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Theory of laser-induced ultrafast superdiffusive spin transport in layered heterostructures
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Femtosecond laser excitation of a ferromagnetic material creates energetic spin-polarized electrons that have
anomalous transport characteristics. We develop a semiclassical theory that is specifically dedicated to capture
the transport of laser-excited nonequilibrium (NEQ) electrons. The randomly occurring multiple electronic
collisions, which give rise to electron thermalization, are treated exactly and we include the generation of
electron cascades due to inelastic electron-electron scatterings. The developed theory can, moreover, treat the
presence of several different layers in the laser-irradiated material. The derived spin-dependent transport equation
is solved numerically and it is shown that the hot NEQ electron spin transport occurs neither in the diffusive nor
ballistic regime, it is superdiffusive. As the excited spin majority and minority electrons in typical transition-metal
ferromagnets (e.g., Fe, Ni) have distinct, energy-dependent lifetimes, fast spin dynamics in the femtosecond (fs)
regime is generated, causing effectively a spin current. As examples, we solve the resulting spin dynamics
numerically for typical heterostructures, specifically, a ferromagnetic/nonmagnetic metallic layered junction
(i.e., Fe/Al and Ni/Al) and a ferromagnetic/nonmagnetic insulator junction (Fe or Ni layer on a large band-gap
insulator as, e.g., MgO). For the ferromagnetic/nonmagnetic metallic junction where the ferromagnetic layer is
laser-excited, the computed spin dynamics shows that injection of a superdiffusive spin current in the nonmagnetic
layer (Al) is achieved. The injected spin current consists of screened NEQ, mobile majority-spin electrons and
is nearly 90% spin-polarized for Ni and about 65% for Fe. Concomitantly, a fast demagnetization of the
ferromagnetic polarization in the femtosecond regime is driven. The analogy of the generated spin current to a
superdiffusive spin Seebeck effect is surveyed.
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I. INTRODUCTION

Advances in the generation of ultrashort laser pulses led to
the development of the femtosecond pump-probe technique in
the eighties,1–3 which has initiated a viable approach to study
carrier dynamics on a time scale previously inaccessible. The
novel experimental tool led to new discoveries, such as that of
unusual fast dynamics of laser-excited nonequilibrium (NEQ)
electrons in metal films.4–7 It also gave rise to new theoretical
challenges and opportunities. A considerable theoretical effort
has meanwhile been undertaken8–15 with the aim to provide a
working model for the dynamics of NEQ electrons induced
by a femtosecond laser excitation. Unfortunately, still not
everything is understood regarding the ultrafast motion of hot
NEQ electrons.

An interesting research field that, too, has become unlocked
through the above advancement is that of the ultrafast laser-
induced manipulation of magnetic order on the femtosecond
time scale (see, e.g., Ref. 16 for a recent review). It was orig-
inally discovered by Beaurepaire et al.17 that a femtosecond
laser pulse could quench the ferromagnetic order in Ni on an
unprecedented time scale of 200–300 fs. Before this discovery,
such ultrafast magnetization quenching was considered to be
unachievable (see, e.g., Ref. 18). Since then, the microscopic
origin of ultrafast laser-induced demagnetization has become
a hotly debated topic.19–35 As the spin angular momentum
is a conserved quantity, it has frequently been proposed
that there must exist some ultrafast dissipation channel for
spin angular momentum. Possible channels that have been
proposed are, e.g., the Elliott-Yafet electron-phonon spin-
flip scattering,19,30,34 electron-magnon36 or electron-electron
scattering,23 or relativistic laser-field induced spin-flips.24 A

viable modeling approach appears nonetheless to assume
a spin-relaxation time due to an unspecified microscopic
mechanism and perform equilibrium atomistic simulations of
the laser-induced magnetization dynamics.37–42

In a previous paper,29 we have pointed out that there exists
a considerable interplay of the phenomena of ultrafast de-
magnetization and of femtosecond spin transport by showing
that spin-dependent electron transport in the superdiffusive
regime is, in principle, able to explain completely the ultrafast
demagnetization without recurring to the still controversial
channels of dissipation of angular momentum.25,30,31,33,35

Moreover, we have shown how the existence of ultrafast
demagnetization only in metals (in dielectrics and half-metals
it is orders of magnitude slower16,43) and the saturation of
the demagnetization16 follow naturally from the description of
spin-dependent NEQ electron transport. In the aforementioned
paper,29 we predicted that femtosecond laser-excitation of the
ferromagnetic material would lead to demagnetization of the
ferromagnet as well as the occurrence of an ultrafast spin
current (which carries away spin angular momentum).

While we believe that our predictions will soon be validated
by experimental findings, it deserves to be mentioned that
several recent papers have appeared that presented argu-
ments against a notable influence of superdiffusive spin
transport.33,44,45 A first indication of the existence of laser-
induced spin-transport has been reported recently,32 and our
findings are not incompatible with an earlier work,22 but
these are definitely far from being conclusive evidences.
Hence, it is, to date, not yet possible to conclude to what
extent NEQ superdiffusive spin transport contributes to the
demagnetization and even less to rule out whether it is its only
driver or just a side actor.
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The purpose of the present paper is to make a step forward
in the theoretical description of ultrafast demagnetization
and electronic spin transport on the femtosecond time scale
and elucidate further their interconnections. Several different
approaches5,9–12,14,15 have been attempted before to model the
femtosecond electron motion, but these always rely heavily on
approximations. The two limits of transport, standard diffusion
(Brownian motion) and ballistic transport have been used
previously, as well as mixtures of the two. However, both
the standard diffusion and the ballistic diffusion models fail
to capture the regime of energetic electronic transport.4 In
metals, electron lifetimes are of the order of few tens of
femtoseconds and the mean free paths up to tens of nanometers.
These values are absolutely comparable with the time scale
under analysis and the length scale involved (for instance,
the penetration depths of optical lasers in metals is within a
few tens of nanometers). Assuming that the particle mean-free
path is almost zero λ → 0 and its velocity almost infinity
v → ∞, as assumed for the standard diffusion, will lead to
unacceptable errors. Similarly, simplistic ballistic transport
cannot describe the diffusive-like behavior of the electrons,
undergoing several scattering events.4 Mixing the two regimes
within one formalism11 provides a more powerful fitting
procedure but does not answer to the need of a proper
description of NEQ electron motion over a wide range of time
and length scales.

