 18 and 20. The program was implemented in Wolfram
MATHEMATICA with a compiled vectorized fixed-step fourth-
order Runge-Kutta routine. One AFM skyrmion-collapse event
required about 1-h computer time.

The collapse of an AFM skyrmion with λ0/a = 15 is shown
in Fig. 2. Whereas, the skyrmion size λ decreases continuously,
the topological invariant Q changes only during a short final
stage of the collapse when the continuous approximation fails.
Figure 3 shows skyrmion collapse curves for different values of
λ0/a. For λ0/a = 18, the lattice size of 106 spins is too small,
and computation with 4 × 106 spins is needed. For λ0/a = 16,
both these lattice sizes yield the same collapse curve. These
results compare very well with the semianalytical results
shown in Fig. 1. The collapse time can be fitted as tc ∝ λ2.15

0
in this range of λ0. The considerable deviation from the square
law can be traced back to the logarithmic term in Eq. (8).
Figure 4 shows |dL/dt | in an antiferromagnetic skyrmion
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FIG. 2. (Color online) Skyrmion collapse in an antiferromagnet.
Whereas, the skyrmion size λ decreases continuously, the topological
charge Q decays only during a short final stage of the collapse.

at different times and the region of skyrmion motion where
|dL/dt | > 0 expands with the speed of antiferromagnetic spin
waves c. The reason for this is that the lattice-discreteness
terms that drive the skyrmion collapse are very short ranged,
whereas, the skyrmion itself is long ranged. The action of the
former is transferred to the whole skyrmion with a speed c

in accordance with the causality. The front position can be
estimated as rmax = λ0 + ct as was argued after Eq. (8).

Along the same lines, we have numerically studied the
dynamics of ferromagnetic skyrmions. It turns out to be much
slower than the collapse of AFM skyrmions so that up to 1 day
of computations is needed for one collapse event. Figure 5
shows time dependences of the size of FM skyrmions during
the collapse. The collapse time scales as tc ∝ λ5

0.
The λ5

0 scaling of the collapse time of the FM skyrmion
can be qualitatively understood as follows. The exchange
interaction conserves the total spin of the system. The
infinitesimal increase in the (negative) skyrmion spin in the

FIG. 3. (Color online) Skyrmion collapse in an antiferromagnet
for different initial skyrmion sizes.

FIG. 4. The front propagating from the center of an antiferromag-
netic skyrmion at the beginning of its collapse.

course of its collapse is

dS = S

∫
d2r

a2

dsz

dλ
dλ = −8πS

λ dλ

a2
ln

R

λ
, dλ > 0. (9)

Here, we used sz in the skyrmion form given by Eq. (3)
and introduced the long-range cutoff R. Because of the
conservation of the total spin, the increase in the skyrmion
spin by dS generates dS magnons. Since, in this process, the
spin is being carried by long distances, the skyrmion collapse
is very slow. The average energy of emitted magnons can be
estimated as h̄ω ∼ −h̄λ̇/a. This yields the emitted magnon
power,

P = h̄ω
dS
dt

= 8πh̄S
λλ̇2

a3
ln

R

λ
. (10)

On the other hand, the rate of change in the energy (7) due
to discreteness of the lattice is Ėdiscr ∝ λ̇. From the energy

FIG. 5. Skyrmion collapse in a ferromagnet. The collapse time
scales as tc ∝ λ5

0.
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conservation Ėdiscr + P = 0, one obtains

dλ

dt
= −JSa5

6h̄

1

λ4 ln(R/λ)
, (11)

yielding the collapse time,

tc = 6h̄

5JS

(
λ0

a

)5

ln

(
R

λ0

)
. (12)

The condition h̄ω 
 SJ for the energy of the magnons
translates to 5(λ/a)4 ln(R/λ) � 1, which is well satisfied
during the collapse.

In conclusion, we have studied the collapse of skyrmions
due to the discreteness of the lattice in generic models of
isotropic 2d ferromagnets and antiferromagnets with Heisen-
berg exchange interaction. The results obtained within the
continuous field model are in excellent agreement with the
direct numerical calculation on lattices of up to 2000 ×
2000 coupled spins. The collapse time of antiferromagnetic
skyrmions, obtained by both methods, scales as (λ0/a)2.15.
For ferromagnetic skyrmions, the numerical calculation gives
the (λ0/a)5 scaling of the collapse time. It is explained by
the emission of magnons. Thus, AFM skyrmions are much
shorter lived than FM skyrmions. This can be understood in the
following terms. The collapse of an AFM skyrmion occurs via
transformation of its potential energy due to the discreteness
of the lattice into the kinetic energy defined by L̇2. The FM
skyrmion does not possess such a kinetic energy so that its
potential energy has to be dissipated into magnons, which is a
much slower process. In the expression for tc, the time constant
in front of the power of the ratio λ0/a is on the order of h̄/(JS).

For, e.g., JS ∼ 100 K and λ0 ∼ 10a, this gives tc ∼ 10 ns for
the lifetime of the skyrmion in a ferromagnet and tc ∼ 10 ps
in an antiferromagnet. Skyrmions of sizes exceeding 1000
lattice spacings would be practically stable in a ferromagnet.
In antiferromagnets, however, even macroscopic skyrmions
would decay rather fast.

