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Magnetic properties of a GdFe5Al7 single crystal
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Magnetic properties of a tetragonal intermetallic compound GdFe5Al7 have been studied on a single crystal in
static magnetic fields up to 14 T. The system is a ferrimagnet (TC = 265 K) and on this premises we succeeded in
describing its low-temperature magnetization curves as well as the temperature dependence of the spontaneous
magnetization. The compound is interesting in two ways: (i) the iron sublattice is diluted so heavily that it is
close to the stability limit and cannot be regarded as saturated, (ii) at low temperatures the system is in a state of
near compensation, that is, the sublattice moments, albeit distinct, are close in magnitude. The latter has several
consequences. (i) The net spontaneous magnetization is small, Ms = 0.58 μB/f.u. at T = 2 K. (ii) The system is
in the strong-anisotropy regime despite the weakness of its anisotropy (attributed entirely to the iron sublattice)
in energy terms. (iii) A moderate field (∼7 T) applied in the easy direction [110] suffices to induce a phase
transition into a noncollinear magnetic state.
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I. INTRODUCTION

Ferrimagnetism is a complex phenomenon, so a quantitative
study necessitates carefully selected model systems and spe-
cial experimental conditions. A useful concept in this respect
is that of rigid sublattices, whereby the sublattice moments
retain their magnitude as they reorient themselves in a strong
magnetic field. Experimentally, this is ensured by working
at low (liquid He) temperature. (An added advantage of low
temperature is that it helps to minimize the magnetocaloric
effect.) In the case of ferrimagnetic 3d-4f intermetallics, it is
rather obvious that a localized 4f moment seeing a molecular
field ∼102 T is fully saturated at T ∼ 4 K. As regards the
itinerant 3d sublattice, its susceptibility χ3d does not vanish
as T →0. Still, χ3d is usually small and the approximation
of rigid sublattices does hold. A key quantity in itinerant
magnetism is the Stoner exchange parameter, which roughly
has the same value for all late 3d elements, I3d ∼ 0.6 eV.1

In magnetically ordered 3d systems the density of states at
the Fermi level D(EF) has to be ∼I−1

3d , therefore, for the
Pauli susceptibility one has χ3d ∼ μ2

BI−1
3d ∼ 1 × 10−4 μB/T

per atom. Thus, in a magnetic field �102 T the increment of the
3d moment is �1 × 10−2 μB/atom (i.e., less than 1%). This
estimate may need to be increased several times on account of
the so-called exchange enhancement. However, cases of very
strong enhancement (one order of magnitude or more) are
rare. A necessary condition is that the product I3dD(EF) be
very close to unity. Physically, in order for the rigid-sublattice
approximation to break down, the system must be very close
to Stoner’s ordering threshold.

RFe5Al7 are just such systems. (Here R stands for a heavy
rare earth, R = Gd-Tm.) They can be regarded as RFe12

compounds with a heavily diluted iron sublattice. The crystal
structure is of the ThMn12 type (space group I4/mmm), where
the R atoms reside on the 2a sites, while Fe and Al occupy
the 8f and 8i sites, respectively. The excess Fe atoms share
the 8j positions with Al. The dilution with Al is so heavy, that

the ferrimagnetic order (MFe ↑↓ MR), albeit stable, is on the
verge of collapse. Regarded in isolation, the iron sublattice in
RFe5Al7 does not fulfill the Stoner condition. Accordingly, no
ferromagnetism is observed either in YFe5Al7 or in LuFe5Al7,
even though a noncollinear antiferromagnetic ordering does
take place.2 It is the presence of magnetic rare earths that
brings RFe5Al7 over the Stoner threshold, owing to the R-Fe
exchange interaction. As a result, all iron spins are aligned and
make a joint magnetic sublattice, the R atoms being polarized
in the opposite sense.3 The weakness of the R-Fe exchange
in relation to the Fe-Fe one suggests that the iron sublattice
in RFe5Al7 cannot be far from the Stoner threshold. It is
therefore expected to possess a considerable susceptibility and
cannot be regarded as rigid. Thus, the RFe5Al7 compounds are
suitable objects for quantitative studies of ferrimagnets beyond
the rigid-sublattice approximation.

