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We perform highly accurate density matrix renormalization group (DMRG) simulations to investigate the
ground-state properties of the spin-1/2 antiferromagnetic square lattice Heisenberg J1-J2 model. Based on
studies of numerous long cylinders with circumferences of up to 14 lattice spacings, we obtain strong evidence
for a topological quantum spin liquid state in the region 0.41 � J2/J1 � 0.62, separating conventional Néel and
striped antiferromagnetic states for smaller and larger J2/J1, respectively. The quantum spin liquid is characterized
numerically by the absence of magnetic or valence bond solid order, and nonzero singlet and triplet energy gaps.
Furthermore, we positively identify its topological nature by measuring a nonzero topological entanglement
entropy γ = 0.70 ± 0.02, extremely close to γ = ln(2) ≈ 0.69 (expected for a Z2 quantum spin liquid) and a
nontrivial finite size dimerization effect depending upon the parity of the circumference of the cylinder. We also
point out that a valence bond solid, and indeed any discrete symmetry breaking state, would be expected to show
a constant correction to the entanglement entropy of opposite sign to the topological entanglement entropy.
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I. INTRODUCTION

Quantum spin liquids (QSLs) are elusive magnets without
magnetism, resisting symmetry breaking even at zero tem-
perature due to strong quantum fluctuations and geometric
frustration.1 The simplest QSLs known theoretically are char-
acterized by topological order,2–4 and support fractionalized
excitations including spinons, which carry the spin (1/2)
but not the charge of the electron. Since the QSL state
was suggested by Anderson,5 it has been sought, mostly
unsuccessfully, in models and materials. However, exciting
indications of QSL ground states were recently reported in
numerical studies of models on the honeycomb6 and kagome7

lattices. Here, we report strong evidence for a QSL state in
the square lattice J1-J2 antiferromagnetic (AFM) Heisenberg
model, with the Hamiltonian

H = J1

∑
〈ij〉

Si · Sj + J2

∑
〈〈ij〉〉

Si · Sj , (1)

where Si is the spin-1/2 operator on site i and 〈ij 〉 (〈〈ij 〉〉)
denotes nearest neighbors (next nearest neighbors). In the
following, we set J1 = 1 as the unit of energy and consider
only the frustrated case J2 > 0.

Equation (1) is of fundamental interest for its simplicity, and
for its relevance to cuprates, Fe-based superconductors,8–12

and other materials.13 Accordingly, it is among the most
studied models in frustrated quantum magnetism.14–25 These
previous studies have established the existence of a nonmag-
netic ground state between the Néel and striped AFM states,
which occur for small and large J2, respectively.

To characterize the nonmagnetic phase, we can ask two
main types of questions. First, we may ask about its symme-

tries. Being nonmagnetic, the ground state retains the internal
SU(2) spin-rotation invariance, but it may break spatial ones.
If SU(2) is preserved but spatial symmetries are broken in such
a way that the unit cell is enlarged, the system is said to have
valence bond solid (VBS) order. Second, we may ask about
the range of entanglement of the wave function. The simplest
representative wave functions for VBS states are continuously
deformable by local unitary transformations into product
states. Such is true for typical ground-state wave functions
for systems with broken discrete symmetries (the space group
of a lattice is discrete). As such, these wave functions have
only short-range entanglement (Schrödinger cat states are
possible in finite systems and will be discussed in Sec. IV).
Wave functions that cannot be continuously transformed in
this way into product states may be said to exhibit long-range
entanglement. This is true for all gapless critical phases as well
as for some gapped states. In particular, gapped QSL states
exhibit a particularly simple type of long-range entanglement,
characterized by topological entanglement entropy (TEE).26,27

Often the two types of characterization are conflated, but
this is not necessarily the case. States with both long-range
entanglement, e.g., with TEE, and VBS order exist. Such
states, while not technically QSLs by the standard definition
given above, have all the same exotic physics as QSLs with
unbroken spatial symmetry. We note, however, that it is
believed that for S = 1/2 spins on a lattice such as this one with
an odd number of spins per unit cell, the absence of VBS order
implies the presence of long-range entanglement. Therefore
a convincing demonstration of vanishing VBS order does,
indirectly, imply interesting QSL physics. It is, however, less
important to characterizing and proving the existence of a QSL
than positive, direct evidence of long-range entanglement.
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Most of the literature on the intermediate phase of the J1-J2

model has focused on the possibility of symmetry breaking
VBS order. Many of these prior studied have suggested that
the intermediate state has VBS order. We note, however,
that all numerical results for the J1-J2 model are based
either on biased techniques (such as series expansion or
coupled cluster methods, or fixed node or related versions
of Monte Carlo adapted to avoid the sign problem, which
is present for unbiased Monte Carlo in this system), or on
exact diagonalization of very small systems. Some theoretical
motivation for the possibility of VBS order comes from the
theory of deconfined quantum criticality,28 which predicts
that a continuous quantum phase transition—a deconfined
quantum critical point (DQCP)—should occur between an
ordered Neél state and a plaquette or columnar VBS state,
in some models. However, the existence of such a transition
does not in any way imply that it occurs for the J1-J2 model in
question, or that this particular model even harbors a VBS
phase. Other theoretical motivation for VBS order comes
from its presence in some large-N generalizations of the
nearest-neighbor Heisenberg antiferromagnet. However, these
large N studies are not controllably close to the SU(2) case
and, moreover, do not consider second-neighbor interactions.
In short, we believe there is very little compelling evidence
for the existence of VBS order in the isotropic S = 1/2 J1-J2

model to be found in the prior literature. We will return to
discuss VBS states in Sec. VI A.

The only unbiased technique capable of treating generic
frustrated two-dimensional spin systems of moderately large
size is the density matrix renormalization group (DMRG)
method.7,29–31 While the sizes that can be studied using the
DMRG are not as large as those accessibly by quantum
Monte Carlo (QMC) for unfrustrated models, they are still
very large and they are not limited by the sign problem,
which prevents application of QMC to most realistic physical
models. Moreover, the DMRG has some advantages over
QMC: it is intrinsically a zero-temperature technique, and
obtains a convenient representation of the ground-state wave
function. Most importantly for our purposes, the DMRG is
very efficient and convenient for calculating the entanglement
entropy, which we return to in some detail below. In this
paper, we report the results of extensive simulations (with
truncation error ∼10−7) on numerous cylinders of circumfer-
ence Ly = 3–14 and lengths Lx � 2Ly . In our simulations, we
measure spin-spin correlation functions, correlation functions
and expectation values of VBS order parameters, bulk singlet
and triplet energy gaps, and entanglement entropy. All results
confirm the existence of magnetic order for small and large J2,
and that (see Fig. 1) the ground state for 0.41 � J2/J1 � 0.62
is nonmagnetic, in very good agreement with the most accurate
prior results from series expansion and coupled cluster24

methods. Furthermore, we find that the intermediate phase
has a gap to both singlet and triplet excitations and, within our
uncertainty, no VBS order in the 2D limit as extrapolated from
the VBS correlation functions. We carry out further checks for
possible finite-size effects due to the boundaries, to see if this
might artificially suppress VBS order, and see no indication
that this is the case.