Moreover, in previous approaches often the definition of
a local electron temperature is used.10–12,15 However, it is
known that the electron system in metals is in a strongly out-
of-equilibrium state up to several hundreds of femtoseconds
after the laser excitation.46–49 Besides, the states well above
the Fermi energy are the ones that mostly contribute to
the femtosecond transport. For this reason, a model aiming
to have predictive power on the femtosecond time scale
cannot rely on the assumption of an instantaneous electron
temperature. In principle, the Boltzmann equation for both
the energy and the position is to be solved. But, as for
instance in Ref. 9, the numerical cost forced the authors to
over approximate the description of the material. We will start
from a similar theoretical background, but we will integrate
analytically the geometry of the motion leading to a far
less expensive description. This will allow us to abandon
most approximations: the relaxation-time approximation of the
Boltzmann transport equation, the close to thermal equilibrium
assumption, or any simplified description of the material.
Energy- and spin-dependent lifetimes and velocities will
be used, including in this way the real band structure of
the material. Henceforth, the here-developed model has no
fitting parameters. In addition, as inelastic electron-electron
scatterings and electron cascades are included, the effects
of electron thermalization are fully incorporated. The de-
veloped model is thus specifically derived to describe the
electron dynamics in strongly out-of-equilibrium conditions
within the subpicosecond time domain, and evolving towards
equilibration.

In the following, we present a rigorous derivation for
laser-induced NEQ electron dynamics in layered materials and
heterostructures. The treated process is schematically shown in
Fig. 1. We analytically derive the governing spin- and energy-
dependent transport equation, whose time dependence is

FIG. 1. (Color online) Sketch of the laser-induced electronic
motion on the femtosecond timescale. After the laser excitation (1)
the hot NEQ electron starts its motion in a random direction. It travels
on a straight trajectory until it suffers a scattering (2) and is bounced
back in any random direction. The electron can also undergo an
inelastic scattering (3) where another electron is ousted from bands
below the Fermi energy. While traveling the electron can eventually
cross the interface between two materials (4). (a) shows the geometry
for Eqs. (1) and (2) and for the calculation of the quasi 1D integrated
flux ϕ1D in Eq. (3). (b) depicts the geometry to compute the integrated
flux ϕ3D in Eq. (6).

numerically solved. We explicitly study the laser-induced spin
and electron dynamics in four typical heterostructures, viz., the
ferromagnetic/nonmagnetic metal junctions Fe/Al and Ni/Al,
and the ferromagnetic metal/nonmagnetic insulator junctions
Fe/MgO and Ni/MgO. Due to distinct energy-dependent
lifetimes of the laser-excited electrons in the ferromagnet,
effectively, an ultrafast flow of spin-polarized electrons is
induced, which leads to injection of a highly polarized (up
to 90% for Ni) spin current in the nonmagnetic metallic layer.
The significance of the creation of the spin current is worked
out further, as it may open a new way to utilize chargeless
spin transport as a means to transport information on the
femtosecond time scale (cf. Refs. 50–53). We also point out
the analogy between the laser-generated spin current and that
occurring through the spin Seebeck effect.54–57

II. INTRODUCTION TO THE MODELED SYSTEMS
AND APPROXIMATIONS

Our first aim is to give a geometrically exact description
of the kinematics of excited NEQ electrons. Since the
derivation in Sec. III is lengthy and not always straightforward,
we provide in this section a purely descriptive explanation
of the underlying physics, which will be exactly modeled
mathematically in the subsequent sections.

We will describe the motion of an electron excited by some
means (usually by a photon) to a given energy [see Fig. 1 stage
(1)]. We assume the probability distribution of the final energy
(and of the final spin state) to be known, for instance from
ab initio calculations.58 Simultaneously a hole will be created
in the valence band. The same kinematic treatment applies
to holes as well but, as argued below, often their mobility is
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negligible on the considered timescale and for this reason their
transport will be neglected in the following.

After the first excitation, the energetic electron will start
traveling. We assume the possible emission direction to be
isotropically distributed over all solid angles and that the
electron dispersion E = E(k) is simply E = E(|k|). This is
not strictly true but except for highly anisotropic crystals this
is indeed a very good approximation. Also, the only external
source of linear momentum that would, in principle, be able to
give a preferential direction to the motion after the excitation
is the photon itself but since it carries an extremely small linear
momentum this can be safely neglected.59,60

The trajectory until the first scattering event [see Fig. 1 stage
(2)] will be considered a straight line, traversed with a velocity
dependent only on the energy of the traveling electron and the
material. In this assumption, two effects are neglected: external
fields and refraction at interfaces. Regarding external fields,
only extremely large ones can give significant contributions
to the transport on the femtosecond timescale. For commonly
sized electric or magnetic fields a slower drift of the center
of motion will be occurring on longer timescales, but we are
not interested in those at the moment. Nonetheless, one might
argue that in highly excited situations the electronic diffusion
itself creates internal fields by leading to an imbalance of
charge. In reality, these fields are never present because
they are screened out very quickly and efficiently61 (we
will come back to this assumption in Sec. V A). Neglecting
the second effect, the interface reflection, leads instead to
a more delicate approximation. In case an electron crosses
the interface between two materials [see Fig. 1 stage (4)],
we assume that the direction of the velocity in the second
medium will be the same as in the first one, while the modulus
will be given by the dispersion relation E = E(|k|) in the
second material. This choice does preserve the energy but not
the crystal momentum. This delicate conservation law can be
restored approximately by treating the surface between two
materials as a partially reflecting surface but we will not treat
this effect in the following.

While the electron traverses the trajectory, it has a certain
probability per unit time to be scattered. Upon scattering it
changes the direction of its motion and may eventually loose
part of its energy. If it scatters with a phonon or an impurity, the
scattering can be considered with a very good approximation
as elastic [see Fig. 1 stage (2)]: the energy is almost not
changed and the momentum is randomized with almost no
correlation with the incoming direction. If the excited electron
scatters with other electrons at or below the Fermi energy, the
scattering is inelastic and its energy is going to be changed
[see Fig. 1 stage (3)]. We again assume that the transition
probability to different final energies is a known function.
Unfortunately, the outgoing direction in this case is correlated
to the incoming one. Even so, in the materials of our interest
such as Ni the larger effective mass of d electrons at the Fermi
energy compared to the traveling sp-like electron encourages
the use of the same approximation. After the scattering, the
electron will move as already described but with eventually a
different energy.