Unlike other magnetic rare earths, Gd has L = 0 and its
magnetic moment is not sensitive to the (unknown) crystal
field. Therefore, GdFe5Al7 provides us with an opportunity
to quantitatively describe the spontaneous magnetization. A
major role in this description is played by the Gd-Fe exchange
field, also obtainable from low-temperature magnetization
curves. This enables us to check the consistency of the models
describing the magnetic behavior in both limits, T →0, H �=
0, and H→0, T �= 0.

GdFe5Al7 is also interesting from another prospective:
its low-temperature spontaneous magnetization turns out to
be very small [see Eq. (1) below], which means a near
compensation of the sublattice moments at low temperatures.
One can expect unusual strong manifestations of the weak (in
energy terms) magnetic anisotropy.

This paper is structured as follows. Upon a brief presen-
tation of the experimental procedure (Sec. II) and results
(Sec. III), the model is exposed in Sec. IV. This is followed by a
discussion (Sec. V) and conclusions (Sec. VI). The Appendix
demonstrates a way to reduce the model of Sec. IV to the
standard model of rigid sublattices.
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FIG. 1. (Color online) Magnetization isotherms measured along
the principal axes of a GdFe5Al7 single crystal at 2 K. Symbols
represent experiment; lines represent fits (see below).

II. EXPERIMENTAL DETAILS

The GdFe5Al7 single crystal was prepared from a stoi-
chiometric mixture of the elements (99.9% pure Gd, 99.98%
pure Fe, and 99.999% pure Al) by a modified Czochralski
method in a tri-arc furnace using a tungsten rod as a seed
under 15-mm/h pulling speed. The obtained single crystal was
20-mm long and 3 mm in diameter. The back-scattered Laue
patterns showed good quality of the crystal with misorientation
of subgrains less than 1o. Phase purity and lattice parameters
were determined by standard x-ray diffractometry in Cu
Kα radiation on a powder prepared from the single crystal.
The diffraction patterns were refined by means of Rietveld
analysis using the Fullprof/Winplotr software.4 The lattice
parameters, a = 871.1 pm, c = 504.5 pm, are in agreement
with the literature.5 Temperature and field dependence of
magnetization was measured in static magnetic fields up to 14
T at temperatures between 4.2 and 300 K using a commercial
magnetometer (Quantum Design PPMS)

III. EXPERIMENTAL RESULTS

Figure 1 presents magnetization curves measured along the
principal crystallographic axes at 2 K. (Theoretical fits shown
in Fig. 1 will be introduced and discussed below.) One observes
that [110] is the easy magnetization direction, the spontaneous
magnetization at T = 2 K being

Ms = 0.58 μB/f.u. (1)

There is also a nonzero projection of the spontaneous
moment onto the [100] axis, 0.43 μB/f.u. at T = 2 K. This
is rather close to the expected value, Ms/

√
2 ≈ 0.41 μB/f.u.,

which reflects the high quality of the crystal and its proper
orientation. The spontaneous moment has no component along

FIG. 2. Magnetization isotherms measured along the [110] and
[001] axes of a GdFe5Al7 single crystal at 100 and 200 K.

[001], which is the hard magnetization direction. In Fig. 2,
where magnetization curves at T = 100 and 200 K are
presented, for clarity only the magnetization curves along
the easy and the hard axes are shown, although the in-plane
anisotropy survives up to 200 K (cf. Fig. 5).

After the domain-wall displacement is completed, the
magnetization along the easy axis [110] continues to grow.
The growth is approximately linear up to about 6 T (at T =
2 K), in accordance with the following expression:

M = Ms + χH, (2)

where

χ = 0.024 μB/Tf.u. (3)

At the same time, the magnetization along [100] grows
more rapidly and nonlinearly. At about 4T (T = 2 K) the
magnetization curves along [100] and [110] intersect. Above
8 T all three curves are close to each other. The common
high-field part at T = 2 K is linear and extrapolates to the
origin according to the expression M = λ−1H . Hence we
determined the intersublattice exchange constant,

λ = 8.3 T f.u./μB (4)

as well as a dimensionless product,

χλ = 0.20. (5)

Temperature dependence of magnetization measured in
a field of 0.1 T applied along the three principal axes is
presented in Fig. 3. In contrast to DyFe5Al7 and HoFe5Al7, 6,7

GdFe5Al7 has no compensation point because MFe > MGd

in the whole temperature range up to the Curie point TC.
Near TC, the magnetization measured in a small but nonzero
applied field deviates considerably from the true spontaneous
magnetization, indicated by the open triangles in Fig. 3. The
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FIG. 3. Temperature dependence of magnetization along the
[100], [110], and [001] axes measured in 0.1 T and temperature
dependence of the spontaneous moment obtained from magnetization
isotherms along the [110] axis.

latter was determined from the Arrott-Belov plots of Fig. 4(b)
constructed from the magnetization isotherms shown in
Fig 4(a). From the same plots we found the Curie temperature,

FIG. 4. Magnetization isotherms measured along the [110] axis
in the vicinity of TC = 265 K (a) and corresponding Arrott’s plots (b).