The latter results suggests a QSL state, based on negative
evidence: the apparent absence of VBS order. We find two
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FIG. 1. (Color online) The ground-state phase diagram for the
spin- 1

2 AFM Heisenberg J1-J2 model on the square lattice, as
determined by accurate DMRG calculations on long cylinders with
Ly up to 14. Changing the coupling parameter J2/J1, three different
phases are found: Néel antiferromagnet (AFM), topological quantum
spin liquid (QSL), and stripe AFM phase. ms(k0 = (π,π )) [ms(kx =
(π,0))] denotes the staggered magnetization in the Néel AFM phase
[stripe AFM phase], whose saturation value is 1/2. �S and �T denote
the spin singlet and spin triplet gaps, respectively.

positive evidences that this suggestion is correct, and that the
state is a Z2 QSL. First, we find a nonzero TEE, γ , which
is a constant and universal reduction of the von Neumann
entanglement entropy, known to vanish in any gapped state
with short-range entanglement. Notably, we point out in
Sec. IV that discrete spontaneous symmetry breaking phases
such as valence bond solids have absolute ground states, which
are Schrödinger cat states with a constant enhancement of
the entanglement entropy, i.e., an effect of opposite sign to
the TEE. Phases with nonzero γ and a gap to all excitations
are topological phases. Like conformal field theories in two
dimensions, only discrete types of topological phases exist,
with discrete allowed values of γ (which plays a role somewhat
similar to the central charge in a conformal field theory). For
all points we have studied within the nonmagnetic phase, the
value of γ is equal, within numerical uncertainty of 2%,
to ln(2), which is the minimal value possible for γ in a
topological phase with time-reversal symmetry. A topological
entanglement entropy of γ = ln(2) implies either a Z2 QSL
or a “doubled semion” phase. As there is, to our knowledge,
no theory suggesting the appearance of the semion phase in
an SU(2) invariant spin-1/2 model, we take this as strong
evidence for a Z2 QSL state. The second positive evidence for
a Z2 QSL is a remarkable odd/even effect in which static VBS
order is entirely absent for even Ly but is observed directly
in the VBS expectation values for odd Ly . This is expected
on general theoretical grounds for a Z2 QSL, as we show
in Appendix 1. We compare the behavior of the numerically
observed static VBS order for odd circumference cylinders
with theory, and find quite consistent results.

The remainder of the paper is organized as follows. In
Sec. II, we report results of magnetic and dimer correlation
functions and their extrapolation to the infinite system limit.
Section III discusses the singlet and triplet energy gaps.
Section IV describes the theory and measurements of the
topological entanglement entropy, and Sec. V presents results
on the even-odd effect. We conclude in Sec. VI with a summary
of the conclusions, and a detailed discussion of the reasons to
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think VBS order, even weak, is unlikely in this model, in
response to a recent critique.32 Appendix gives a theoretical
derivation and discussion of some properties of Z2 quantum
spin liquids.

II. CORRELATION FUNCTIONS

In this section, we discuss the behavior of correlation
functions of spin and dimer (VBS) operators. Here and in the
rest of the paper, all our numerical data are based on DMRG
simulations on cylinders, i.e., finite square lattices with N =
Lx × Ly sites and with open and periodic boundary conditions
in the x and y directions, respectively. When not otherwise
specified, we fix the aspect ratio to Lx/Ly = 2, with Ly = L,
then Lx = 2L, which has been shown to optimize results in
the DMRG.7,30,31 Moreover, to extract bulk properties, we
will often work on the central half of the system with an
effective system size Nc = L × L. For instance, in computing
spin correlation functions 〈Si · Sj 〉, we restrict site indices i

and j to the central half of the system so that the obtained
correlation functions could represent the bulk properties. We
keep more than m = 12 000 states in each DMRG block for
most systems, which is found to give excellent convergence
with truncation errors of the order or less than 10−7.

We begin with measurements of the magnetic correlations
in the ground state, 〈Si · Sj 〉, and the corresponding static struc-
ture factor Ms(k,L) = 1

L2

∑
ij eik·(ri−rj )〈Si · Sj 〉. The structure

factor is peaked at k0 = (π,π ) for small J2 and kx = (π,0) or
ky = (0,π ) for large J2, corresponding to the Néel and striped
AFM states, respectively. To quantitatively analyze the order,
we perform an extrapolation of the (squared) staggered mag-
netization, m2

s (k,L) = 1
L2 Ms(k,L), to the two-dimensional

limit (L = ∞) according to the generally accepted form
m2

s (k,L) = m2
s (k,∞) + a

L
+ b

L2 [see Figs. 2(a) and 2(b)].
Extrapolation from data for L � 12 shows that the Néel

AFM order is nonzero for J2 < 0.41, while striped AFM order
onsets for J2 > 0.62, thus establishing the phase boundaries
shown in Fig. 1. A strong check on the quality of our results
is the staggered magnetization at J2 = 0, which we find to be
ms(k0,∞) = 0.304, very close to the best known numerical
value of the magnetic moment ms = 0.307 by large-scale
quantum Monte Carlo (QMC) simulation.33 The location of
the phase boundaries is consistent with previous studies.25,34

We next consider possible VBS order, which has been
considered a prime candidate for nonmagnetic symme-
try breaking in the intermediate phase. From the bond
operators Bα

i ≡ Si · Si+α on bond (i,i + α) with α = x̂

or ŷ, we define the dimer-dimer correlation functions
〈Bα

i B
β

j 〉, with the corresponding structure factor M
αβ

d (k,L) =
1
L2

∑
ij e

ik·(ri−rj )(〈Bα
i B

β

j 〉 − 〈Bα
i 〉〈Bβ

j 〉). Typical VBS patterns
expected theoretically have momentum kx = (π,0) or ky =
(0,π ), so to study the correlations, we focus on Ly even,
for which ky = π is an allowed momentum. We indeed
observe a maximum in Maa

d (k,L) at k = ka (a = x,y), and
therefore define the dimer order parameters by m2

d,a(L) =
1
L2 M

aa
d (ka,L). As shown in the inset of Fig. 3, for finite

systems, both horizontal and vertical dimer order parameters
have a maximum within the intermediate phase. Note that for
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FIG. 2. (Color online) Finite-size extrapolations of the magnetic
order parameters and spin excitation gaps. (a) The Néel AFM order
parameter m2

s (k) at wave vector k0 = (π,π ) and (b) stripe AFM order
parameter m2

s (k) at wave vector kx = (π,0) or ky = (0,π ), for various
values of J2, fitted using second-order polynomials in 1/L. Néel AFM
order disappears for J2 > 0.41, while stripe AFM order develops for
J2 > 0.62, as seen in the corresponding insets. (c) Spin triplet gap
�T and (d) spin singlet gap �S for different values of J2, also fitted
using second-order polynomials in 1/L. The inset in (c) shows �T

for L = 4,6,8,10, and the extrapolated values in the 2D limit, as
functions of J2. For the spin singlet gap, due to the numerical cost,
we focus on several typical data points as shown in (d).
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FIG. 3. (Color online) Order parameters for horizontal and vertical dimers. (a) The dimer order parameter m2
d,x at wave vector kx = (π,0)

and (b) plaquette order parameter m2
d,y at ky = (0,π ), as a function of J2 for different system sizes, and extrapolated to L = ∞.

the larger systems, the order parameters for horizontal and
vertical dimers become nearly indistinguishable, indicating
that the isotropy of the two-dimensional limit is being
recovered.

Applying the same extrapolation scheme used for the
magnetic order parameters, however, the extrapolated dimer-
ization m2

d,a [see Fig. 4(a)] for L → ∞ vanishes for all
0 � J2 � 1. For characteristic values of J2 near the middle of
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FIG. 4. (Color online) Finite-size extrapolations of the dimer
order parameter and plaquette order parameter. (a) The dimer order
parameter m2

d,y at wave vector ky = (0,π ) and (b) plaquette order
parameter m2

p for various values of J2, fitted using second-order
polynomials in 1/L. The inset shows the plaquette order parameter for
L = 4,6,8,10 and the extrapolated values in the 2D limit as functions
of J2.

the intermediate phase, an exponential fit of the dimer-dimer
correlation function (not shown) gives an estimate of the
VBS correlation length ξd ≈ 4. Taken at face value, these
observations indicate that the VBS order is a finite-size effect,
and vanishes in the thermodynamic limit. More conservatively,
at a minimum, the result indicates that the VBS correlations we
observe cannot be distinguished from just fluctuation effects
in a state with unbroken spatial symmetry, and there is no a
priori reason to regard them as evidence of true VBS order.