We also take into account that an electron undergoing an
inelastic scattering may loose sufficient energy that it can
excite a second electron to above the Fermi energy [see Fig. 1

stage (3)]. Again, the direction of the motion of this cascade
electron is correlated to the incoming and outgoing direction
of the exciting electron. We, however, neglect this and assume
again an isotropic distribution of possible emission directions.
We stress that both, this and the previous, approximation on
the emission direction will lead to an underestimation of the
diffusion process.

III. DERIVATION OF THE KINEMATIC MODEL

We develop here an uniaxial model, where only the z

dependence—being normal to the layers—is kept because
we are interested in relatively thin film junctions where only
the spatial inhomogeneity (due to the appearance of several
films) is important along the z direction. Nonetheless, the same
approach can be used to describe systems with lower symmetry
as well as lateral spin transport in quasi-two-dimensional
structures. In the following, majority- and minority-spin
electrons will be described by the same mathematical model
but with different values of the parameters.

As the derivation involves many variables, in the following
we show only those that are relevant at that moment of
the derivation. Also, we will label as belonging to the first
generation those electrons that have been excited by the laser
before they experience the first scattering event. Electrons
coming out of the first scattering until the second one will
be referred to as second generation electrons and so on.

A. Equation of motion of a particle

We start with computing some introductory quantities.
Assuming a given emission direction the equation of motion
s(t) of a first-generation electron in terms of the coordinate on
the trajectory s [see, in Fig. 1(a)] is

∫ s(t)

s0

ds ′

v(z(s ′))
= t − t0 , (1)

where t − t0 is the time needed to reach s(t) starting the motion
in s0 and v(σ,E,z) is the velocity, z(s) is the z projection of
the position corresponding to the coordinate on the trajectory
s and σ and E represent respectively the spin and the energy
of the considered electron. It is not possible to have an explicit
form of s(t) because the velocity is position dependent. The
probability to reach a point s without being scattered obeys

P (s) = exp

[
−
∫ s

s0

ds ′

τ (s ′)v(s ′)

]
, (2)

where τ (σ,E,z) is the electron lifetime (i.e., average
time before the electron is scattered), with P (0) = 1 and
P (+∞) → 0.

B. From the flux of the 1D case . . .

Using Eqs. (1) and (2), we can compute the integrated flux
ϕ1D, that is the average fraction of a first-generation electron
that has crossed a point s before time t , given it was emitted
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in s0 at time t0 [see, Fig. 1(a)],

ϕ1D(s,t)

= exp

[
−
∫ s

s0

ds ′

τ (s ′)v(s ′)

]
�

[
t − t0 −

∫ s

s0

ds ′

v(s ′)

]
� [t − t0].

(3)

The step function �[t − t0] is due to the fact that before t0
the electron was not excited and therefore no contribution is
present. The other step function allows a contribution only if
there was enough time for the electron to reach the point s. The
exponential represents the fact that if the electron is scattered
it does not contribute anymore to ϕ1D.

C. . . . to the 3D case

We are now able to compute the statistically averaged
integrated flux ϕ3D through a surface normal to the z axis
and located in z given by a first-generation electron emitted
in a random direction [see, Fig. 1(b)]. Having assumed the
emission direction probability to be isotropic on all solid
angles, the integrated flux ϕ3D is given by (with the integration
over the spherical coordinate φ already computed)

ϕ3D(z,t) =
∫ π

2

0

sin θ

2
exp

[
−
∫ z

cos θ

z0
cos θ

dz′

τ (z′ cos θ )v(z′ cos θ )

]

�

[
t − t0 −

∫ z
cos θ

z0
cos θ

dz′

v(z′ cos θ )

]
�[t − t0] dθ.

(4)

This expression can be simplified to

ϕ3D(z,t) =
∫ π

2

0

sin θ

2
exp

[
− 1

cos θ

∫ z

z0

dz′′

τ (z′′)v(z′′)

]
�

[
t − t0 − 1

cos θ

∫ z

z0

dz′′

v(z′′)

]
� [t − t0] dθ

(5)

and finally to

ϕ3D(z,t) =
∫ arccos( 1

t−t0

∫ z

z0
dz′
v(z′ ) )

0

sin θ

2

× exp

[
− 1

cos θ

∫ z

z0

dz′

τ (z′)v(z′)

]
�[t − t0] dθ.

(6)

Being interested only in the flux φδ = ∂ϕ3D/∂t , we have to
differentiate Eq. (6) with respect to time. The differentiation is
long and tedious, but straightforward. We report only the final
result, which is surprisingly simple:

φδ(z,t |z0,t0)

= ∂

∂t
ϕ3D(z,t) = [̃�t]

2(t − t0)2

× exp

[
− (t − t0)

˜[
�t

τ

]
[̃�t]

−1
]

� [t − t0 − |[̃�t]|].
(7)

Note that we suppressed the no-longer-useful superscript “3D,”
wrote explicitly the dependence on the particle’s starting
position, and have introduced

[̃�t](z|z0) =
∫ z

z0

dz′

v(z′)
and (8)

˜[
�t

τ

]
(z|z0) =

∫ z

z0

dz′

τ (z′)v(z′)
. (9)

D. Transport equation for the first-generation density

If, instead of exciting a single electron, a distributed source
of excited electrons is present, the total first-generation flux at
time t through a surface in z due to all electrons with spin σ

and energy E is

[1](z,t) =
∫ +∞

−∞
dz0

∫ t

−∞
dt0 Sext(z0,t0)φδ(z,t |z0,t0), (10)

where Sext = Sext(σ,E,z,t) is the electron source term that has
to be computed from the spatial and temporal profile of the
laser and the absorption probability. We define the operator φ̂,
φ̂Sext ≡ [1].