FIG. 5. Temperature evolution of the magnetization curves along
the [100] and [110] axes of a GdFe5Al7 single crystal.

TC = 265 K. (6)

Temperature evolution of the anisotropy between the [100]
and [110] axes of the GdFe5Al7 single crystal is displayed in
Fig. 5. The in-plane anisotropy field gradually decreases from
2 T at T = 2 K to about 0.2 T at T = 180 K and disappears at
about 200 K. This can be also seen in Fig. 3, where the M(T )
curves in 0.1 T along [100] and [110] coincide above T =
200 K.

Figure 6 shows in detail the magnetization isotherms along
the [100] and [110] axes in the vicinity of the kink at T = 20
and 40 K. (The curves at T = 2 K are not shown since they are
almost identical to those at 20 K.) At T = 20 K, an anisotropy
of magnetization is observed between [100] and [110] above
5 T, where the bending of the sublattice moments results in
a more rapid growth of the magnetization along [100]. As a
result, in fields just above 5 T the magnetization along the
easy [110] axis is lower. At 7 T it begins to grow more rapidly
and above 8 T the two curves coincide. At T = 40 K the
magnetization isotherms display similar features. Apart from
the low-field region, the magnetization curves along [100] and
[110] differ in the interval between 8 and 11 T. Above 40 K
both magnetization isotherms look identical at all fields up
to 14 T, except in the low-field region related to the in-plane
anisotropy of GdFe5Al7.

Figure 7 shows magnetization isotherms measured along
the hard axis [001]. The curves are linear below 100 K, but a
change of slope emerges at T = 120 K at about 10 T, moving
towards lower fields at higher temperatures.

IV. THEORY

A. General

We consider a two-sublattice ferrimagnet where one sub-
lattice, with a moment of MGd, consists of Gd atoms, whereas
the other one, whose moment is MFe, includes all iron atoms,
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FIG. 6. Magnetization isotherms measured along the [100] and
[110] axes of a GdFe5Al7 single crystal at T = 20 and 40 K.

irrespective of their crystallographic position. Suppose MFe

and MGd make angles α and β, respectively, with an applied
magnetic field H, as in Fig. 8. The system is at T = 0, so that
the localized Gd sublattice is fully saturated, |MGd| = const.,
but the itinerant Fe sublattice has a nonzero susceptibility. We
proceed from the following thermodynamic potential:

� = λMFeMGd cos(α + β) − MFeH cos α − MGdH cos β

+ 1

2χ
(MFe − M0)2 + KFe sin2 α + KGd sin2 β + ... (7)

Here the first term is the intersublattice exchange energy, λ is
the exchange constant as determined from the experiment (4).
The second and third terms are the Zeeman energies of the
sublattices.

The fourth term in Eq. (7) describes the stiffness of the
iron sublattice; here χ is the susceptibility taken from the
experiment [Eq. (3)], M0 is a would-be equilibrium value of
the iron moment MFe in the absence of intersublattice exchange
and applied magnetic field. Thus, MFe is regarded as the
system’s internal thermodynamic parameter, to be determined
by minimizing the potential �. By contrast, MGd is believed
to be a known constant, equal to the free-ion moment, MGd =
7 μB/f.u. It is important for the susceptibility of the iron
sublattice χ to be small in relation to λ−1,

χλ 	 1. (8)

Apparently, GdFe5Al7 does satisfy this condition [cf. Eq. (5)].
We intend to keep corrections linear in χλ and κFe [the latter

FIG. 7. Temperature evolution of the magnetization curve along
the [001] axis of a GdFe5Al7 single crystal.

being defined by Eq. (10) below] and neglect all higher-order
terms.