An interesting question is whether a skyrmion can be
stabilized by the exchange interaction with an itinerant electron
or a hole. If such an interaction is stronger than the exchange
interaction between magnetic atoms in a 2d lattice, the electron
polarizes the background, and the problem becomes one of the
magnetic polaron. Only when the exchange interaction of the
electron with the background is weak, can it be considered
as a perturbation of the skyrmion problem. In the case of
a ferromagnet, the energy of the electron in the uniform
ferromagnetic background at infinity would always be lower
than its energy in the vicinity of the skyrmion, thus, ruling out
the stability of any bound state. For an antiferromagnet, the
discreteness of the lattice generates a small uncompensated
spin of the skyrmion. The electron can, in principle, couple to
that spin by the exchange interaction. Our preliminary study
shows, however, that this cannot prevent the skyrmion from
collapsing. Full analysis of this problem will be presented
elsewhere.

The authors thank O. Rübenkönig and D. Lichtblau of
Wolfram Research for helping with the vectorization and
compilation in Wolfram MATHEMATICA. This work has been
supported by the Department of Energy through Grant No.
DE-FG02-93ER45487.

1T. H. R. Skyrme, Proc. R. Soc. London, Ser. A 247, 260 (1958).
2A. A. Belavin and A. M. Polyakov, Pis’ma Zh. Eksp. Teor. Fiz. 22,
503 (1975) [JETP Lett. 22, 245 (1975)].

3A. M. Polyakov, Gauge Fields and Strings (Harwood Academic,
Chur, Switzerland, 1987).

4The Multifaceted Skyrmion, edited by G. E. Brown and M. Rho
(World Scientific, Singapore, 2010).

5R. Durrer, M. Kunz, and A. Melchiorri, Phys. Rep. 364, 1 (2002).
6U. Al’Khawaja and H. T. C. Stoof, Nature (London) 411, 918
(2001).

7S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys.
Rev. B 47, 16419 (1993).

8M. Stone, Phys. Rev. B 53, 16573 (1996).
9J. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar, and
Z. Tesanovic, Phys. Rev. Lett. 83, 3737 (1999).

10D. C. Wright and N. D. Mermin, Rev. Mod. Phys. 61, 385 (1989).
11P. B. Wiegmann, Phys. Rev. Lett. 60, 821 (1988).
12B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 61, 467 (1988).
13X. G. Wen and A. Zee, Phys. Rev. Lett. 61, 1025 (1988).

14S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B 39,
2344 (1989).

15P. Voruganti and S. Doniach, Phys. Rev. B 41, 9358 (1990).
16R. J. Gooding, Phys. Rev. Lett. 66, 2266 (1991).
17S. Haas, F.-C. Zhang, F. Mila, and T. M. Rice, Phys. Rev. Lett. 77,

3021 (1996).
18E. C. Marino and M. B. Silva Neto, Phys. Rev. B 64, 092511 (2001).
19T. Morinari, Phys. Rev. B 65, 064513 (2002).
20T. Morinari, Phys. Rev. B 72, 104502 (2005).
21Z. Nazario and D. I. Santiago, Phys. Rev. Lett. 97, 197201 (2006).
22I. Raicevic, D. Popovic, C. Panagopoulos, L. Benfatto, M. B. Silva

Neto, E. S. Choi, and T. Sasagawa, Phys. Rev. Lett. 106, 227206
(2011).

23F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).
24A. Abanov and V. L. Pokrovsky, Phys. Rev. B 58, R8889 (1998).
25B. A. Ivanov, A. Y. Merkulov, V. A. Stephanovich, and C. E. Zaspel,

Phys. Rev. B 74, 224422 (2006).
26E. G. Galkina, E. V. Kirichenko, B. A. Ivanov, and V. A.

Stephanovich, Phys. Rev. B 79, 134439 (2009).

024429-4

http://dx.doi.org/10.1098/rspa.1958.0183
http://dx.doi.org/10.1016/S0370-1573(02)00014-5
http://dx.doi.org/10.1038/35082010
http://dx.doi.org/10.1038/35082010
http://dx.doi.org/10.1103/PhysRevB.47.16419
http://dx.doi.org/10.1103/PhysRevB.47.16419
http://dx.doi.org/10.1103/PhysRevB.53.16573
http://dx.doi.org/10.1103/PhysRevLett.83.3737
http://dx.doi.org/10.1103/RevModPhys.61.385
http://dx.doi.org/10.1103/PhysRevLett.60.821
http://dx.doi.org/10.1103/PhysRevLett.61.467
http://dx.doi.org/10.1103/PhysRevLett.61.1025
http://dx.doi.org/10.1103/PhysRevB.39.2344
http://dx.doi.org/10.1103/PhysRevB.39.2344
http://dx.doi.org/10.1103/PhysRevB.41.9358
http://dx.doi.org/10.1103/PhysRevLett.66.2266
http://dx.doi.org/10.1103/PhysRevLett.77.3021
http://dx.doi.org/10.1103/PhysRevLett.77.3021
http://dx.doi.org/10.1103/PhysRevB.64.092511
http://dx.doi.org/10.1103/PhysRevB.65.064513
http://dx.doi.org/10.1103/PhysRevB.72.104502
http://dx.doi.org/10.1103/PhysRevLett.97.197201
http://dx.doi.org/10.1103/PhysRevLett.106.227206
http://dx.doi.org/10.1103/PhysRevLett.106.227206
http://dx.doi.org/10.1103/PhysRevLett.61.1029
http://dx.doi.org/10.1103/PhysRevB.58.R8889
http://dx.doi.org/10.1103/PhysRevB.74.224422
http://dx.doi.org/10.1103/PhysRevB.79.134439