Having computed the flux, it is possible to write down
a continuity equation for the density of first-generation
electrons. A general (1D) continuity equation is

∂n[1]

∂t
= −∂[1]

∂z
− R(n) + Sext, (11)

where  is the flux, R is a reaction term, and S a source
term. In this case, the reaction term is simply R(n) =
n[1](σ,E,z)/τ (σ,E,z), i.e., the number of first-generation
electrons that become second generation after being scattered,
for every spin and energy and at every position. Hence the
complete transport equation specific to this case is

∂n[1]

∂t
= −∂φ̂Sext

∂z
− n[1]

τ
+ Sext. (12)

Note that in standard diffusion the flux term is linked to the
density, whereas in this case the flux is linked to the source
term only.

E. Transport equation for the total density

Next, we want to describe what happens after the first
scattering event. Using the assumption that incoming and
outgoing directions are uncorrelated, we can notice that the
particle after being scattered behaves actually as if being
excited by an effective source,

S[2] =
∑
σ ′

∫
p(σ,σ ′,E,E′,z)

n[1](σ ′,E′,z,t)
τ (σ ′,E′,z)

dE′, (13)

which is the scattering term at all energies weighted by
the transition probability after a scattering, p(σ,σ ′,E,E′,z).
This quantity treats inelastic and elastic scattering events and
electron cascades, as discussed further below. We define the
operator Ŝ as Ŝn[1] ≡ S[2]. Note that if

∫
p(E′,E,z)dE′ < 1,

we are implicitly assuming that a part of the scattered electrons
are stopped, in other words, scattered to states with negligible
mobility. The second-generation electron density will then
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obey

∂n[2]

∂t
= −∂φ̂S[2]

∂z
− n[2]

τ
+ S[2]. (14)

Applying the same procedure we obtain the equation for
the density of the third-generation electrons n[3], and so on.
Summing up everything we derive the transport equation for
the full (spin) density n(σ,E,z,t):

∂n

∂t
+ n

τ
=

(
− ∂

∂z
φ̂ + Î

)
(Ŝn + Sext), (15)

where Î is the identity operator and n = ∑
N=1,∞ n[N]. Since

Eq. (15) has to be satisfied for every value of σ and E, we
effectively have a set of coupled equations.

Equation (15) is a first central result, the transport equation
governing the dynamics of laser-excited NEQ electrons. Its
numerical solution will be described further below. Note that
the transport equation defines the time-dependent motion of the
NEQ electron density as well as the magnetization dynamics
of the laser-excited electrons, through the difference of the spin
components [M(E,z,t) = 2μB(n(↑,E,z,t) − n(↓,E,z,t))].

F. Analysis of regime of laser-induced transport

An important aspect of all forms of transport is to which
transport class they belong. Our aim is to compare here
the regime of NEQ laser-induced electron transport to the
well-known ballistic and diffusive transport regimes. This
is, however, a more involved task, as the above-developed
transport model treats the complex interplay of several physical
effects that are occurring during and after the excitation by
a femtosecond laser pulse, and until a defined electronic
temperature is established in the system, on an equal footing.
Specifically, on this timescale the transport and thermalization
of laser-excited electrons cannot be decoupled and have
therefore been included within the same formalism. The two
standard limits of transport, ballistic and diffusive thermal
transport, are essentially different in the crucial aspect that
these do not include electron-thermalization effects.

Nonetheless, to compare the NEQ laser-induced transport
to these two standard limits, we artificially decouple the
electron thermalization. To this end, we study here an artificial
system of particles where only transport takes place and no
thermalization. The quantity governing both the elastic and
inelastic electron scattering probabilities is p(σ,σ ′,E,E′,z)
introduced in Eq. (13). We assume all particles to have a
fixed group velocity and (elastic) lifetime and that all electron
scatterings are purely elastic. This condition is equivalent to
assuming p to be diagonal in energy, i.e., upon a scattering
event the particle is emitted with probability 1 to the same
energy. We also assume that the particles diffuse in an infinite
homogeneous material.

Next, we may right away note that already under this
decoupling the regime of laser-induced NEQ particle transport
is different from the two standard limits of transport, ballistic
and diffusive thermal transport. In the latter regime, a traveling
particle undergoes infinitely many scatterings within a time
interval whereas in the former regime it undergoes zero
scatterings. Laser-generated NEQ electrons, however, undergo

a limited, nonzero number of scatterings. Within the field of
anomalous diffusion, the different regimes are characterized
by the variance σ 2 of the displacement of a single-particle
distribution (or equivalently the particle distribution for a Dirac
δ source in space and time) as a function of time,

σ 2(t) =
∫

n(t,z)(z − z0)2dz, (16)

also called dispersion. Note that Eq. (16) computes only
the dispersion on the z axis, while the motion the particle
undergoes is instead fully three dimensional.

Standard thermal diffusion processes that are governed by
Brownian motion are characterized by a σ 2 that grows linearly
with time:

σ 2(t) = Kwt2/dw , (17)

with dw = 2, where Kw represents the generalized diffu-
sion coefficient and dw is called the anomalous diffusion
exponent.62,63 In ballistic diffusion, the particle distribution
spreads with the constant velocity and is characterized by
dw = 1. Solving the governing transport equation (15) for
the artificial above-introduced model system shows that the
developing electron motion falls in the category of superdif-
fusive processes 1 � dw < 2. But as a major improvement
over the commonly used superdiffusion models,63 where the
anomalous diffusion exponent dw is assumed constant in time,
the transport defined by our Eq. (15) has an appropriate
time-dependent dw to capture the motion of a particle scattering
a finite number of times. In Fig. 2, we plot the computed time
evolution of dw(t) defined as

dw(t) = 2

t

σ 2

dσ 2/dt
, (18)

for the introduced model system. The curves show the time
evolution of the anomalous diffusion coefficient for a particle
moving with constant velocity and undergoing only elastic
scatterings with lifetime τ = 10 or 40 fs. Note that τ = 40
fs is a reasonable estimate of the elastic electron scattering
lifetime in d metals.64,65 One can observe that for short times,
t � τ , the motion is essentially ballistic [dw(t) ≈ 1], because

FIG. 2. (Color online) Time evolution of the anomalous diffusion
coefficient dw as defined in Eq. (17), numerically computed for a
particle with constant velocity and an elastic lifetime τ = 10 fs (full
curve) or τ = 40 fs (dashed curve).
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on this timescale the particle experiences approximately no
scatterings. If instead one focusses on times t 
 τ , the lifetime
becomes essentially negligible compared to the analyzed
timescale and the overall motion is well approximated by
standard diffusion [dw(t) ≈ 2]. The crossover from nearly
ballistic to diffusive happens through the increasing number
of scatterings that randomize the velocity direction. Note also
how models in the superdiffusive regime with constant, time-
independent dw fail at all times in describing the laser-induced
NEQ particle transport.