The fifth and sixth terms in Eq. (8) are magnetic anisotropy
energies of the sublattices. The suspension points imply that
higher-order anisotropy terms could be appended, such as in
sin4α and/or in sin4β. We have not yet chosen any particular
orientation of the field H, assuming merely that it points in
a high-symmetry crystal direction. In certain situations the
addition of a term in sin4α (sin4β) may be demanded by
the symmetry, for example, when the sublattice moments
rotate about a fourfold axis. (In such a case the prefactors
of sin2α and sin4α must be equal in magnitude and opposite

FIG. 8. Orientation of the magnetization vectors of the two
sublattices with respect to the applied magnetic field. All vectors
lie in the same plane.
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in sign, in order for the correct functional dependence to arise,
∝ cos 4α, see Sec. IV.) Anyhow, the anisotropy of the
iron sublattice is supposed to be small in comparison to the
intersublatice exchange energy,

|κFe| 	 1, (9)

where

κFe = (1 − χλ)
KFe

λM2
0

. (10)

Likewise, one can define a dimensionless anisotropy con-
stant for the Gd sublattice,

κGd = (1 − χλ)
KGd

λM2
0

. (11)

We have reasons to believe that κGd satisfies a strong
inequality similar to Eq. (9). Yet, it is not postulated in this
work that κGd should be small. This is not necessary for the
reduction of the present model to the model of rigid sublattices
(χ = 0), as long as the susceptibility of the rare earth sublattice
can be neglected. Thus, the derivation (given in the Appendix)
is also valid for rare earths other than Gd.

As one proceeds to minimizing Eq. (7) with respect to α,
β, and MFe, one finds solutions of three distinct kinds.

(1) Ferrimagnetic: α = 0, β = π , and

MFe = M0 + χH + χλMGd. (12)

The magnetization of the ferrimagnetic phase is given by

M = MFe − MGd = Ms + χH, (13)

where

Ms = M0 − (1 − χλ)MGd. (14)

The ferrimagnetic phase should be stable in a low magnetic
field applied along the easy axis. We identify this with the
interval between 0 and 6 T in Fig. 1 (H‖[110]). Our determi-
nation of χ from the slope of this part of the magnetization
curve was in fact based on Eq. (13), which coincides with
Eq. (2). The model parameter M0 is found from Eq. (14) by
using the experimental values of Ms (1) and χλ (5), as well as
MGd = 7 μB/f.u.:

M0 = 6.2 μB/f.u. (15)

It is convenient to introduce a dimensionless reduced
magnetization, M/M0. For the ferrimagnetic phase one has

M

M0
= 1 − m + χλ

1 − χλ
h, (16)

where

m = (1 − χλ)
MGd

M0
, h = (1 − χλ)

H

λM0
. (17)

Hence

m = 0.907 (18)

and

h = μ0H

64.3 T
. (19)

(2) Ferromagnetic: α = β = 0 and

M = M0 + (1 − χλ)MGd + χH. (20)

The ferromagnetic phase is stable in very strong magnetic
fields, not attained in our experiment.

(3) Canted: α and β take general values, not fixed by the
symmetry. The thermodynamic potential [Eq. (7)] has to be
minimized with respect to all three internal parameters, α, β,
and MFe. In general, the problem is very difficult, however,
in the presence of the simplifying conditions (8) and (9) it is
reduced to the model of rigid sublattices (see the Appendix). In
doing so, two special cases should be distinguished, according
to the orientation of the applied magnetic field.

B. H ‖ [001]

The parameter KFe in Eq. (7) is the conventional first
anisotropy constant of the iron sublattice. The anisotropy of
Gd is neglected: KGd = 0 (κGd = 0) in Eqs. (7), (A3), and
(A5). An estimate obtained in Eq. (25) below will justify the
neglect a posteriori. (For comparison, a possible contribution
of Gd could be ∼0.4 K/atom, as inferred from Gd metal.8,9)
The neglect of higher-order anisotropy constants is warranted
by the example of an isomorphic YFe11Ti.10,11 The reduction
to the model of rigid sublattices (see the Appendix) results
in a system of simultaneous transcendental equations in α

and β,

−m sin(α + β) + h sin α + κFe sin 2α = 0,
(21)

−m sin(α + β) + mh sin β = 0.