Both columnar and plaquette VBS phases have been sug-
gested in the past. The complex order parameter md,x + imd,y

in fact is sufficient to detect and distinguish both columnar
and plaquette VBS phases,28 but as an additional check we
measure directly the correlations of the plaquette operator
Pi = 1

2 (�i + �−1
i ), where �i cyclically permutes the four

spins of the plaquette i in a clockwise fashion. The plaquette
order parameter determined from the corresponding structure
factor is shown in Fig. 4(b). Like the VBS order parameter, it
vanishes in the extrapolation to the thermodynamic limit.

III. ENERGY GAPS

We next consider the energy gap to bulk singlet and triplet
excited states and find both to be nonzero in the intermediate
phase. This rules out any type of magnetic order, not just the
(π,π ) and (π,0) orders considered explicitly via the correlation
functions. It also rules out other exotic states breaking SU(2)
symmetry, such as spin nematics. This is because any state
with broken spin-rotational symmetry must have a vanishing
gap by Goldstone’s theorem.

To obtain bulk excited states, we follow Refs. 7, 30, and 31
and first target only one state, sweeping enough to obtain
a high-accuracy ground state; then we restrict the range of
bonds that are updated in the DMRG sweeps to the central half
of the sample and target the two lowest-energy states, again
sweeping to high accuracy, but keeping the end regions of the
samples locally in the ground state. To obtain the spin triplet
gap, we do similar things, but target states with total Sz = 0
and 1 separately. As for the staggered magnetization, we
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perform a second-order polynomial extrapolation of the singlet
and triplet gaps to the thermodynamic limit [see Figs. 2(c)
and 2(d)]. Consistent with expectation, both �S(L = ∞) and
�T (L = ∞) vanish in the two AFM phases. They are both,
however, nonzero and large in the intervening region (see
Fig. 1). This rules out any state with broken SU(2) spin
symmetry.

We notice that the singlet gap remains consistently below
the triplet gap throughout the intermediate phase. This is an
indication of short-range singlet formation. It is consistent with
a spin liquid state, and with a system with weak VBS order. We
would, however, expect a strong VBS state to have a triplon
excitation, corresponding to breaking one singlet bond, as the
lowest energy bulk excitation, lower than singlet excitations
that require breaking two singlets. So we can exclude a strong
VBS state in this sense based on the excitation spectrum.

IV. TOPOLOGICAL ENTANGLEMENT ENTROPY

The above results provide evidence against conventional
ordering in the intermediate region. Magnetic ordering appears
comfortably excluded by both the correlation function and
excitation spectrum analysis. Extrapolation of the dimer
correlations to the thermodynamic limit argues that VBS order
is absent as well, but we cannot exclude some very weak
ordering on these grounds alone.

We now undertake a positive evidence for a QSL with
topological order—the topological entanglement entropy. The
topological entanglement entropy is obtained from the von
Neumann entanglement entropy S(A). The latter is defined
for a state |ψ0〉 (which we take to be the ground state)
and a partition of the full system into a subsystem A and
its complement B, by first constructing the reduced density
matrix ρA = TrB |ψ0〉〈ψ0|. Then the entanglement entropy
S(A) = −TrA(ρA ln ρA). For a system with a gap to all bulk
excitations (as we have verified in Sec. III), provided the
boundary between A and B is taken to be smooth (i.e., have
no corners), the entanglement entropy must scale according to

S(A) ∼ σL − γ + · · · , (2)

where the omitted terms vanish in the large L limit. Here, σ is
a nonuniversal number that measures the local entanglement
across the boundary. According to Refs. 26 and 27, the
positive term γ is a universal constant reduction from the
area law.26,27 It arises entirely from nonlocal entanglement,
and is topological in origin. In particular, the area law is
strictly obeyed, i.e., γ = 0, for any state without long-range
entanglement, that is, which can be smoothly deformed into
a product state. This is true, in the absence of spontaneously
broken symmetry, for any ground state that does not exhibit
topological order, i.e., which is not a topological QSL.26,27

Although it is not discussed in the seminal papers on
topological entanglement entropy, a nonzero negative γ (i.e.,
a positive correction to the area law) can arise from discrete
spontaneous symmetry breaking (more severe positive correc-
tions to the area law arise in the case of a continuous broken
symmetry,35,36 but this is inconsistent with the existence
of a gap to bulk excitations). In particular, in an ideal
model with an exact discrete symmetry of the Hamiltonian,
the eigenstates must form irreducible representations of the

symmetry group. For simple Abelian groups such as ZN ,
these representations are one dimensional, so this implies
the Hamiltonian eigenstates are mutual eigenstates of the
symmetry generators. This applies of course to the absolute
ground state of the system, which is therefore a Schrödinger
cat state, which superimposes the symmetry broken global
ground states with equal weight. For the case of a fully
broken ZN symmetry, with N degenerate ground states in the
thermodynamic limit, this gives rise to N terms in the Schmidt
decomposition of the ground state, and therefore a correction
γ = − ln(N ), i.e., a positive correction to the area law or
ln(N ). We have indeed observed such behavior numerically
in test studies of the simplest quantum transverse field Ising
model in the ferromagnetic phase, consistent with the expected
γ = − ln(2) for this case.

Thus we see that there are two potential sources of a nonzero
constant term in the entanglement entropy. A topological
contribution that decreases the entropy and a symmetry
breaking contribution that increases it. The latter correction
arises from global entanglement of the entire system. In work
completed since the earlier version of this article appeared,37

it has been shown that the DMRG, which is a minimum
entanglement approximation, tends to converge, for large
systems, to quasiground states that capture all entanglement
out to a long length scale, but not the last global entanglement.
That is, for long systems, the convergence of the DMRG is
first to a minimum entanglement state (MES) amongst the
manifold of states comprising the degenerate ground states in
the thermodynamic limit. For topologically ordered phases,
which have a ground-state degeneracy in the thermodynamic
limit of topological origin, the MES exhibits the universal
reduction of entanglement entropy, i.e., the universal positive
value of γ . For symmetry broken states for which there is a
ground-state degeneracy in the thermodynamic limit dictated
by symmetry, the MES is simply a single product-like state,
with γ = 0. For a fixed system size that is not too large, the
DMRG can be pushed to converge to the global ground state
by increasing the number of states m. This is accompanied in
these cases by a sharp increase in the entanglement entropy.
By increasing the length Lx of the system at fixed Ly , this
final increase in the entanglement entropy can be pushed
beyond the range of feasible calculations, and the simulation
is guaranteed to obtain the MES. In the MES, the constant
correction γ is entirely of topological origin, and is zero in
discrete symmetry breaking states. Thus in this limit, γ is
the topological entanglement entropy, and a nonzero result
proves that the state is a (topological) QSL. Moreover, we see
from the above discussion that a positive γ can only come from
topological order, so we do not obtain false positive signatures
of topological order from symmetry breaking.

In Fig. 5(a), we plot the von Neumann entanglement entropy
S(Ly) associated with the constant x cut that separates the
cylinder into two symmetric parts of equal length, Lx/2,
as a function of Ly , with Ly even (for Ly odd, there are
additional effects which we discuss in Sec. V). By comparing
systems of different lengths [see Fig. 5(b)], we see that the
entropy is essentially independent of Lx for Lx > 2Ly and
so equal to its limit at Lx = ∞. We then extrapolate γ

from the fitting function S(Ly) = aLy − γ . For J2 = 0.5,
deep in the magnetically disordered phase, our results show
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FIG. 5. (Color online) The entanglement entropy at J2 = 0.5 and 0.56. (a) The entanglement entropy S(Ly) for Ly = 6–14. By fitting
S(Ly) = aLy − γ , we obtain γ ∼ 0.70 ± 0.02 for J2 = 0.5 and γ ∼ 0.72 ± 0.04 for J2 = 0.56. (b) Length dependence of the entanglement
entropy for J2 = 0.50 and several system widths. One observes that the entropy is almost independent of Lx for long systems (a small increase
with Lx can be observed for the smallest Lx at Ly = 8).

that γ = 0.70 ± 0.02. This value appears constant, within
numerical uncertainty, within the intermediate phase: for J2 =
0.56 (close to the quantum phase transition point J2 = 0.62),
we obtain in the same way γ = 0.72 ± 0.04. Without even
considering the magnitude of γ , the fact that we see a negative
rather than positive correction to the entanglement entropy is
strong evidence against VBS order.