For the general case, the electron-thermalization effect
has to be included as well and the simple time evolution
of the anomalous diffusion coefficient for a nonthermalized
particle in Fig. 2 will accordingly become modified. It will,
in addition, become both material and geometry dependent.
In typical d metals, the electron-thermalization process is
known to take place within some 500 fs.46–49 Through the
equilibration energetic electrons in these metals loose energy
and are sent into less mobile d bands, which substantially
reduces their contribution to the transport. In order not
to neglect the thermalization effect, it is evident that the
femtosecond laser-induced spin transport taking place in the
superdiffusive regime needs to be described by our Eq. (15).
We further note that the time frame of the superdiffusive
transport is also precisely the time frame in which the ultrafast
laser-induced demagnetization is accomplished in 3d metallic
ferromagnets.17,66–68

G. Totally reflecting surface

As a subsequent step, we want to include the presence
of surfaces in the model. If we assume that on reflection
at a surface with the vacuum the electron is bounced back
completely elastically, then its motion is just the motion
it would have had if it were not reflected but mirrored
with respect to the surface. This situation is schematically
depicted in Fig. 3. It is then straightforward to describe
a totally reflecting surface, simply by mirroring the whole
system (source included), solving the transport equation for the
extended system and afterwards considering only the physical
part (see Fig. 3).

FIG. 3. (Color online) A totally reflecting surface causes an
electron to elastically bounced back (a). This situation is equivalent to
the case (b) where another electron is created in a mirrored auxiliary
system and emitted in a mirrored direction. Since we assumed the
source to emit isotropically, the mirrored source behaves as the real
one but it is located at the mirrored position.

H. Particle accumulation

To keep track of the displacement of the electrons, we
have to compute the number of electrons that are excited and
eventually sent back to nonmobile states at later times and
positions. Addressing each generation at a time we can say
that the source term removes electrons from bands below the
Fermi energy, while the scattering term inhibits electrons. The
change in the population of bands below the Fermi energy
n

[i]
<EF

induced by the ith generation is

∂n
[i]
<EF

∂t
=

∫ (
−S[i] + n[i]

τ

)
dE. (19)

Summing up contributions from all generations gives the total
change:

∂n<EF

∂t
= −

∫
Sext(E′)dE′

+
∫ [

1 −
∫

p(E′,E)dE

]
n(E′)
τ (E′)

dE′. (20)

It is then straightforward to compute for every position the
total electron (or spin) density variation as the sum of electrons
excited above and the change of the population below the Fermi
energy:

�ntot = n + �n<EF
= n +

∫
∂n<EF

∂t
dt. (21)

IV. ANALYTICAL SOLUTION FOR THE FIRST
GENERATION

It is possible to compute the electron density for the first
generation analytically in some cases. We consider here such
case to elucidate the occurring processes. For simplicity, we
will assume that the electrons after the first scattering are
completely stopped and therefore sent to a band below the
Fermi energy.

A. Homogeneous material

The case of an infinite homogeneous material is the simplest
one. Equations (8) and (9) become simply

[̃�t](z|z0) = z − z0

v
,

˜[
�t

τ

]
(z|z0) = z − z0

τv
. (22)

The flux kernel in Eq. (7) is now simple and φ̂S can be written
as a convolution:

φ̂S = (φ ∗ S)(z,t)

=
∫

dz0

∫
dt0 φ(z − z0,t − t0)S(z0,t0). (23)

Integrating Eq. (12) for a point source pulse [Sext(z,t) =
δ(z − zS,t − tS)], we obtain the Green’s function

n
[1]
δ (z − zS,t − tS)

= 1

2v

1

t − tS
exp

(
− t − tS

τ

)
�

(
t − tS −

∣∣∣∣z − zS

v

∣∣∣∣) (24)
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that represents the electronic density given by the point source
pulse. We can write the electron density up to the first scattering
for a general source as

n[1](z,t) = (
n

[1]
δ ∗ S

)
(z,t). (25)

We are, however, interested in the total electron density
n

[1]
tot,δ = n

[1]
δ + �n

[1]
<EF ,δ , Where

�n
[1]
<EF ,δ = −δ(z − zS)

+ 1

2vτ

[
E1

(
t − tS

τ

)
− E1

(∣∣∣∣z − ZS

vτ

∣∣∣∣)]
�

(
t − tS −

∣∣∣∣z − zS

v

∣∣∣∣) , (26)

with E1(x) being the exponential integral function.
Figure 4(a) shows the behavior of the introduced functions.
Panel (a.1) gives the time evolution of the excited electron
density. Immediately after the excitation, it has a δ-like shape
because all excited electrons are located at the same point. As
time evolves, two effects are evident: the density spreads in
space and decreases in magnitude. At this point, it is instructive
to note the wavefront traveling: in a standard diffusion model
the tail would have extended to infinity immediately. The
electron density is indeed in the here-discussed analytical
solution exactly a step function. This originates from the fact
that, after the excitation by a point source pulse, electrons will
start spreading by staying uniformly on the surface of a sphere
with a radius growing in time. If we project the surface of the
sphere on an axis at a given time we can observe a steplike
behavior. Finally, the electron density decreases in time—this
is both due to the spreading and to the scattering events.
Computing the area below the curve gives an exponential decay
of the area, i.e.,

∫ +∞
−∞ n

[1]
δ (z,t)dz = e−t/τ .

