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Towards high-frequency negative permeability using magnonic crystals in metamaterial design
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We investigate the magnonic properties of thin slabs of one-dimensional magnonic crystals with the aim of
obtaining a structure that possesses negative permeability at high frequencies. Metamaterials of this kind could
be used within devices based on the negative refractive index phenomenon. We calculate the relative excitation
strengths of different spin-wave modes in one-dimensional magnonic crystals. We find that the coupling between
light and high-order magnonic modes can be significant for the specific design of the magnonic structure.
These results suggest that magnonic crystals are therefore promising candidates for the negative refractive index
metamaterials.
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I. INTRODUCTION

In recent years negative refractive index metamaterials
have attracted wide attention from researchers.1,2 Materials
possessing simultaneously negative electric permittivity and
negative magnetic permeability, and therefore also the negative
refractive index (NRI),3 are desirable due to their unusual
electromagnetic properties4,5 that open ways for creating
new potential applications, such as perfect lensing, electro-
magnetic cloaking, modulators for terahertz radiation, and
compact waveguides.4,6–9 Various methods of realization of
metamaterials have been proposed, e.g., based on arrays of
split ring resonators10 or ferromagnetic resonance (FMR) in a
magnetic material, where the coupling of light is sufficiently
strong to obtain negative permeability in the vicinity of the
resonance.11,12

The negative refraction of electromagnetic waves due to
ferromagnetic resonance has been studied in recent years.
It was shown that for the metallic system with a large
imaginary part of the dielectric permittivity the negative
permeability is a sufficient condition to obtain a negative
refraction. For example, the negative refraction was observed
in L2/3 Ca1/3MnO3 films at 150- and 90-GHz frequencies,
under very strong external magnetic fields of over 5 and 3 T,
respectively.13 In ferromagnetic dielectrics, like an yttrium
iron garnet (YIG), YIG slabs implanted with metallic wires
have been investigated as a NRI (left handed) metamaterial
operating in the microwave band.7 The experimental data
were successfully compared with finite element simulations
for systems operating in microwave bands from 8 to 18 GHz.14

Also the periodic structure of interacting nanowires was
proposed in Ref. 15 as a metamaterial. The calculations were
performed on the basis of an effective permeability tensor for
uniform spin-wave excitations, i.e., for FMR conditions.

The FMR in ferromagnetic materials appears usually
at GHz frequencies,11 thereby restricting the possible
applications of metamaterials based on this effect to
microwaves. Spin-wave resonance (SWR) can extend this
limit to frequencies of up to hundreds of GHz, and composites
with SWR in THz frequencies are already considered for
applications in THz communication. Maxwell equations

simultaneously with the Landau-Lifshitz (LL) equation for
the magnetization have been solved to obtain the transmission
coefficients for the array of nanowires.16 Extrema in the
transmission function have been found due to spin-wave
resonance and antiresonance modes.

A novel design of negative refractive index metamaterial
working at sub-THz frequencies was proposed in the recent
paper by Mikhaylovskiy et al..12 The system composed of thin
ferromagnetic layers separated by nonmagnetic dielectric ma-
terial was considered. The significant increase of the resonant
frequencies was predicted due to the pinning of the spins on the
surfaces of ferromagnetic layers. Here, we propose a different
structure to obtain a similar effect. Replacing the uniform
ferromagnetic layer by a thin plate of a magnonic crystal17–20

(MC) will introduce the in-plane quantization of spin-waves.
As a consequence, multiple resonances will be observed

in the SWR spectrum in addition to the fundamental uniform
excitation. Here we propose to use this effect and we show that
coupling of light is strong enough to obtain negative perme-
ability due to the higher-order SWR excitation. We present the
method of calculating the scalar permeability function of the
extraordinary wave in the case of in-plane magnetization for
metamaterials consisting of one-dimensional (1D) magnonic
crystals (Fig. 1). Our calculations are based on the plane-wave
method (PWM) and analytical formulas for permeability of an
effectively uniform magnetic film.12