As mentioned in the Introduction, the topological entangle-
ment entropy γ takes discrete values in topological phases.
The minimum possible value for systems with unbroken
time-reversal symmetry is γ = ln(2) ≈ 0.69, which is within
2% of the numerical results. The constancy of the numerical
topological entanglement entropy and the consistency with the
theoretically allowed value of ln(2) constitute strong evidence
for a topological QSL state. The appearance of the pure number
ln(2) (within happily small numerical uncertainty, of course)
is certainly very striking, coming out entirely unsolicited from
the DMRG calculations.

Notably, γ = ln(2) is the expected value for a Z2 QSL
phase. The Z2 QSL is in many ways the simplest spin liquid
state, and has appeared repeatedly in theories of quantum
magnets. As a rather complete theory of the low-energy
properties of Z2 QSLs is available, we can compare this to
numerics in various ways.

V. ODD-EVEN EFFECT

In this section, we make such a comparison based on
the theory of the Z2 QSL. Specifically, in a Z2 QSL on
the square lattice, it is predicted that cylinders with odd
circumference—and not those with even circumference—
should exhibit nonvanishing bulk staggered dimerization. This
even-odd effect was obtained in Ref. 38, by analysis of
quantum dimer models.39,40 Specifically, for a long cylinder
with (even) Lx → ∞ and odd Ly , the Z2 QSL induces a
nonvanishing staggered dimerization,

〈
Bx

i

〉 = Bx + Dx(−1)xi , (3)

with Dx ∼ e−Ly/ξ̃ exponentially decreasing with circumfer-
ence. By contrast, no dimerization appears for even Ly . We
obtain this behavior in Appendix 1 directly from the effective
Z2 gauge theory description, which shows that it is a universal
feature of Z2 QSLs on the square lattice, and not particular to
the quantum dimer models studied in Ref. 38.

Precisely this behavior is observed in our numerics. Fig-
ures 6(a) and 6(b) contrast the oscillatory and nonoscillatory
horizontal bond expectation values obtained for odd and even
Ly . For even Ly , some small boundary effects are observed,
decaying over about three lattice spacings. Figure 6(c) shows
the exponential behavior of Dx obtained as the difference of
even and odd bonds at the center of the sample. Interestingly,
theories predict (see Ref. 38) ξ̃ = 2ξ , where ξ is the true
dimer correlation length defined through the dimer correlation
function. This explains the rather slow decay of Dx , which
fits to ξ ≈ 5, reasonably consistent with ξd ≈ 4 found (see
Sec. II) from the examination of VBS correlation functions.
While some even-odd effect might be expected in a columnar
dimer phase for narrow cylinders, the exponentially-decaying
behavior and results of other tests (see Sec. VI A) seem
consistent only with a Z2 QSL.

VI. DISCUSSION

The previous sections have shown that DMRG makes a
compelling case for a nonmagnetic intermediate state in the
J1-J2 model. From direct measurements of the dimer order
parameter and correlations, the intermediate state appears
to have no or very weak VBS order. Most dramatically,
we find a robust constant suppression of the entanglement
entropy relative to the generic area law, known as topological
entanglement entropy, which is a unequivocal signature of
topological order. The value of the topological entanglement
entropy we find is within 2% (and our numerical uncertainty)
of the expected universal value γ = ln(2) for the simplest Z2

QSL state, which suggests comparison of specific theoretical
prediction for this Z2 phase to numerics. We indeed find a
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FIG. 6. (Color online) Even-odd effect. (a) Expectation value of horizontal bond operator 〈Bx
i 〉 for Ly = 5 and Lx = 32. (b) The same

expectation value for Ly = 6 and Lx = 32. (c) Dimer order parameter Dd,x̂ for odd Ly at Lx = ∞. The red line denotes the exponentially
decaying fitting function with the form of Eq. (4). (d) Modified boundary induced dimer order parameter for Ly = 6,8, with d , the distance
from the boundary. Here, the dimer order parameter is defined as the dimer density difference between two nearest-neighbor vertical dimer
bonds. Inset shows the correlation length ξ along the cylinder as a function of Ly .

characteristic even-odd effect in the staggered dimerization,
consistent with this state.

It is worth noting that ours is not the only suggestion of a
QSL state in the J1-J2 model. Notably, after the initial version
of this paper appeared, a parallel work41 came to similar
conclusions based on a tensor network variational method.

A. Could this be a weak VBS state with strong finite size effects?

In our opinion, the above results all point in the same
direction, and are especially definitive given the seemingly
unassailable implication of the observed topological entan-
glement entropy. Nevertheless, following an earlier version
of this paper, Sandvik32 has suggested, by comparison with
quantum Monte Carlo results for the so-called J -Q models on
cylinders, that similar behavior might occur for a system with
a VBS ground state in the thermodynamic limit, due to strong
finite size effects. We discuss this suggestion here.

1. Difference of models

The results of Ref. 32 are based on the J -Q models, which
have four or six spin interactions (with coefficient Q). These
multispin interactions explicitly involve interactions between
dimers and, as a consequence, rather naturally favor VBS
states. For instance, the simplest mean-field treatment of the
Q term in the J -Q2 model would proceed by decoupling it

by defining a mean-field dimer expectation value of the dimer
operator, and thereby a VBS phase appears when the Q term
becomes substantial. Thus it is natural and intuitive to expect
a VBS phase in the J -Q models. By contrast, there is no a
priori reason to expect dimer order in the J1-J2 model. The
notion that a VBS state is somehow the most “likely” candidate
for the intermediate nonmagnetic state in the J1-J2 case is a
misleading starting point. More importantly, we should be
cautious in drawing conclusions from the J -Q models on the
behavior of the J1-J2 model.

2. Entanglement entropy

The most direct evidence for a QSL state we have obtained
is the topological entanglement entropy, remarkably close to
the universal expected value for a Z2 QSL. In Ref. 32, Sandvik
suggests that “it would not be surprising” if a system near
a Néel to VBS transition (i.e., a DQCP) would exhibit a
constant correction to the area law similar to that expected for
a topological phase. In fact, we have shown theoretically that
in a VBS state, there is indeed a constant correction but
of opposite sign to that of a topological phase. Thus even
forgetting the magnitude of γ , the sign alone is a strong
argument against VBS order. The fact that the measured γ is
within 2% of the very beautiful and universal expected result,
ln(2) makes it hard to imagine this is mere coincidence.
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In the context of a putative DQCP, the constant correction
for a VBS state is obtained, if the system size is larger
than the “deconfinement length,” below which there is an
emergent U (1) symmetry unifying the plaquette and columnar
VBS states and linear combinations in between with one
another. Would one perhaps see a signal similar to the
topological entanglement entropy were this length is longer
than the system size? Actually, in this case, we expect that the
system should appear to exhibit a gapless Goldstone mode,
characteristic of spontaneously breaking this U (1) symmetry.
This is the situation discussed in Refs. 35 and 36. In fact,
the behavior of the entanglement entropy in this case is even
further from that of a topological phase: a positive logarithmic
enhancement of the entanglement entropy beyond the area
law is predicted, again of opposite sign to the topological
case. Moreover, in the 1D limit, Lx 	 Ly , the system should
behave as a 1 + 1-dimensional conformal field theory with
central charge c = 1, and hence exhibit a logarithmic growth of
entanglement entropy, S(L) ∼ 1

6 ln(Lx), in such a case. This is
completely at odds with our observations; observe the constant
behavior versus Lx in Fig. 5(b).