The solution can be presented in a parametric form.12 To
this end, an auxiliary quantity is introduced,

t = 2 cos α

h
, (22)

which is used to express the reduced field,

h = 1

1 + κFet

√
m2 − (1 + κFet)2

1 − t
, (23)

and reduced magnetization,

M

M0
= h

(
1 + κFet

1 − χλ
− κFet

2

2
− χλ

1 − χλ

κFeh
2t3

4

)
. (24)

Here χλ and m are known constants [Eqs. (5) and (18)], t is
a running parameter, and κFe is an adjustable parameter. The
best-fit value is κFe = − 0.04. By Eq. (10), this corresponds to

KFe = −0.8 MJ/m3, or − 11 K/f.u. (25)

The resulting magnetization curve is displayed in Fig. 1. The
abscissas, found from Eq. (23), were converted to teslas by
means of Eq. (19).

One observes that Eq. (24) is more complicated than
the corresponding expression for reduced magnetization
in the model of rigid sublattices. This is because the
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magnetization,

M = MFe cos α + MGd cos β, (26)

now depends on H not only through the angles α and β, but
also through the module MFe; cf. Eq. (A1). In the limit of
rigid sublattices (χ → 0), Eq. (24) goes over—to a constant
factor—into Eq. (A12) of Ref. 12.

In the isotropic limit (κFe → 0), Eq. (24) becomes M =
λ−1H . This is the behavior observed above 8 T in Fig. 1,
which justifies our determination of λ from the high-field slope,
Eq. (4).

It is worth noting that a nonzero χ cannot give rise to any
additional reorientation transitions, because it does not enter
into the field dependence of the sublattice orientation angles,
as given by

cos α = ht/2, cos β = (h/m)(1 − t/2)(1 + κFet), (27)

in conjunction with Eq. (23).

C. H ⊥ [001]

The sublattice vectors lie in the basal plane. To reflect
the fourfold symmetry, Eq. (7) should be appended with a
fourth-order Fe anisotropy term, −KFe sin4 α. It is convenient
to change to the conventional basal-plane anisotropy constant,
K ′

Fe = − 1
8KFe, which is to multiply cos4α. The anisotropy

energy associated with the Gd sublattice can be neglected
altogether. Estimates based on bcc iron21 and GdAl2,22

K ′
Fe ∼6 mK/atom and K ′

Gd ∼3 mK/atom (that is, respectively,
30 and 3 mK/f.u.) will justify the neglect a posteriori
[Eq. (31)]. The reduction to the model of rigid sublattices
proceeds without complications and results in the following
simultaneous equations:

−m sin(α + β) + h sin α ± 4κ ′
Fe sin 4α = 0,

(28)
−m sin(α + β) + mh sin β = 0,

where κ ′
Fe is a dimensionless anisotropy parameter, defined

analogously to Eq. (10):

κ ′
Fe = (1 − χλ)

K ′
Fe

λM2
0

(29)

The upper and lower signs in Eq. (28) correspond to the cases
H ‖ [110] and H ‖ [100], respectively.

The simultaneous Eqs. (28) cannot be solved for α and
β analytically. So, the equilibrium angles had to be found
numerically. Subsequently the magnetization was computed
using Eqs. (A1) and (26). In actual fact, the thermodynamic
potential was minimized numerically with respect to just one
variable, α (0 < α < π/2), β being a known function of α:

β = π

2
− arctan

h − cos α

sin α
. (30)

This expression provides for the possibility of β being
obtuse and applies when the anisotropy is associated with the
dominant sublattice. It should be distinguished from the more
common case where the entire anisotropy is ascribed to the

subdominant sublattice;13–17 cf. Eq. (13) of Ref. 13.
The following best-fit value was obtained for the only

adjustable parameter: κ ′
Fe = 1.4 × 10−4. This corresponds to

K′Fe ≈ 3kJ/m3, or 0.04K/f.u. (31)

D. Spontaneous magnetization

Consider a case where the field is applied along the easy
axis and H → 0. The ferrimagnetic phase is stable, with α =
0, β = π and

M = Ms = MFe − MGd. (32)

Let us lift the restriction T = 0. Now we have

MGd = 7μBB7/2

(
7μBλMFe

kT

)
, (33)

MFe = M0fT + χλMGd. (34)

Here B7/2(x) is the Brillouin function for S = 7/2. The use of
the Brillouin function implies neglect of the Gd-Gd exchange
interaction, justified by Ref. 18. The phenomenological tem-
perature factor fT , such that f0 = 1, describes the reduction
of the iron sublattice’s own moment with temperature. By
contrast, the susceptibility χ is independent of temperature,
as expected of itinerant electrons. At T = 0, Eq. (33) is just
MGd = 7μB; Eq. (34) is a special case of H = 0 in Eq. (12).