Since the NRI is obtained by SW resonance, the electromag-
netic properties of structures proposed in this manuscript will
be dependent upon the external magnetic field. The frequency
range in which the negative refraction is observed might be
tuned by the external magnetic field in a broad frequency range.
Structures under consideration will offer some advantages
over other NRI metamaterials, and the simplicity, diversity,
and versatility of their design might be some of them. A
unique functional property of MCs is their re-programmability,
i.e., a possibility to obtain the MC in ferromagnetic or
antiferromagnetic configuration by manipulation of the bias
magnetic field. Then the response of the device will be
different in each configuration.21,22 The intrinsic loss is a
factor that might limit the applications of metamaterials.23,24
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FIG. 1. (Color online) Magnonic crystals considered in this
paper: one-dimensional MC of thickness d formed by long stripes
of ferromagnetic metals Co and permalloy, arranged with the period
a. Bias magnetic field H0 saturates both materials along the z axis.

However, the metamaterial proposed here might also find an
application for developing zero refractive index materials.25,26

At frequencies larger than the resonance frequency, the
magnetic permeability goes from negative to positive values
through zero, the latter point called antiresonance condition.16

Because the antiresonance occurs at frequencies shifted away
from the resonances, the absorption decreases.

The paper is organized as follows. In Sec. II the theoretical
model is introduced, where the PWM and the calculation
method of the relative absorption of electromagnetic waves
due to SWRs are presented. In Sec. III the numerical results
for one-dimensional MCs are shown and a structure optimized
for negative refraction of electromagnetic waves is proposed.
The results of calculation of effective parameters, which are
used directly to calculate the permeability function, are shown
in Sec. IV. The last section is dedicated to conclusions.

II. THEORETICAL MODEL

The band structure of excitations in materials with dis-
crete translational symmetry, including electronic, photonic,
phononic, and magnonic crystals, can be calculated by the
plane-wave method. The PWM is simple and applicable to
any type of periodic arrangement and any shape of scattering
centers in bulk samples.27–31 The PWM has also been used to
calculate spin-wave spectra of 1D and two-dimensional (2D)
MCs of finite thickness.32,33 Here we use this technique to
calculate the spin-wave spectra of thin plates of 1D MC (as
shown in Fig. 1) with the magnetic field in the plane of the MC.
Below we outline the method and explain the approximations
used. Next, we discuss the method of the calculation of the
relative intensities in the SWR spectra from the magnonic
profiles found using the PWM method.

A. Plane-wave method

In the continuous medium approach, the spin-wave dis-
persion relation is determined from the Landau-Lifshitz (LL)
equation, i.e., the equation of motion of magnetization vector
M(r,t):

∂M(r,t)
∂t

= γμ0M(r,t) × Heff(r,t), (1)

where γ is the gyromagnetic ratio and Heff denotes the effective
magnetic field acting on the magnetization. r is the position
vector and t is the time. The LL equation applies to the case of
the absence of dissipation. It is expressed in the International

System of units, used throughout this paper, with μ0 denoting
the permeability of a vacuum. As in the case of free electrons,
we will assume γμ0 = 2.21 × 105 (A/m)−1s−1.

In our PWM calculations we shall consider a MC mag-
netized to saturation, i.e., the case of collinear static magne-
tization. This allows us to use the linear approximation and
a global coordinate system in which the y and z axes define
the plane of the MC and the x axis is normal to its surface
(Fig. 1). In the case of linear spin waves, the component
of the magnetization vector parallel to the static magnetic
field (in this study the static magnetic field is assumed to be
oriented along the z axis) is constant in time and its magnitude
is much greater than that of the perpendicular components:
|m(r,t)| � Mz(r) [M(r,t) = Mz(r)ẑ + m(r,t), where m is a
two-dimensional vector with components (mx,my)]. Thus, the
linear approximation can be applied, by neglecting all the
terms with squared m(r,t) and hms(r,t) (defined below) and
assuming Mz ≈ MS, MS being the saturation magnetization,
which in the MC is a position-dependent scalar function.
We will only search for those solutions of the LL equation
that correspond to monochromatic spin waves: m(r,t) =
m(r) exp(iωt), ω being the wave frequency.