3. VBS scaling

In Fig. 23 of Ref. 32, our data for the dimerization is
replotted along with data for the J -Q2 model on a log-log
plot, to fit to a single pure power law. Data for g(=J2/J1) = 0.5
are compared to D2

y ∼ L−α with α ≈ 1.8, and slightly above
which are the data for g = 0.56. Small details of the data
for the latter case for the smallest systems, Lx = 4,6, are
used to conclude that the system is VBS ordered in the
infinite-size limit; we disagree. First, note the simple fact that
the dimerization for the J1-J2 model is much smaller than that
of the J -Q2 model (which is the more weakly VBS ordered of
the two J -Q models). Second, the scaling on this plot for the
J1-J2 model (unlike the J -Q models) is quite close to α = 2,
which is, as mentioned in the same paragraph of Ref. 32,
exactly the behavior expected for a non-VBS phase.

4. Even-odd effects in VBS states

One of the pieces of evidence for the Z2 QSL state
taken from our numerics was the very distinct behavior of
the staggered dimerization in even and odd circumference
systems, described in Sec. V. While this is certainly consistent
with a Z2 state, one could imagine similar behavior arising in
a system with VBS order in the thermodynamic limit. Here,
we consider the expected behavior in such a situation more
carefully for comparison to our results.

Consider a system that is spontaneously dimerized in the 2D
limit, with a columnar dimer ground state. This state is fourfold
degenerate, with four ground states consisting of two states
with “horizontal dimers” staggered along the x direction [(π,0)
order] and two states with “vertical dimers” staggered along
the y direction [(0,π ) order]. In the thermodynamic limit, these
states are degenerate by rotation and translation symmetries.
When confined to a cylinder, the anisotropy of the boundary
conditions breaks the symmetries between the horizontal
and vertical states. For the case of odd-width cylinders, the
vertical dimerization is frustrated, because alternating “rows”
of vertical dimers do not fit into the sample. This clearly would

favor the horizontal dimer states. Amongst the two horizontal
dimer states, the presence of an end to the system splits the
remaining degeneracy, so all degeneracy is broken and we
would expect long-range horizontal dimer order to appear. To
this extent, the behavior for odd-width cylinders is the same
as observed in our numerics, and as expected for the Z2 QSL.
The difference is in the scaling. If the 2D system has a gapped
dimer ground state, we would expect the expectation value
of the dimerization to converge exponentially to a nonzero
two-dimensional limit as the width of the cylinder increases,
i.e.,

Dx |2D dimer state ∼ D∞ + Ae−Ly/ξ̃ , (4)

where A and ξ̃ are constants and D∞ is the value of the dimer
order parameter in the thermodynamic limit.

As shown in Fig. 6(c), the numerical fitting to this form
gives D∞ = 0 within numerical accuracy. This is entirely
consistent with vanishing VBS order and a Z2 QSL in the
thermodynamic limit, but of course cannot exclude some
weak dimerization smaller than our numerical uncertainties.
It seems to us natural to take the former interpretation,
since it is simpler. According to the theory for the Z2

QSL discussed in Appendix 1 and quantum dimer model
results,38 an exponential decay for the staggered dimerization
is expected with “doubled” correlation length ξ̃ = 2ξ , where
ξ is the true VBS correlation length. We find ξ̃ ≈ 10 lattice
spacings, which is equivalent via Eq. (A28) to ξ ≈ 5.

For the even circumference cylinders, the vertical dimer
order is unfrustrated, and it is an energetic question, which
likely depends upon the details of the model, whether the
vertical or horizontal dimer order would be favored in this case.
If the horizontal dimer state is favored, then we again expect
behavior like Eq. (4), which is manifestly inconsistent with our
numerics, and markedly different from the Z2 QSL. However,
it is perfectly conceivable that the vertical dimer pattern is
favored instead. If so, the periodic boundary conditions do
not break the symmetry between the two vertical dimer states,
and so we expect the DMRG to converge to the symmetric
linear combination of the two dimer states, which lacks any
spontaneous dimer pattern. So at least the presence of an
even-odd effect in the static dimerization is consistent with
a VBS state, if the cylindrical geometry favors the two VBS
states with horizontal rows of vertical dimers. On the face
of it, this appears consistent with our numerical results for
the staggered dimerization, if one assumes that the value of
the dimerization itself (extrapolated from odd circumference
cylinders) is smaller than our numerical uncertainty. But it
is worth pointing out that for this scenario to hold, the
even circumference system must be in a Schrödinger cat
state, and should exhibit a positive ln(2) enhancement of the
entanglement entropy (negative TEE) as a consequence, and,
moreover, convergence to such a state should be progressively
more difficult with increasing Lx . This is not at all what
we see.

5. End effects

In Ref. 32, strong boundary effects are observed on
the dimerization in the J -Q models. Indeed, on symme-
try grounds, an open end breaks translation and reflection

024424-8



SPIN LIQUID GROUND STATE OF THE SPIN- 1
2 . . . PHYSICAL REVIEW B 86, 024424 (2012)

symmetries in the x direction, and as such should act as a
“boundary field” on the staggered dimer order Dx , i.e., it
induces a term −λDx(x = 0) in a Landau theory of this order.
On these grounds, we always expect some staggered dimer
order near the boundary. If it is energetically disfavored in
the bulk, this will decay rapidly. Otherwise, it will penetrate
deep into the bulk. In the J -Q models, it was found that the
boundaries induce a quite strong dimerization, so that for even
Ly the bond expectation values 〈Bx

i 〉 oscillate visibly [c.f. in the
inset of Fig. 6, and in Fig. 15(a) of Ref. 32, the bond expectation
value shows oscillations with large amplitude in the J -Q3 and
J -Q2 models, respectively]. By contrast, in the J1-J2 model,
we see in Fig. 6(b) that there are no visible oscillations in
the same quantity when Ly is even. This qualitative difference
tells us that Dx order is clearly much less favorable in the J1-J2

model.
We next try to address the possibility, raised above, that

the cylindrical geometry when Ly is even favors Dy order,
i.e., horizontal rows of vertical dimers. This is at odds
with our measurements of the dimer correlations and the
entanglement entropy. Still, it is more compelling to explicitly
try to rule out this possibility directly. To do so, we have
studied several modified cylinders with even circumference
whose ends have been altered breaking translational symmetry
along y in order to break the degeneracy and favor one of
the two vertical dimer states. What we observe is that in all
cases, as shown in Fig. 6(d), although dimer order is induced
by this symmetry breaking in the vicinity of the boundary,
it decays exponentially into the bulk of the cylinder. The
correlation length ξv for this vertical dimer order still depends
on circumference for the system sizes in our study, so we
plot it versus Ly to see if it is limited by the system size (it
does not appear to be), and to extrapolate from this its value
in the thermodynamic limit. We observe that this correlation
length grows sublinearly in Ly , and extrapolates to ξv ∼ 4
in the 2D limit (i.e., Ly = ∞). This is very different from
what would be expected for a 2D state with long-range dimer
order in which the nonzero stiffness (surface tension) of the
ordered dimer state would prevent such decay (we would
expect ξv = ∞ in this case). If one were to imagine that
the system were proximate to a DQCP, and Ly were smaller
than the deconfinement length, then we would instead expect
ξv ∝ Ly , which again is not consistent with our results. Note
also that the value for ξv is quite consistent with the value for ξ̃

obtained earlier. The fact that vertical dimer order decays away,
even when the most favorable conditions have been created for
it, is strong evidence against VBS order in the 2D limit.

B. Summary and open issues

In conclusion, we have presented compelling evidence from
accurate DMRG calculations for a topological QSL state in
the two dimensional J1-J2 Heisenberg model. This is the
simplest example of such a QSL discovered to date, and
the only one to our knowledge for a Heisenberg model on a
Bravais lattice. As such, it is particularly attractive for further
theoretical and experimental study. We anticipate, for instance,
that our discovery will afford an opportunity to explore the
QSL mechanism of unconventional superconductivity4,42 in a
controlled theoretical setting.