Figure 4(a.2) depicts the electron density below the Fermi
energy. At z = 0+, there is the −δ-like depletion left by
the source pulse that removed electrons from states below
the Fermi energy. As time proceeds, excited electrons are
scattered and transferred back to levels below the Fermi energy
(since computing the diffusion for the first generation only
is equivalent to assuming that after a scattering electrons
are completely stopped), giving a positive contribution to
this density. Computing the area below this function gives∫ +∞
−∞ n

[1]
<EF ,δ(z,t)dz = −e−t/τ . This means that for t → ∞ all

electrons are again deposited back in the states below the Fermi
energy even if being positioned at different z’s. The last panel
(a.3) of the first row in Fig. 4 shows simply the total electron
density. The area is exactly zero since effectually no electrons
are destroyed nor created but are simply displaced. One may
note that the material, even if globally neutral, seems to be
locally charged; we will discuss this effect in Sec. V A.

B. Totally reflecting surfaces and heterostructures

As mentioned before, the presence of a totally reflecting
surface at z = zsf can be included in the Green’s function of
the problem through

n
[1]
δ sf(z − zS,t − tS)

= n
[1]
δ (z − zS,t − tS) + n

[1]
δ (z − 2zsf + zS,t − tS). (27)

FIG. 4. (Color online) Analytically computed position-time in-
tensity profile of the density of excited first-generation only electrons
n

[1]
δ (left-hand panels), the change of density of electrons below the

Fermi energy n<EF ,δ (central panels) and the their sum (right-hand
panels) for the case of a Dirac δ source in time and space. Bright
areas indicate high intensities, dark areas low intensities. The depth
z dependence is on the abscissae, expressed in units of v τ , while
the time t dependence is on the ordinates in units of τ . The top row
(a) refers to the case of a homogeneous material. The middle row
(b) displays the case of a homogeneous material with a perfectly
reflecting surface (the position of which is highlighted by a yellow
thick line) at zS = v τ . The bottom row (c) shows the case of a
heterojunction made of two different metallic materials. The area
for z > 0.7 v τ represents the second material with v2 = 0.5 v and
τ2 = 0.5 τ . The interface between the two materials is highlighted by
a thin broken white line.

Figure 4(b) depicts the effect of a totally reflecting surface in a
homogeneous material. At negative times, all excited densities
are zero. For positive times and as long as the electrons
don’t reach the surface, the behavior is the same as that in
a homogeneous material. However, after reaching the surface,
electrons are reflected and the reflected electron density adds
up to the one evolving as in a homogeneous material.

The case of heterogeneous systems is more complicated
but an explicit expression for the first-generation density
given by a point source pulse can be given. As this is
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a rather lengthy expression, we omit it here. Instead, we
visualize in Fig. 4(c) the influence of the presence of two
different metallic materials. As in the previous case for
times before the electrons reach the second metallic layer no
anomalous behavior appears. But when the wavefront crosses
the heterojunction’s interface, its propagation velocity changes
and the constant-in-space shape is destroyed. This is due to the
fact that, after crossing the interface, electrons are not traveling
anymore on a sphere (not even one with a different radius), but
on a complex three-dimensional surface.

V. APPROXIMATIONS

In the following, we summarize all approximations that
have been made in the derivation. First, we analyze the influ-
ence of screening of the NEQ electron flow, and subsequently,
in Secs. V B–V D, we discuss the approximations that are not
directly related to the derivation of the model, but have to be
made only when suitable ab initio data are missing.

A. Screening of the charge current

As already pointed out, an electric field has to be extremely
high to be effective on the superdiffusive motion of electrons.
Standard electric fields are far too weak to cause, through the
bending of the electron trajectory with respect to the straight
trajectory in the absence of the field, a displacement that would
be appreciable compared to the total displacement. However,
under certain experimental conditions (for instance, the case
of ultrafast demagnetization experiments with an almost
complete demagnetization) the electric field that would have
been induced by the local charges created by the separation of
electrons and holes is indeed big. In this situation another kind
of motion comes into play.

Dielectric screening in metals is a well-known effect.69

In metals the screening is complete, and electrons will
immediately flow to surround (escape) the positive (negative)
charge. The bare Coulomb potential of an extra fixed point
charge is then modified into a screened Coulomb potential
that is cut off at a characteristic distance of the order of
k−1
F . After the screening is completed, the electric potential

will be negligible at distances of few lattice lengths. Also,
the screening proceeds almost instantaneously compared to
the considered femtosecond timescale. A recent experiment61

showed that screening times for transition metals are indeed
very short (<2 fs).

At this point, it is useful to analyze which electrons are
contributing to the screening effect: electrons from around the
Fermi energy are involved (as well as holes created in the
valence band). Unless the laser-excitation is very large, the
electrons that are involved in the superdiffusive motion form
just a small fraction and the greatest part of the screening
is done by other electrons. It is then a good approximation
to assume that the screening is done entirely by electrons
from around the Fermi energy and that the contribution from
superdiffusing electrons is negligible. Equivalently, this means
that the effective electric field felt by superdiffusing electrons
is negligible.

Notably, in magnetic metals the situation is different, as for
these, the screening effect can cause spin transport, because
the screening electrons are spin polarized. A question is then
what is the contribution to the screening that originates from
the individual spin channels. Taking Ni as an example, it is
known that the screening in Ni is accomplished mainly by spin-
minority carriers, in fact, it has been experimentally shown
that a considerable screening demagnetizes the atom almost
completely.70 This is easily understood considering that the
partial density of states (DOS) at the Fermi energy for spin-
minority electrons is much larger than that of the spin-majority
ones.

One can roughly estimate that the spin polarization of the
dielectric screening in the case of a Ni film on Al, treated
in Ref. 29 will enhance the demagnetization. Even so, the
contribution to the magnetization dynamics is expected to be
small since the transfer will displace magnetization only from
neighboring atoms. It is then easy to imagine that in the case
of a homogeneous excitation, the magnetization displacement
induced by this effect will vanish exactly, hence it becomes
of importance only where there are highly unhomogeneous
excitations or interfaces between materials. In view of the
marginality of this effect and the lack of quantitative estima-
tions, we prefer to ignore the screening-induced magnetization
flux and assume simply a non-spin-polarized screening flow.
Within this approximation, the only effect of the dielectric
screening is to cancel the charge transfer, but no contribution
to the spin transport will occur.