Effective magnetic field Heff acting on the magnetization in
an MC is the sum of several components, such as external,
exchange, demagnetizing, and anisotropy fields. However,
here we shall consider only three: a uniform and constant
applied magnetic field H0 (along the z axis), the exchange
field Hex, and the magnetostatic field Hms. The latter two fields,
i.e., the exchange field and the magnetostatic field, are space
dependent:

Heff(r,t) = H0 + Hex(r,t) + Hms(r,t). (2)

We do not take the contribution of the anisotropy field into
account, since we do not expect the anisotropy field to have
a qualitative influence on the results presented here. In the
configuration under consideration, i.e., with H0 along a stripe
axis (see Fig. 1) the shape anisotropy enforces a parallel
alignment of all magnetic moments. The exchange field in
uniform materials has the well-known form.34,35 However, in
MCs the magnetization changes abruptly at interfaces and a
reformulation of the exchange field term is required for the
PWM. In the literature different formulations of the exchange
field were proposed in calculations of the SW spectra in MCs
so far.30,36,37 Each formulation introduces different boundary
conditions on dynamical components of the magnetization
vector, so they can describe different physical situations on
interfaces. The investigation of these effects requires a further
detailed analysis and it is out of the scope of this paper.
We assumed the exchange field to have the form that can
be obtained directly from the exchange-energy functional in
the linear approximation with sharp interfaces:

Hex(r,t) = [∇ · l2
ex(r)∇]

m(r,t), where lex =
√

2A

μ0M
2
S

.

(3)

In magnetically inhomogeneous materials, the spatial in-
homogeneity of both the exchange constant A(r) and the
spontaneous magnetization MS(r) must be taken into account
in the definition of the exchange field.
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The last component of the effective magnetic field [Eq. (2)],
the magnetostatic field is calculated by decomposing this field
into the static and dynamic components, Hms(r) and hms(r,t),
respectively. When the magnetic stripes are infinitely long
Hms(r) = 0, and this case only is considered in this paper.
The time dependence of the dynamic magnetostatic field has
the same form as that of the dynamic component of the
magnetization vector: hms(r,t) = hms(r)eiωt .

Using the linear approximation, we derive the following
system of equations from Eq. (1):

i
ω

γμ0
mx(r) + MS

[∇ · l2
ex∇

]
my(r)

−my(r)H0 + MShms,y(r) = 0, (4)

i
ω

γμ0
my(r) − MS

[∇ · l2
ex∇

]
mx(r)

+mx(r)H0 − MShms,x(r) = 0. (5)

A and MS, and consequently also l2
ex, are periodic functions of

y and constant across the film thickness. The period is equal to
a lattice constant a. In MCs composed of two materials, each
of these material parameters can be expressed by two values,
MS,A, MS,B and AA, AB, corresponding to each constituent
material.

To solve LL Eqs. (4) and (5), we use Bloch’s theorem:

m(y) =
∑
G

mk(G)ei(k+G)y, (6)

where G denotes a reciprocal-lattice vector along the direction
of periodicity: G = 2π

a
ny ; ny is an integer. Bloch wave vector k

refers to those spin waves that, according to Bloch’s theorem,
can be limited to the first Brillouin zone (BZ). Already in
Eq. (6) we limit ourselves to solutions that are uniform across
the film thickness.

In the next step, we perform the Fourier transformation to
map the periodic functions MS and l2

ex to the reciprocal space,
as

MS(y) =
∑
G

MS(G)eiGy, l2
ex(y) =

∑
G

l2
ex(G)eiGy. (7)

In the 1D case, the Fourier components of the saturation
magnetization MS(G) and the squared exchange length l2

ex(G)
can be calculated analytically.

We need the formula for the dynamic demagnetizing fields,
hms,x(y,x) and hms,y(y,x), to finalize the procedure, in which
an eigenvalue problem in the reciprocal space is derived from
Eqs. (4) and (5). According to the ideas presented in Ref. 38, for
a slab of a 2D magnonic crystal with a uniform magnetization
along its thickness (its static and dynamic components)
Maxwell’s equations can be solved in the magnetostatic
approximation with the electromagnetic boundary conditions
at both surfaces of the slab, i.e., at x = −d/2 and d/2 (d is a
thickness of the MC). For the considered structure, infinite in
the (y,z) plane, analytical solutions in the form of a Fourier
series can be obtained for dynamic demagnetizing fields:

hms,y(y,x) =
∑
G

[imx,k(G) sinh (|k + G|x)e−|k+G|d/2

−my,k(G)(1 − cosh (|k + G|x)e−|k+G|d/2)]

× ei(k+G)y, (8)

hms,x(y,x) =
∑
G

[imy,k(G) sinh (|k + G|x)e−|k+G|d/2

−mx,k(G) cosh (|k + G|x)e−|k+G|d/2]ei(k+G)y.