Another consequence of topological order is the presence
of quasi-degenerate ground states on the torus or cylinder. A
twofold quasidegeneracy is expected for a Z2 QSL on the
cylinder studied here, with a splitting of order Lxe

−Ly/ξ in the
case of long cylinders, where ξ is the spin-spin correlation
length (see Appendix 2). As shown in Ref. 37 and discussed
in Sec. IV, the DMRG preferentially converges, however, to
just one of the quasidegenerate ground states (specifically,
a minimally entangled state). This explains the absence of
an observed topological degeneracy in this and other DMRG
studies.7,37,43 It is a nontrivial and open problem to obtain
the second ground state and thereby extract the topological
energy splitting. It is our expectation that it is actually orders
of magnitude smaller than the bulk energy gaps.

The nature of the quantum phase transitions from the QSL
to Néel and striped antiferromagnetic phases is an interesting
topic for future study. Though we have not focused on the
transitions themselves, and more work is clearly required to
make strong conclusions about them numerically, it appears
that the transition from the Néel to QSL state may be
continuous. Reference 32 erroneously claims that a Néel to
QSL transition might be in the same universality class as the
DQCP between Néel and VBS order, because “the operator
causing the VBS order is dangerously invariant.” Though at
the DQCP, the operator that distinguishes between columnar
and plaquette VBS order is dangerously irrelevant, even when
this operator’s coefficient in the Hamiltonian is tuned to zero,
the nonmagnetic phase has spontaneous VBS order. So this
claim is incorrect. In fact, such a transition requires an entirely
different theory. A suggestion for the theory of this critical
point has been made in Ref. 44, and it would be interesting to
compare it to further numerical studies.
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APPENDIX: Z2 GAUGE THEORY

Here, we discuss an effective Z2 gauge theory description
of the QSL state45 and, in particular, derive the behavior of
the dimerization and ground-state quasidegeneracy discussed
in the main text. We begin with the Hamiltonian

H = −K
∑
�

∏
〈ij〉∈�

σ z
ij − h

∑
〈ij〉

σx
ij + r

∑
i

ni

−
∑
〈ij〉

σ z
ij [t b

†
iαbjα + �ηi(biαεαβbjα + H.c.)], (A1)
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where ni = b
†
iαbiα and ηi = (−1)xi+yi . We introduced

“spinon” operators biα , which transform as spinors under
SU(2) and obey standard commutation relations [biα,b

†
jβ ] =

δij δαβ . The physical spin operators are related to them by
Si = 1

2b
†
iασαβbiβ . The σ z

ij operators are Pauli matrix Z2 gauge
fields, which we will refer to as the “magnetic” gauge fields.
Z2 gauge symmetry is enforced by the constraint∏

|j−i|=1

σx
ij = −(−1)ni . (A2)

Note that the product in Eq. (A2) is over j not i. This is
the analog of Gauss’ law for the “electric” field σx

ij . This
constraint “generates” the Ising gauge symmetry σ z

ij → sisjσ
z
ij

and bi → sibi , where si = ±1 can be chosen arbitrarily for
each site.

1. Staggered dimerization

Here, we obtain the behavior of the staggered dimerization
from the Z2 gauge theory. For this purpose, it is sufficient to
integrate out the spinons, since we discuss local properties of
the QSL state that has a spin gap (but see below Appendix 2).
We can obtain this limit from Eq. (A1) by taking r large, which
projects the problem onto the subspace with ni = 0. Then, the
Hamiltonian reduces to

H = −K
∑
�

∏
〈ij〉∈�

σ z
ij − h

∑
〈ij〉

σx
ij (A3)

and ∏
|j−i|=1

σx
ij = −1. (A4)

Equations (A3) and (A4) describe the “odd Ising gauge theory.”
It is in the deconfined (QSL) phase for K/h > xc, where xc is
some order one number specifying the critical point.

Now consider the staggered dimerization, Dx =
(−1)xi 〈Dx

i 〉 − 〈Dx
i+x̂〉, defined in the main text. On symmetry

grounds, we expect that 〈Dx
i 〉 ∝ 〈σx

i,i+x̂〉 (this relation can also
be derived by perturbation theory in t/r). We will derive the
odd/even effect for the staggered dimerization in finite-width
cylinders in two ways. First, we obtain it directly from the
Ising gauge theory in the strong coupling limit, which is a very
short derivation. Second, we obtain it using duality and field
theory, which exposes the universal nature of the staggered
dimerization and its relation to Z2 vortex (“vison”) excitations.

To see how one might expect the dimerization, we first
consider the “topological” operator

Qx =
Ly∏

y=1

σx
xy;x+1y . (A5)

This operator commutes with H and is thus a constant of
the motion. Moreover, if we consider the case x = 1 at the
left-hand side of the system, we obtain

Q1 =
Ly∏

y=1

⎛
⎝ ∏

|j−i|=1

σx
ij

⎞
⎠

i=(1,y)

= (−1)Ly , (A6)

where we have used Eq. (A4). Again using Eq. (A4), one
obtains

Qx = (−1)xLy . (A7)

Thus Qx = 1 for even Ly , but oscillates, Qx = (−1)x , for odd
Ly . Although this is not the dimerization itself, it suggests the
presence of staggered dimerization in the case of odd Ly .

a. Direct derivation

We now turn to the first derivation, working deep in
the deconfined phase, taking K 	 h, and proceed by direct
calculation perturbatively in h. For h = 0, the ground state(s)
are obtained by simply choosing a classical configuration of σ z

ij

with zero Ising gauge flux,
∏

〈ij〉∈� σ z
ij = 1 on all plaquettes

(for instance the state with σ z
ij = +1 on all bonds), and then

projecting this state to satisfy Eq. (A4):

|ψ0〉 =
∏

i

P̂i

∣∣σ z
ij = 1

〉
, (A8)

where

P̂i = 1

2
− 1

2

∏
|j−i|=1

σx
ij . (A9)

In this state, the expectation value of σx
ij vanishes. This can be

seen as follows. Define the Wilson loop operator

W [C] =
∏

〈ij〉∈C
σ z

ij , (A10)

where C is a closed curve on the lattice. All such Wilson
loops commute with the projectors P̂i , so |ψ0〉 is an eigenstate
of the Wilson loop with W [C]|ψ0〉 = |ψ0〉. Moreover, since
W [C]2 = 1, we have

〈ψ0|σx
ij |ψ0〉 = 〈ψ0|W [C] σx

ij W [C]|ψ0〉 = −〈ψ0|σx
ij |ψ0〉 = 0,

(A11)

if we choose C to be a curve containing the both 〈ij 〉. To
achieve a nonzero result, we must consider nonzero orders
of perturbation theory in h/K . In general, the form of the
perturbative eigenstate is

|ψ〉 ∝
∞∑

n=0

cn[R̂H ′]n|ψ0〉, (A12)

where R̂ = P(E0 − H0)−1P is the resolvent with H0 =
H (h = 0) and E0 the ground-state energy of H0) and P =
1 − |ψ0〉〈ψ0| is the projector onto the unperturbed excited
state subspace, H ′ = H − H0 = −h

∑
〈ij〉 σ

x
ij , and the cn are

numerical coefficients. This can be expanded to give a series
of terms, each involving a product of n electric gauge fields
acting on |ψ0〉 at O[(h/K)n]. For each such term, we can repeat
the argument in Eq. (A11). We will achieve a vanishing result
provided we can choose C to contain an odd number of links
that coincide with the set of links L containing the electric
fields in the corresponding term in the wave function and the
link 〈ij 〉 in the expectation value. This is always possible unless
the “dual” of L forms a closed loop. This dual is formed by
associating a link of the dual lattice with each link in L. If the
dual of L indeed forms a closed loop, then the closed loop C
must intersect it an even number of times.
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Thus we obtain nonzero contributions only from terms in
which L is comprised of closed dual loops. There are trivial
contributions from short loops, the minimal one being the case
when L contains 〈ij 〉 twice, which is first order in h/K . This
gives a nonzero constant contribution to the expectation value,
but one which is uniform, and hence does not correspond to a
staggered dimerization.