At T �= 0 Eqs. (33) and (34) are solved by iterations,
taking advantage of the strong inequality (8). In zeroth
approximation, χλ = 0 and, by Eq. (34), MFe = M0fT . Then,
by Eq. (33),

MGd = 7μBB7/2

(
7μBλM0fT

kT

)
, (35)

whence, by Eq. (32),

Ms = M0fT − 7μB(1 − χλ)B7/2

(
7μBλM0fT

kT

)
. (36)

The temperature factor is taken in the following form:

fT =
[

1 −
(

T

TC

)3/2]1/3

, (37)

which is none other than Eq. (1) of Ref. 19 with s = 1. The
dependence Ms(T ) computed by means of Eqs. (36) and (37)
is plotted in Fig. 9 (solid line).

V. DISCUSSION

Revising Figs. 1 and 9, one observes good agreement
between the experimental data and theoretical fits. A system
with nonzero χ has been described by using renormalized
parameters in the model of rigid sublattices. The value
[Eq. (4)] found for the intersublattice exchange constant of
GdFe5Al7, λ = 8.3 T f.u./μB, is lower than that deduced from
inelastic neutron scattering data for an isomorphic compound
GdFe10Si2,23 λ = 12.2 T f.u./μB. Yet, the difference is not
unreasonable, given that GdFe10Si2 contains twice as many
iron atoms per formula unit.

In the model, the anisotropy was ascribed entirely to
the iron sublattice. This was done solely on the grounds
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FIG. 9. Temperature dependence of the spontaneous magnetiza-
tion of GdFe5Al7. The open circles are experimental data; the solid
curve is a fit to Eqs. (36) and (37).

of plausibility, taking into consideration the smallness of a
possible contribution of Gd to the overall anisotropy constants
of GdFe5Al7 [Eqs. (25) and (31)]. The fits themselves provide
no grounds for such a conclusion. In particular, an alternative
model was tested, in which the basal-plane anisotropy had
the same value [Eq. (31)] but was associated with the Gd
sublattice. The resulting fits (not shown) differed little from
those displayed in Fig. 1.

On the whole, the anisotropy within the basal plane has
proved very weak in energy terms. It is rather surprising that
this anisotropy is nonetheless clearly visible in GdFe5Al7,
unlike in other tetragonal Gd-Fe or Y-Fe intermetallics. The
reason is the near compensation of the sublattices in GdFe5Al7.
This can be demonstrated most readily on the simplest model,
regarding the sublattices as strictly antiparallel: The smallness
of the first (axial) anisotropy constant K1 does not necessarily
mean that the anisotropy field, Ha = 2K1/|MGd–MFe|, should
be small, if MGd ≈ MFe.

In a more refined approach, noncollinearity of the sublattice
moments should be allowed for. For simplicity, we assume
that all anisotropy energy is associated with the dominant
sublattice, as relevant to GdFe5Al7. One should distinguish
between the case of weak anisotropy,12 when

|κ| <
1

2
(1 − √

m)2, (38)

and the strong-anisotropy case, when the condition (38) is
violated. (In the latter case the notion of “anisotropy field” is
physically meaningless, as the magnetization curves in the easy
and hard directions intersect without a phase transition.) The
near compensation of the sublattices taking place in GdFe5Al7
means that the parameter m is close to unity [cf. Eq. (18)].
Therefore, the right-hand side of the inequality (38) is very
small, ∼1.1 × 10−3. In spite of |κFe| being much less than
unity (κFe = –0.04), the condition (38) is still not fulfilled
and the system is in the limit of strong anisotropy. This fact
does not compromise in any way the reduction to the model

of rigid sublattices (see the appendix), based on the strong
inequalities (8) and (9).

Similar considerations, with some slight modifications,
apply to the anisotropy in the basal plane. The value of
anisotropy parameter found in Sec. IV C is very small, indeed,
κ ′

Fe = 1.4 × 10−4. This is, however, not small enough, on
account of the near compensation. So, here as well the
system operates in the strong-anisotropy regime, albeit not
as far beyond the threshold. This is manifest in Fig. 1, where
the magnetization curves along [100] and [110] intersect at
4 T without any anomaly, even though the former shows
some inclination towards becoming N shaped. Another sign
of proximity to the threshold of low anisotropy is that
the half-area between the curves along [100] and [110] in
Fig. 1 (left of their crossing point at 4 T), 3.4 kJ/m3,
is rather close to the corresponding anisotropy constant
[Eq. (31)].