(9)

Represented in the reciprocal space for the in-plane com-
ponents, these formulas for the demagnetizing fields are x

dependent; i.e., they vary with position across the thickness of
the slab. However, when the slab is thin enough (which is the
case for the discussed MC, with d = 5 nm), the nonuniformity
of the demagnetizing fields across its thickness can be
neglected, and the respective field values calculated from
Eqs. (8) and (9) for x = 0 can be used in the PWM calculations.
Because of its Fourier series form, the solution found for the
demagnetizing fields can be used directly in Eqs. (4) and (5).

The substitution of Eqs. (6)–(9) into Eqs. (4) and (5)
leads to the algebraic eigenvalue problem with eigenvalues
iω/γμ0H0:

M̂mk = i
ω

γμ0H0
mk, (10)

where the eigenvector is mT
k = [mx,k(G0), . . . ,mx,k(GN ),

my,k(G0), . . . ,my,k(GN )] and a finite number N of reciprocal-
lattice vectors is used in Fourier series Eqs. (6) and (7). The
elements of matrix M̂ are defined as

M̂ =
(

M̂xx M̂xy

M̂yx M̂yy

)
. (11)

The submatrices in Eq. (11) are defined as

M̂xx
ij = −M̂

yy

ij = −i
1

H0
S(k + Gj )MS(Gi − Gj ), (12)

M̂
xy

ij = δij +
∑

l

(k + Gj )(k + Gl)

H0
l2
ex(Gl − Gj )MS(Gi − Gl)

+ 1

H0
[1 − C(k + Gj,x)]MS(Gi − Gj ), (13)

M̂
yx

ij = −δij −
∑

l

(k + Gj ) · (k + Gl)

H0
l2
ex(Gl − Gj )

×MS(Gi −Gl) − 1

H0
C(k+Gj,x)MS(Gi −Gj ), (14)

where indexes of the reciprocal-lattice vectors i,j,and l are
integer numbered reciprocal-lattice vectors. The additional
functions used in the above equations are defined as follows:

S(k,x) = sinh (|k|x)e−|k|d/2,
(15)

C(k,x) = cosh (|k|x)e−|k|d/2.

We solve the system of Eq. (10) by standard numerical
procedures designed for solving complex matrix eigenvalue
problems. All the eigenvalues found by these procedures
must be tested for convergence, though. A satisfactory
convergence of numerical solutions of Eq. (10) for all the
structures considered proves to be assured by the use of 101
reciprocal-lattice vectors. The model presented here has been
validated by comparison with other numerical simulations and
experimental results for MCs composed of Co and permalloy
stripes; for details see Ref. 32.
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B. Spin-wave profiles and relative SWR intensities

The solution of Eq. (10) yields both eigenfrequencies and
corresponding eigenvectors mk(G), in the reciprocal space.
We determine the corresponding real-space distributions of
the eigenmodes using the inverse Fourier transformation given
by Bloch’s theorem (6). However, to find the response of
the magnonic structure to the external uniform ac magnetic
field, b(t), one has to consider the problem of coupling of
this field to the eigenmodes of the magnonic crystal. With the
spatial profiles of the spin-wave modes at hand, we proceed by
calculating relative strengths of the corresponding absorption
peaks. The time-averaged absorption power associated with
the kth mode Pk(r) at a particular point r is for a complex
vector m∗

k given by

Pk(r) = − 1

T

∫ T

0
m∗

k(r,t) · db(t)

dt
dt, (16)

where b(t) is the external ac field depending on time, t , and T

is the period of its variation. By averaging Pk(r) over the unit
cell, we arrive at the absorbed power for the excitation:

〈P (r)〉 = 1

V

∫
V

Pk(r) dV, (17)

where V denotes the volume of the unit cell. Thus, the
relative efficiency of the interaction of the external uniform
ac magnetic field with spin-wave resonances is defined for
each mode.