A nontrivial result is obtained first at O[(h/K)Ly−1], from
the smallest closed dual loop encircling the cylinder and
containing the bond due to 〈ij 〉, which must be a horizontal
bond. This leading term arises from the O[(h/K)m] correction
to the ground-state ket and the O[(h/K)Ly−1−m] correction to
the ground-state bra (m = 0,1, . . . ,Ly − 1), giving

〈
σx

ii+x̂

〉 = · · · + Cn

Ly−1∑
m=0

(
Ly − 1

m

) (
h

K

)(Ly−1)

〈ψ0|Qxi
|ψ0〉

= · · · + Cn

(
2h

K

)Ly−1

(−1)Lyx. (A13)

Here, Cn is a numerical coefficient, which should be deter-
mined from a more refined analysis. We therefore conclude
that for odd Ly , we obtain the staggered dimerization dis-
cussed in the main text, with amplitude Dx ∼ (2h/K)Ly−1 =
exp[−ln(K/2h)(Ly − 1)], exponentially decaying with cir-
cumference as advertised. This result derived from the odd
Ising gauge theory is qualitatively consistent with the one
obtained from the analysis38 of quantum dimer models.

b. Dual derivation

While the above derivation is simple and direct, it relies on
the strong coupling expansion, which, although it is expected
to be qualitatively correct in the deconfined phase, is not
obviously general. It is instructive to obtain the staggered
dimerization by a more circuitous dual route that exposes the
universality of the result and gives a more direct physical
picture.

The duality transformation of Eqs. (A3) and (A4) is
accomplished by defining

τ x
a =

∏
〈ij〉∈a

σ z
ij , (A14)

σx
ij = μabτ

z
a τ z

b , (A15)

where τa are new Pauli matrices. In Eq. (A14), 〈ij 〉 are the
bonds associated with dual site a at the center of a direct
plaquette, and in Eq. (A15), the dual sites a and b are those
at the centers of the two plaquettes neighboring the bond 〈ij 〉.
The scalars μab must be chosen to satisfy Eq. (A4), which
requires that their product around a dual plaquette must equal
−1. The dual Hamiltonian is then a fully frustrated transverse
field Ising model:

H = −h
∑
〈ab〉

μab τ z
a τ z

b − K
∑

a

τ x
a . (A16)

The τ z
a operator has the physical interpretation of creating an

Ising vortex (vison) on plaquette a. In the deconfined phase,
when K/h > xc, the visons are gapped excitations in the
“paramagnetic” phase of this dual Ising model. We will see
that the dimerization is related to virtual vison excitations.

To see this, we obtain a continuum limit of Eq. (A16), valid
in the deconfined phase, as follows (qualitatively identical
results can be obtained in many other ways, for instance, by
an expansion about mean-field theory, or by strong coupling
expansions). It is convenient to work in a path integral
formulation in the τ z

a basis, and “soften” the spins τ z
a → ϕa .

The Euclidean action in the time continuum limit is then

S =
∫

dτ

{
−h

∑
〈ab〉

μab ϕaϕb

+
∑

a

[
κ

2
(∂τϕa)2 + r

2
ϕ2

a + uϕ4
a

]}
, (A17)

where κ, r , and u are phenomenological parameters. In the
deconfined phase, the fluctuations of ϕa are small, and it
is sufficient to truncate the action to quadratic order. The
dominant fluctuations are those near the minimum of the
quadratic form. To find them, we must choose a gauge for
the frustrated dual exchange. It is convenient to make the
following choice:

μa,a+ŷ = (−1)xa , μa,a+x̂ = 1. (A18)

Here, we have taken the dual lattice sites to have integer
coordinates. The unit cell in this gauge contains two sites.
Therefore, Fourier transforming to go to the Bloch basis,
we obtain the inverse Green’s function describing the virtual
fluctuations of the visons,

G−1 = (
κ ω2

n + r
)
I − 4h

(
cos ky cos kx

cos kx − cos ky

)
. (A19)

Here, the “magnetic” Brillouin zone is |kx | � π/2,|ky | � π .
The dominant fluctuations, corresponding to the minimum
eigenvalue of G−1 (=r − 4

√
2h), occur at the two inequivalent

values (kx,ky) = (0,0) and (kx,ky) = (0,π ). The correspond-
ing eigenvectors are φ(1) = (cos π

8 , sin π
8 ) at k = (0,0) and

φ(2) = (sin π
8 , cos π

8 ) at k = (0,π ). Focusing on these lowest
energy excitations, we therefore write

ϕa ∼ φ(1)
a �1(xa,ya) + φ(2)

a (−1)ya�2(xa,ya), (A20)

where φ(i)
a takes the two values of eigenvector i given above

when a is on the two distinct sublattices, and �i(x,y) is a
slowly varying continuum field. The bulk effective action is
then

S = κ

2

∑
i=1,2

∫
dτdxdy

{
(∂τ�i)

2 + v2(∇�i)
2 + m2�2

i

}
.

(A21)

This action describes two degenerate minimum energy vison
states. It was discussed first to our knowledge in Ref. 46, in the
context of frustrated Ising models. It is instructive to express
the VBS order parameter in terms of �i . If we consider the
horizontal bonds, then

Dx = (−1)xi (Si · Si+x̂ − Si+x̂ · Si+2x̂)

∼ (−1)xi
(
σx

i,i+x̂ − σx
i+x̂,i+2x̂

)
∼ (−1)xa

(
τ z
a τ z

a+ŷ + τ z
a+x̂ τ

z
a+x̂+ŷ

)
∼ (c�1 + s�2)(c�1 − s�2) − (s�1 + c�2)(s�1 − c�2)

∼ �2
1 − �2

2, (A22)
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where in the penultimate line of Eq. (A22), c = cos π/8 and
s = sin π/8. By a similar calculation, one finds that the vertical
bond dimerization is

Dy = (−1)yi (Si · Si+ŷ − Si+ŷ · Si+2ŷ) ∼ 2�1�2. (A23)

From this, we obtain the result

� = Dx + iDy ∼ (�1 + i�2)2. (A24)

The gauge invariant combination on the right-hand side can
thus be identified as the familiar complex VBS order parameter
�. This result, and the action Eq. (A21), have been obtained
many times for quantum spin-1/2 systems on the square
lattice. Indeed, both are largely independent of the microscopic
model and give the minimal set of excitations and their
properties, given only the assumptions of Z2 topological order
in the ground state and half-integer spin per unit cell. It
would be interesting to understand if other dimer patterns
could, in principle, arise, if the low-energy vison states were
selected from a different projective symmetry group.47 In two
dimensions, in the Z2 QSL phase, there is no VBS order, so
the visons are gapped and the VBS order parameter � also is
uncondensed, correspondingly.

We now consider the finite-size effects. Taking periodic
boundary conditions on ϕa in the y direction imposes,
using Eq. (A20), periodic boundary conditions on �1 but
antiperiodic boundary conditions on �2 when Ly is odd. The
latter result can be readily understood in terms of the VBS order
parameter: on an odd-leg cylinder, the vertical component Dy

is frustrated (staggering of rows of dimers does not “fit”) and
should be antiperiodic, which requires � → �∗ under the
circuit around the cylinder, consistent with the antiperiodic
boundary conditions on �2. Since the visons are gapped, the
antiperiodic boundary condition gives an exponentially small
effect in the thermodynamic limit, but it is nonzero and can be
readily calculated.