As regards the axial anisotropy of GdFe5Al7, it finds itself
in the far strong-anisotropy limit [i.e., the threshold in the
condition (38) is exceeded by 1 1

2 orders of magnitude]. A
graphic manifestation of this is the absence of any remote
hint at an N shape in the magnetization curve along [001] in
Fig. 1. A further point of evidence is that the area between
the curves along [110] and [001] underestimates the axial
anisotropy constant [Eq. (25)] by as much as an order of
magnitude.

VI. CONCLUSION

The present magnetization study has demonstrated that
GdFe5Al7 is a ferrimagnet with TC = 265 K. The low-
temperature spontaneous magnetization is rather small, Ms =
0.58 μB/f.u. at T = 2 K, that is, the system is in a state of
near compensation. As a result, the magnetization curves show
a significant apparent anisotropy, unexpected in a compound
where none of the constituents has much of an orbital moment.
All these facts find an explanation in a simple two-sublattice
model. One of the peculiarities of GdFe5Al7 is that the iron
sublattice has a non-negligible susceptibility which does not
vanish as T → 0. Yet, at T = 0 the model is reduced to the stan-
dard model of rigid sublattices with renormalized parameters.
The calculated low-temperature magnetization curves and the
temperature dependence of spontaneous magnetization are in
good agreement with the experimental data.
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APPENDIX: REDUCTION TO THE MODEL OF RIGID
SUBLATTICES

We proceed from necessary conditions for a minimum of the
thermodynamic potential [Eq. (7)] with respect to the internal
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parameters MFe, α, and β,

MFe = M0 + χ [H cos α − λMGd cos(α + β)], (A1)

−λMGd sin(α + β) + H sin α + KFe

MFe
sin 2α + ... = 0, (A2)

−λMFeMGd sin(α+β) + MGdH sin β + KGd sin 2β + ... = 0,

(A3)

where Eq. (A1) has been solved for MFe and Eq. (A2) has been
divided by MFe. The suspension points in Eqs. (A2) and (A3)
indicate the possibility of including higher-order anisotropy
terms.

The unknown MFe is eliminated from Eq. (A3) by setting
therein Eq. (A1):

−λM0MGd sin(α + β) − χλMGdH sin(α + β) cos α

+χ (λMGd)2 sin(α + β) cos(α + β) + MGdH sin β

+KGd sin 2β + ... = 0. (A3a)

Now the quantity λMGdsin(α + β) is expressed from
Eq. (A2) and substituted into the third term of Eq. (A3a):

−λM0MGd sin(α + β) + (1 − χλ)MGdH sin β

+KGd sin 2β + χλKFe
MGd

MFe
cos(α + β) sin 2α + ... = 0.

(A3b)

On foot of the inequalities (8) and (9), the last term in
Eq. (A3b) can be neglected as a higher-order infinitesimal. To

the same approximation, MFe in the denominator of the last
term in Eq. (A2) can be replaced by M0:

−λMGd sin(α + β) + H sin α + KFe

M0
sin 2α + ... = 0,

(A2a)

−λM0MGd sin(α + β) + (1 − χλ)MGdH sin β

+KGd sin 2β + ... = 0. (A3c)

Note that the inequality (8) need not be a strong one if KFe =
0.

Equations (A2a) and (A3c) can be conveniently rewritten
in terms of the dimensionless quantities defined by Eqs. (10),
(11), and (17):

−m sin(α + β) + h sin α + κFe sin 2α + ... = 0, (A4)

−m sin(α + β) + mh sin β + κGd sin 2β + ... = 0. (A5)

Equations (A4) and (A5) are identical to the conditions
for equilibrium in the model of rigid sublattices (χ = 0),
cf. Eqs. (5) and (6) of Ref. 20. The nonzero χ enters only
into the definitions of the dimensionless variables, Eqs. (10),
(11), and (17), but not into the equations for the angles α and
β, Eqs. (A4) and (A5). Therefore, one can take over most
of the results previously obtained within the model of rigid
sublattices in all its variants, with or without κFe and/or κGd,
or perhaps with two anisotropy constants for the rare earth
sublattice.16 A special case of the latter version, with κ1 = –κ2

= –8κ ′, describes a situation when the sublattices rotate about
a fourfold symmetry axis.
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