One can see from Eqs. (16) and (17) that only the modes
that have a nonzero net dynamic magnetic moment contribute
to the absorption and hence can be efficiently excited by the
external uniform ac field. In other words, the efficiency of
coupling is determined by the overlap integral of the mode
and the field profiles.

III. STATIONARY SOLUTIONS IN 1D
MAGNONIC CRYSTALS

All calculations in this paper were performed for MC
composed of two materials, i.e., cobalt and permalloy. We
assumed the following parameters for permalloy: magnetiza-
tion of saturation MS = 0.86 · 106 A/m and exchange constant
A = 1.1 · 10−11 J/m; for cobalt, MS = 1.3 · 106 A/m and A =
2.8 · 10−11 J/m. This choice of constituent magnetic materials
is not accidental. Recently, there appeared in the literature a
few papers on theoretical and experimental investigation of
spin waves in thin-film MCs composed of Co and Py stripes
with lattice constants of about 500 nm.32,39,40 The parameters
chosen here are taken from Ref. 39, where anisotropy field was
neglected, as in our model. This shows also that realization of
such MCs is feasible.

The dispersion relation of spin waves in a magnetic film and
therefore also in a magnonic crystal is anisotropic.41,42 It means
that the propagation directions parallel and perpendicular to
the bias magnetic field are not equivalent. We will limit our
investigation to the so-called Damon-Eshbach configuration,
i.e., when the wave vector and H0 are perpendicular to each
other.43 We will consider a SW’s propagation along the y axis
with a bias magnetic field pointing in the z direction; see Fig. 1.
Another important property of SWs is that their dispersion re-
lation is not scalable with the lattice constant, since the relative
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FIG. 2. The dispersion relations of SWs propagating in a 1D MC
composed of Co and Py stripes under bias magnetic field μ0H0 =
0.01 T shown for lattice constant of (a) 500 nm and (b) 50 nm.

strength of the exchange and dipolar interactions depends on
the lattice-constant value and on the wave vector. For small
lattice constants, the onset of the domination of the exchange
interaction is expected in the first BZ already, while for large
lattice constants the magnetostatic interaction can dominate in
the whole first BZ. The exchange interaction is also responsible
for increasing frequency of SWs with decreasing lattice
constant. The dispersion relations of SWs calculated with the
PWM for 1D MCs of 5-nm thickness and lattice constants of
500 and 50 nm are shown in Figs. 2(a) and 2(b), respectively.
It is clear that for small a the Brillouin zone is wider and
consequently the frequencies of SWs reach higher values.

In Fig. 3, the dispersions of SWs in uniform films of
Co (dashed line) and Py (continuous line) are presented as
calculated according to the analytical formula from Ref. 44. On
the same graph, the vertical dashed lines indicate that the BZ
edges occurred for the MC with the periodicity of a = 50 and
500 nm. We can see that, for small a, e.g., 50 nm, the dispersion
has a parabolic shape for wave vectors at the edge of the BZ,
while for large a, e.g., 500 nm, it is almost linear. The SW
resonances at high frequencies in the center of the BZ appear
due to introducing the periodicity. Band folding for SWs with
dominating exchange interactions will appear at large wave
vectors. It means that for high-frequency applications the MCs
with small lattice constants are more suitable; see Fig. 4. The
frequencies of SWs in 1D MCs with the wave vector equal to
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FIG. 3. The dispersion relation of SW propagating in a thin
uniform magnetic film under bias field μH0 = 0.1 T for Co (dashed
line) and Py (continuous line). The grid lines indicate the values of
the wave vector (in logarithmic scale) at the second Brillouin-zone
edge of a lattice constant of 500 nm (k = 1.26 · 107 1/m) and 50 nm
(k = 1.26 · 108 1/m). Values of frequencies at these points are in
the range of frequencies of the second-order mode, appearing due to
the periodicity, in MC. This explains the increase of the SW mode
frequencies with decrease of the lattice constant of the magnonic
crystal observed in Figs. 2 and 4.
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FIG. 4. (Color online) Dependence of the frequency of SWs on
the lattice constant of a 1D MC. The frequencies of spin waves at the
center of the first BZ are shown. m indicates the mode (band) number.
The structure is composed of alternating cobalt and permalloy stripes
of 5-nm thickness with the width varied from 10 to 100 nm; i.e., the
lattice constant varies from 20 to 200 nm. The frequencies of modes
above the first one increase as the lattice constant decreases. This
effect is crucial to our work and indicates the importance of using the
MC with small lattice constants.

zero are plotted as a function of the lattice constant. We find
that the frequency of the first band is only weakly dependent on
a while frequencies of higher bands significantly increase with
frequency; e.g., the second band for a 50-nm lattice constant
has a frequency already close to 40 GHz.