Regardless of boundary conditions, because �1 and �2 are
decoupled in Eq. (A21), 〈Dy〉 = 0, so there is no VBS order
of the vertical bonds. The horizontal component, however, is
nonzero when Ly is odd, so that the fields �1 and �2 are
slightly inequivalent due to the boundary conditions:

〈Dx〉 ∼ 〈
�2

1

〉 − 〈
�2

2

〉
∼ κ−1

∫
dωn

2π

dkx

2π

[
1

Ly

∑
ky

1

ω2
n + v2k2 + m2

− 1

Ly

′∑
ky

1

ω2
n + v2k2 + m2

]
, (A25)

where the first sum is over “periodic” momenta ky = 2πn/Ly ,
and the second sum (with the prime) is over “antiperiodic”
momenta ky = 2π (n + 1/2)/Ly , with integer n. To proceed,
we first perform the frequency integration and then use the
Poisson resummation formula to obtain

〈Dx〉 ∼ 2

κ

∞∑
p=0

∫
dkx

2π

∫
dky

2π

cos[(2p + 1)kyLy]√
v2k2 + m2

∼ 2

πκv

∞∑
p=0

∫
dkx

2π
M(kx)K0[(2p + 1)M(kx)Ly/v],

(A26)

where we carried out the ky integration in the last line, and
defined M(kx) = √

m2 + v2k2
x . For large Ly , the asymptotic

form of the Bessel function can be used, K0(z) ∼ √
π/2ze−z,

and the dimerization is dominated by the p = 0 term and the
region vkx � m:

〈Dx〉 ∼ 2

πκv

√
πv

mLy

∫
dkx

2π
me−mLy/ve−vk2

xLy/2m

∼
√

2m

πκvLy

e−mLy/v. (A27)

As promised, we obtain exponential decay of the dimerization,
and in this case a prediction for the prefactor. The physics
of this derivation is transparent: virtual fluctuations of Z2

vortices which propagate about the cylinder lead directly to the
dimerization. In this way, we immediately see that this effect
is universal for Z2 QSLs on the square lattice with S = 1/2
spins.

Let us conclude this subsection with one remark on the
dimer correlation lengths. The static dimerization on cylinders
with odd circumference decays with an apparent correlation
length ξ̃ = v/m. This is not the same length that appears in
the dimer-dimer correlation function. The latter is obtained
from correlation functions of �, given in Eq. (A24). Because
the dimer order parameter � is quadratic in the vison fields
�i , and the �i are Gaussian distributed, by Wick’s theorem
the dimer-dimer correlation functions are squares of vison
Green’s functions. Consequently, the exponential decay of the
dimer-dimer correlation function, which defines the standard
dimer correlation length ξ , is twice as fast, i.e.,

ξ̃ = 2ξ. (A28)

This behavior has indeed been observed in the numerical
studies in the main text.

2. Ground-state degeneracy

It is well known that the Z2 spin liquid has degenerate
ground states in the thermodynamic limit on a cylinder or
torus. For the cylindrical geometry studied here, two states are
expected. Here, we would like to understand the scaling of
the gap between these two states, and also better understand
their character. We will see that, as discussed, e.g., in Ref. 48,
that the presence of gapped spin excitations (which carry
nonzero electric gauge charge) makes a qualitative difference
in these properties. This means that models neglecting these
excitations, in particular, the very popular quantum dimer
models, actually give incorrect or nongeneric scaling for the
finite-size quasidegenerate gap.

Consider first the pure gauge theory, Eq. (A3), in which
coupling to matter fields is neglected. The ground-state degree
of freedom may be regarded as the presence or absence of a
vison through the hole in the cylinder. The presence of the
vison itself is measured by the Wilson loop operator around
the cylinder,

W =
L∏

y=1

σ z
xy;xy+1. (A29)

A state with a Z2 vortex in it has W = −1 and without has
W = 1. However, the ground state will not be an eigenstate of
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W . In fact, consider the conjugate operator

Q =
L∏

x=1

σx
xy;xy+1. (A30)

This operator commutes with H defined in Eq. (A3), and so
is a constant of the motion. The two degenerate ground states
have Q = ±1 [we can pick any y, since others are related by
Eq. (A4)]. Note that WQ = −QW , so an eigenstate of Q is
a symmetric or antisymmetric combination of the W (vison)
eigenstates. This indicates physically that the vison may tunnel
through the cylinder, by moving (virtually) through the entire
long length Ly from one end to another, thereby connecting the
W = 1 and −1 states. The tunneling amplitude for this process
is naturally expected to be exponential in the length of the
event, so we postulate that the gap in this case is tv ∼ e−Lx/ξx .
This has been shown explicitly in many places in the literature.

This result is generic for the pure Z2 gauge theory, and
continues to hold even if longer (but finite) range plaquette
and electric field terms are included. It relies only on the fact
that Q does not create any physical gauge flux through finite
plaquettes. However, if a matter field (i.e., the spinons) is
present, the result is modified. To see this, let us imagine more
carefully integrating out the spinons in going from Eq. (A1)
to Eq. (A3), for the case of a cylinder of finite circumference.
Then we will obtain not only contributions from small loops
(which renormalize K , etc.), but also, occurring first at O(tLy ),
contributions from loops that encircle the cylinder. Keeping
just the leading of these terms, we have the slight modification
of Eq. (A3):

H = −K
∑
�

∏
〈ij〉∈�

σ z
ij − ts

∑
x

Ly∏
y=1

σ z
xy;xy+1 − h

∑
〈ij〉

σx
ij ,

(A31)
where we expect ts ∼ e−Ly/ξy , which physically is related to the
amplitude for a virtual spinon to encircle the cylinder. Note that
in this case, Q no longer commutes with H , and the nature of
the eigenstates is no longer clear. Now if we assume ts � K,h

and that for ts = 0, we are in the deconfined Z2 phase, we can
project the Hamiltonian on the low-energy sector of the pure
gauge theory, i.e., the two-level system of the quasidegenerate

states. Then we obtain the effective Hamiltonian, written in
a pseudo-spin notation in which μz = ∓1 correspond to the
vison/non-vison states:

Hdeg = −tv μx − tsLx μz. (A32)

Since tv ∼ e−Lx/ξx and ts ∼ e−Ly/ξy , the nature of the ground
state depends crucially on the aspect ratio of the cylinder.
For a fat cylinder, with small Lx/Ly , for which ts � tv , the
eigenstates will be like those of the pure gauge theory, and the
gap will be exponentially small in Lx .

However, for a “long” cylinder, with larger Lx/Ly , the
gap will be exponential instead in Ly . Indeed, strictly in
the limit of large Lx and Ly fixed, the higher energy state
can no longer be regarded as quasidegenerate: its energy,
relative to the ground state, grows linearly with Lx , and so
other states with local, nontopological excitations will have
lower energy. The conditions for ts to dominate are much less
restrictive than this, however, requiring only tsLx 	 tv , or
exp(Lx/ξx − Ly/ξy) 	 1/Lx . In this limit, the ground state
is an approximate eigenstate of μz, i.e., a state of definite
vison number. Because of the quasi-one-dimensional nature
of the DMRG technique, in the most effective regime of this
technique, this is the expected form of the ground state. Note
again that this regime is missed by the pure gauge theory and
also the quantum dimer model.

The nature of the absolute ground state obtained by DMRG
has implications for the entanglement entropy. As shown
recently by Zhang et al.,49 the topological entanglement
entropy for a cut with nontrivial topology actually depends
upon the choice of quasidegenerate wave function. The
cylindrical cut studied here is precisely such a cut. The results
of Ref. 49 imply that the topological entanglement entropy
reaches its maximum and universal value (of −ln 2) when
the ground state is a vison eigenstate, and takes a smaller (in
magitude) value for other superpositions of states, vanishing
for the case of a vison superposition, as is obtained in the
absence of spinons. Thus the result of our numerical study
in the main text in which we found rough agreement with
the −ln 2 value for the topological entanglement entropy, in
fact, is the evidence for such a vison eigenstate in the numerics,
consistent with the predicted effects of virtual spin fluctuations.
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