B. Description of the motion

One of the required quantities is the probability to have
an electron-phonon or electron-impurity scattering event.
Electron-phonon scattering cross sections can be evaluated
ab initio,31,35 but unfortunately the one for electron-impurity
scatterings depends strongly on the experimental preparation
of the sample. Well-annealed materials will have a low
defect concentration and low electron-impurity scattering
cross section, whereas nanostructured films will, for example,
have a large cross section for that type of scatterings. Even
experimentally it is not easy to characterize a sample from this
point of view.71 Fortunately, as already pointed out in Ref. 29,
even large variations in inelastic scattering probabilities do
not affect notably the result and a precise knowledge is needed
only if very precise results are required.

Conversely, for the case of electron-electron scatterings,
the resulting spin- and electron-dependent lifetimes can be
computed ab initio.65,72,73 The used ab initio data from GW

calculations65,72 do not provide values for the low-energy
range and an extrapolation had to be done. Even though the
Fermi liquid divergence of lifetimes at the Fermi energy does
not happen in real materials and hence the lifetimes should
converge to a finite value at the Fermi energy, we don’t have a
good estimation for this value. Henceforth, the extrapolation
for the lifetimes has been done in a conservative way with
the main aim of being on the safe side (thus underestimating
the superdiffusion) instead of with the aim of being precise.
In Fig. 5, we show the values used for Ni and Fe where
the lifetimes at low energies have been obtained by simply
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(a) (b)

(c) (d)

FIG. 5. (Color online) The ab initio calculated electron lifetimes
and velocities in Ni and Fe, taken from Ref. 65. Blue triangles up refer
to spin-majority and red down triangles to spin-minority carriers. The
blue and red lines show the extrapolation of the data as used in the
present work for spin-majority and minority carriers, respectively.
The top panels depict the lifetimes (a) and velocities (b) for Ni, the
bottom panels (c) and (d) for Fe.

assuming a constant energy dependence. A discussion of the
effect of different extrapolations can be found in Ref. 29.

The velocities have been extrapolated to zero at the Fermi
energy. This is due to the fact that close to the Fermi energy,
electron and holes in the same spin channel have approximately
the same transport properties, while transporting opposite spin.
This means that the closer the electron-hole pair is to the Fermi
energy the more they diffuse in the same way and cancel
reciprocally the net spin transport. Since we have neglected
the hole transport, we cannot obtain this cancelation around
the Fermi energy and we have to enforce it by assuming zero
velocity at the Fermi energy (see Fig. 5).

During the superdiffusive transport, the electron thermal-
ization process (and hence the change in energy of the traveling
electrons) is to be taken into account. This is done here as
follows: in the situation that the hot NEQ electron scatters
with a phonon or an impurity, it is a good approximation to
suppose the scattering to occur completely elastically since the
electron energy loss per such scattering is much lower than the
one in electron-electron scattering, leading to the probability
function pel(σ,σ ′,E,E′) = δσσ ′ δ(E − E′) (the dependence on
z is suppressed for sake of brevity).

For the electron-electron scatterings, however, the probabil-
ity distribution of the final energy of both the scattered and the
recoil electron is needed and these cannot be approximated
as elastic. A fully ab initio calculation of the final energy
probability distribution is, to our knowledge, currently not
available. Hence we have approximated such scattering event
using the classical description of a two-particle scattering
process. When two particles with masses ma and mb, and
velocities va and vb = 0, respectively, scatter the maximum
energy transferred can be written as

�Emax = 4mamb

(ma + mb)2
E′, (28)

where E′ is the energy of the incoming electron. To avoid the
introduction of parameters, we assumed a uniform probability
density in energy, ranging from E′ − �Emax to E′ for the final
energy of the incoming electron. Consistently, we assumed
that the energy lost by the incoming electron is, in this
equilibration process, transferred to the other electron at the
Fermi energy that will now be excited and begin to contribute to
the transport. An important value is also the probability to oust
an electron with a particular spin. To avoid free parameters, we
assumed that both spin-up and spin-down electrons have the
same probability to be excited from the Fermi energy after an
electron-electron scattering. The expression for the probability
in this case is

pin(σ,σ ′,E,E′)

= δσσ ′
�[E′−�Emax,E′](E)

�Emax
+ 1

2

�[0,�Emax](E)

�Emax
, (29)

where the function � is the unit step, which is 1 when the
argument is inside the interval specified in the square brackets.
Note that zero energy corresponds to the Fermi energy of the
unperturbed system.

Combining the two different types of scatterings the total
probability expression is computed as

p = τel

τel + τin
pin + τin

τel + τin
pel (30)

with all the τ ’s evaluated at (σ ′,E′).

C. Neglecting of Auger electrons

A further contribution to the number of electrons partici-
pating in the superdiffusion may come from the generation of
Auger electrons (in our case electrons that are excited above
the Fermi energy and not above the work function of the metal
by the de-excitation of a hole). This will act as a delayed source
of excited electrons. It can easily be included in the model, but
at this stage we neglected entirely this effect.

D. Time-independent materials properties

An approximation that we expect to become increasingly
poor with the increase of the laser fluence is the assumption that
all the properties of the materials are constant. For example, the
pronounced spin dependence of the excited electron lifetimes
and velocities is due to the ferromagnetic polarization in the
material. However, during the demagnetization process the
spin polarization of the electronic population in the material is
changed. For small demagnetizations this will affect negligibly
the values of the spin-dependent lifetimes, but this can no
longer be expected for sizable demagnetizations. The way
in which the lifetime and velocity values are going to be
altered by the new spin population is not easy to predict.
The functions in Eqs. (8) and (9) will, as a result, acquire
a functional dependence on n(z,t) as well as the operator Ŝ
and the flux kernel φ̂. Consequently, the transport equation,
Eq. (15), governing the superdiffusive flow will clearly not be
a linear equation any more.

So far we have neglected this nonlinear effect, but we
stress that it nonetheless intuitively explains an important
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experimental observation: a total demagnetization was never
seen (the maximum demagnetization observed74,75 so far
saturated around 90%). The closer the system is to the
completely demagnetized state the lesser effective is the
superdiffusive spin transport in demagnetizing it further and a
complete demagnetization can therefore not be obtained.

VI. NUMERICAL IMPLEMENTATION

The numerical implementation of the derived transport
equations has been mostly done using standard techniques76

apart from a few details that will be pointed out in the
following.