We show the SWR calculated for a Co and Py MC in
Fig. 5(a). The relatively high intensity of the third resonant
mode is visible. The reason for its high intensity could
be understood by looking at the profiles of SWs shown in
Figs. 5(b)–5(d). The distribution of the dynamical component
of the magnetization is not symmetric among Co and Py. The
highest amplitude of the mx component is localized within
the permalloy stripes for the first mode and within the cobalt
stripes for the third mode. In the case of the second and fourth
modes, the distribution has an antisymmetrical character, so
they do not efficiently couple with the electromagnetic wave.
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FIG. 5. (Color online) The analysis of the resonant modes of
1D magnonic crystal composed of alternating cobalt and permalloy
stripes of 25-nm width each and 5-nm thickness. The graphs show
(a) the relative absorption intensities and (b–d) The distribution of
the x component of dynamic magnetization for modes with m = 1,
3, and 4.

IV. EFFECTIVE PARAMETERS AND
PERMEABILITY OF 1D MC

In the long-wavelength limit when the length of the
material modulation is much shorter than the wavelength
of SWs, the magnonic crystal appears to have properties of
a uniform material. In this limit, such effective parameters
as the magnetization saturation, exchange coefficient, and
magnetic field can be assigned to the magnonic metamaterial
and describe SWs in it. The proper assignment of the effective
parameters is not a simple task because it depends on the scale
and the structure of the MC. In the 2D case of MC formed by
an antidot lattice (ADL), it was shown that long SWs behave
either as in effective waveguides or as in uniform thin film.45,46

This depends on the symmetry of the antidot lattice and on the
filling fraction, i.e., the relative space occupied by antidots
in a magnetic material. In an MC formed by ferromagnetic
materials only, the SW should behave as in a uniform thin
film with effective values of the magnetization saturation and
effective exchange constant in the long-wave limit.

The effective parameters could be extracted from a
dispersion relation so that when they are applied in the
analytical formula for the dispersion relation the function is
reconstructed.47–49 For our purposes it seems better to do it in
a different way, since we are interested in magnonic properties
exactly at k = 0, i.e., under the SWR condition. In particular,
the exchange constant has no effect on the position of the
first resonance peak. So, we propose to extract the value of
the effective saturation magnetization by fitting the spin-wave
frequency to the following analytical formula as a function of
the bias magnetic field, H0, in the homogeneous thin film, i.e.,
the Kittel formula:41

ω(H0) = γμ0

√
[H0(H0 + Meff)], (18)

with numerical results of the PWM obtained by solving
Eq. (10). In Eq. (18), Meff is the effective saturation mag-
netization. In Fig. 6, the continuous line represents function
ω(H0) obtained from numerical solution of Eq. (10). By
fitting Meff in Eq. (18), we found effective magnetization
Meff = 1.0 · 106 A/m. This value is very close to the weighted
average of magnetization in Co and Py, Mav = 1.08 · 106 A/m.
The dependence of the first resonance frequency upon the bias
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FIG. 6. (Color online) The first resonant frequency of the 1D MC
composed of alternating cobalt and permalloy stripes of 25-nm width
each (5-nm thicknesses) plotted as a function of the external magnetic
field using the analytical formula, where the effective magnetization
is a parameter (continuous line), and from the results of PWM for Co
and Py magnonic crystal (dots).
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FIG. 7. (Color online) (a) The structure of the metamaterial under
investigation. e, b indicates the polarizations of external electric and
magnetic fields, and k indicates the direction of propagation. (b) The
real part of permeability calculated according to Eq. (21) (μr) as a
function of a frequency for the stack of thin layers made of slabs of
1D MC, composed of alternating 5-nm-thick cobalt and permalloy
stripes of 25-nm width (solid line) and 12.5-nm width (dashed line)
under the influence of the external magnetic field of H0 = 0.2 T. The
filling fraction of the magnonic crystal in the nonmagnetic dielectric
matrix is 25%, the same as in Ref. 12.

magnetic field given by Eq. (18) with the fitted value of the
effective magnetization is superimposed on the PWM results
and marked by dots. The relative error is small and does not
exceed 1.5% in the range of bias magnetic fields from 0 to 0.2 T.

Using the results from PWM, we propose to create a meta-
material with negative permeability. Our idea is based on the
model developed by Mikhaylovskiy et al.,12 where a stack of
thin ferromagnetic films separated by nonmagnetic dielectric
layers was proposed as a metamaterial. The effective negative
permeability was obtained in the proximity of the SWR fre-
quencies in a sub-THz range. The relatively high frequencies
resulted from standing waves formed across the thickness of
the thin ferromagnetic films. Here, we propose another method
of shifting SWR to higher frequencies by introducing thin MC
slabs instead of the uniform thin films. A schematic drawing
of the proposed structure is shown in Fig. 7(a). The SWR
resonance at high frequencies is achieved now due to the lateral
(in-plane) quantization of spin waves, while uniform excita-
tions are assumed across the thickness. Below, we describe our
idea in detail together with estimations of the permeability of
such a structure. According to the PWM results we expect the
values of the higher resonant frequencies to increase with the
decrease of the lattice constant; see Fig. 4. This dependence
gives an opportunity to design the structure of MC according
to a required frequency range of negative permeability.

Having Meff at hand we can plot the permeability as a
function of frequency by using the analytical solution derived
in Ref. 12 for the material that is characterized by this effective
magnetization. This analytical solution for the μ(ω) in the
vicinity of the frequency of the first resonance can be fitted
with the resonance formula:42

μ(ω) = 1 + A1

ω1 − ω + iωα
, (19)

where A1 is a fitting parameter and ω1 is the first SWR
frequency. In order to find the absolute value of an absorbed
power at higher resonant frequencies we normalize their
relative intensities (found in PWM) to A1, so the relative
intensities of the first three modes for an MC with a 50-nm

lattice constant are now

A1 = 0.0058, A2 = 1.16 · 10−13 · A1 ≈ 0,
(20)

A3 = 0.45 · A1.

The permeability function can be obtained now by using
frequencies and intensities from the normalized absorption
of peaks calculated with the PWM as

μ(ω) = 1 +
N∑

j=1

Aj

ωj − ω + iωα
, (21)

where Aj are the parameters that describe the intensities of
the permeability function already found in Eq. (20) and ωj

are the resonant frequencies of the 1D MC (known from
PWM calculations). N is the number of modes, which in
our consideration is restricted to 3. The resulting real part of
function μ(ω) is shown in Fig. 7(b) by a solid line. The value
of the damping factor, α, is taken as α = 0.01. We assume
the same composition of the metamaterial as in Ref. 12 but
instead of the uniform ferromagnetic films we include 1D
MCs. The MC occupies 25% of the volume, while the rest is
nonmagnetic dielectric [see Fig. 7(a)]. This solution is obtained
for the geometry where the external magnetic field is applied
in the plane of the magnetic film. The propagating wave is
linearly polarized, perpendicular to the magnetic field [see
Fig. 7(a) for the orientation of the ac magnetic field and wave
propagating direction]. The wavelength of the electromagnetic
wave is much longer than the thickness of the film, and so the
electromagnetic field is assumed to be uniform in a single
film made of 1D MC. In the MC, due to the periodicity in
the structure the band folding effect is observed, and many
resonances might be observed at higher frequencies for k = 0.

In Fig. 7(b) we showed that the relative absorption intensity
of the higher modes of the thin slab of magnonic crystal
can be comparable with that of the first mode and thus lead
to a significant absorption due to the spin-wave resonances.
As a result the proposed metamaterial can have a negative
permeability at elevated frequencies as shown in Fig. 7(b).

We can increase the frequency of SWR and the frequency
of the NRI band more by increasing an external magnetic
field or by decreasing a lattice constant. In Fig. 4 was shown
the increase of SWR frequencies (for m > 1) with decreasing
lattice constant. In Fig. 7(b) by the dashed line we show the
permeability in the function of frequency for an MC composed
of Co and Py stripes of 12.5-nm width. The band of negative
permeability connected with the second mode still exists at
frequencies above 80 GHz.

Finally, it is instructive to estimate the figure of merit (FOM)
of the proposed metamaterial, defined as

FOM = −Re(n)

Im(n)
, (22)

where n is defined according to Ref. 52, fulfilling the causality
principle. First, one should find the effective permittivity of the
single magnonic crystal εeff

MC. In the case of normal incidence
of light the permittivity can be approximated by50

1

εeff
MC

= fCo

εCo
+ fP

εP
, (23)
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FIG. 8. (a) Figure of merit (FOM) in the function of a frequency
of the considered metamaterial (the stack of thin layers made of slabs
of 1D MC, composed of alternating 5-nm-thick cobalt and permalloy
stripes of 25-nm width) with negative refractive index. (b) The real
part of the refractive index.

where fCo, εCo, fP, and εP are the relative volume fraction and
permittivity of cobalt and permalloy, respectively. Structures
considered here have fCo = fCo = 0.5. Then the effective
permittivity of the whole structure is

εeff = (1 − ρ)εh + ρεeff
MC, (24)

where εh is the permittivity of the host nonmagnetic dielectric
and ρ denotes the filling factor of the magnonic plates in
the metamaterial, ρ = 0.25. We assume εCo ≈ εPy ≈ (−1 −
i) · 104 � εh.51 Thus we arrive at the simple estimate for
the effective permittivity as εeff = ρεCo(Py). The FOM for
a metamaterial composed of 1D MCs with Co and Py
stripes of 25-nm width is shown in Fig. 8(a), and the real
part of the refractive index is shown in Fig. 8(b). We can
see that the FOM in the frequencies around the negative
refractive index (i.e., around 15 and 37 GHz) reaches the
value of 2.

The values of the FOM found at resonant frequencies
in this work are comparable with values found for fishnet
structures proposed in Ref. 53 and lower than those found in
Ref. 54, where the coupling relationship between the electric
and magnetic resonances was studied in double bowknot
shaped structures in order to optimize losses. The authors of
Ref. 55 propose a structure that does not contain any metallic
materials but a cubic periodic array of layered dielectric
spheres, made from low-loss high-permittivity ceramics. Since
the absorption is much lower in dielectrics, they achieve a
low-loss NRI material. In MC based metamaterials considered
here there are a few ways for improving the FOM. Instead
of the ferromagnetic metals we can consider a dielectric
ferromagnet (e.g., yttrium iron garnet) as a basis for the

proposed structures. Another way for decreasing loss is to
remove one of the magnetic metallic materials or to use
two-dimensional antidot lattices (ADLs) as the 1D MCs. In
both cases we can expect the effect of periodicity and in-plane
quantization to remain.21,22,45,56 The ADLs formed by a regular
lattice of holes in the thin film of ferromagnetic material
have been intensively studied recently and the formation of
a magnonic band structure was experimentally proved.57–59

V. CONCLUSIONS

We demonstrate that negative permeability at frequencies
close to 100 GHz can be achieved in the periodic metallic
magnetic structures, i.e., thin plates of 1D magnonic crystals,
being a result of the lateral quantization of SWs. We investigate
the frequencies of the resonant modes of MCs as well their
relative absorption intensities in dependence on the lattice
constant. The analysis of the mode profiles is conducted
in order to demonstrate the strong coupling of high-order
magnonic modes to electromagnetic waves. We showed that
for the structure composed of the stack of thin films of 1D
MCs with lattice constants of 50 and 25 nm (i.e., alternating
cobalt and permalloy stripes with a thickness of 5 nm and
a width of 25 or 12.5 nm) separated with a nonmagnetic
dielectric, negative permeability can be achieved at relatively
high frequencies. We expect that further decreasing the lattice
constant or introducing periodicity in the second dimension
should shift SWR and so bands of a negative permeability
above 100 GHz. Other possibilities for increasing the resonant
frequencies of SW modes are increasing the field or using
the antidot systems, but for the antidot applications further
research is necessary. There is also a possibility of applying
the pinning boundary conditions on the top or bottom surfaces
of the thin plate of the MC. In this case the combined effects
of the lateral and thickness quantization of SW modes should
result in increasing frequencies of SWR above 100 GHz.
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