A. Discretization grids

The easiest way to discretize the time in the superdiffusive
transport equation (15) is to use an Euler forward method,

n(E,z,t + �t) =
(

1 − �t

τ

)
n(E,z,t) + −�t

(
∂

∂z
φ̂ + Î

)
× [Ŝn(E,z,t) + Sext(E,z,t)], (31)

with �t the discretization step on the temporal axis. As is
well known, this method has a first-order convergence in time.
For a second-order convergence in time, one has to use the
implicit Crank-Nicolson algorithm. Unfortunately, the implicit
equation is very difficult to solve and one moreover has to solve
it remembering that Eq. (15) stems from the summation of
single-generation equations [see Eq. (14)]. These contributions
decay fortunately as (1 − p)N and therefore one can compute
just a finite number of generations.

The discretization in space is done on a uniform grid with
step �z. For achieving a second-order convergence in space
and a better stability of the numerical solution, the derivative
of the flux in Eq. (31) is computed by finite difference
approximation on a second grid shifted by �z/2 with respect
to the main one:

∂φ̂Ŝn(E,z,t)

∂z

= φ̂Ŝn
(
E,z + �z

2 ,t
) − φ̂Ŝn

(
E,z − �z

2 ,t
)

�z
. (32)

Note that in order to compute the right-hand term of Eq. (32),
the functions in Eqs. (8) and (9), used in the definition of the
flux, have to be computed with the second argument on the
main spatial grid but with the first one on the shifted grid.

Finally, the discretization of the energy E is done on an
uniform grid with step �E, using typically 12 energy channels
in the excited energy interval of 0 to the pump laser energy
(here assumed to be 1.5 eV). The energy integration is done
by a simple rectangle method.

B. Flux operator

For the discretization of the flux term in Eq. (10), one has
to face the divergence that the flux kernel in Eq. (7) exhibits at

t → t0. It is, however, easy to show that

ϕ̂S(E,z,t) =
∫ +∞

−∞
dz0

∫ t ′

−∞
dt0 Sext(z0,t0)φ(z,t |z0,t0)

+O[(t − t ′)2]. (33)

This implies that the numerical time integration of Eq. (10) can
be carried out up to the time t − �t , avoiding the divergence
and achieving a first-order convergence.

VII. WORKED EXAMPLES FOR LAYERED
HETEROSTRUCTURES

In the following, we report numerical simulations for the
laser-induced NEQ transport and spin dynamics in typical
heterostructures, a ferromagnetic/nonmagnetic metal junc-
tion (specifically, Ni/Al and Fe/Al) and a ferromagnetic
metal/nonmagnetic insulator junction (e.g., Ni/MgO and
Fe/MgO).

For the insulator, the band gap is assumed sufficiently
large that no excited electrons can penetrate the insulator.
Accordingly, the interface ferromagnet/insulator has hence
been treated as a perfectly reflecting surface. In the performed
simulations, the hybrid junctions are excited from the ferro-
magnet’s side by a 40-fs laser pulse. As an outcome of the
simulations we predict distinct differences in the behaviors of
both the ferromagnets Ni and Fe in the two cases of metallic
or insulating junctions.

We stress therefore that superdiffusive spin transport is
very sensitive to changes of the geometry and material. For
instance, adding capping layers or changing the thicknesses
of the layers in the simulations below can change amply the
predicted demagnetization.

A. Ni/Al and Ni/MgO hybrid junctions

Figure 6 shows the superdiffusive spin-polarized electron
flow and effective demagnetization on the femtosecond time
scale for the Ni-based junctions. The Ni layer is assumed
to be 10 nm thick and it is excited by a laser at 1.5 eV
depositing an average of 0.1 photons per Ni atom. The ratio of
excited majority- to minority-spin electrons, have been taken
from ab initio calculations.58 Coming to the results, we can
recognize from Figs. 6(a) and 6(d) that, for both metallic
and insulating substrate layers, after the laser excitation both
majority and minority carriers are excited to Ni’s conduction
bands. However, on account of the spin-dependent lifetimes
minority-spin electrons are slowed down rapidly and within
100 fs decay to (almost) nonmobile bands approximately at
the position where they were excited. Instead, majority-spin
electrons have longer lifetimes and higher velocities. In the
case of the Al substrate [see Fig. 6(a1)] they diffuse away fast
from the excitation region after being created, driving part of
the demagnetization process [see Fig. 6(b)]. A second part of
the demagnetization is driven by the back flux of spin-minority
electrons from the Al substrate. The laser excitation tail
and the electrons escaped from the Ni layer experiencing
inelastic scatterings in the Al substrate and excite electrons
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FIG. 6. (Color online) Comparison of ultrafast laser-induced spin-dynamics in Ni on different substrates. Panels on the left-hand side show
the case of 10 nm of Ni grown on Al, computed for excitation by a laser of 1.5 eV photon energy and an average number of photons absorbed
per Ni atom of 0.1. Panels on the right-hand side display the case of a 10-nm Ni film grown on an insulating substrate like MgO. For each case,
following the panels in a counterclockwise order and starting from the one at the top left corner, we show the majority-spin electron density,
the minority-spin electron density, the magnetization density, three snapshots at three different times and, finally, the normalized MOKE signal
change (top-right panel).

that have again a random velocity direction. A fraction of these
electrons establish a flux from Al to Ni. Spin-majority electrons
entering the Ni layer continue diffusing, but spin-minority
electrons experience a considerable worsening of the transport
properties as soon as they enter the ferromagnetic layer. The
consequence is that they are trapped right after the interface
[see, for instance, the reduction of the magnetization and the
peak in the minority-spin density at a depth between 8 and
10 nm in Fig. 6(b3)].

Conversely, in the case of the insulating substrate [see
Fig. 6(d1)] spin-majority electrons are redistributed almost
uniformly within the Ni layer. This is intuitively understand-
able since the total distance traversed by these electrons, before
the thermalization is completed, is much longer than the layer
thickness. That, along with the randomness introduced by
the time position of the scattering and the emission direction
after it, explains the almost uniform spreading. Henceforth

the resulting femtosecond demagnetization profile [see Fig.
6(e)] in this case follows approximately the shape of the
majority-spin depletion distribution, i.e., the spatial intensity
distribution of the laser. One can observe that the average
magnetization of the Ni layer as a whole is unchanged,
since we do not assume any spin-dissipation channel and no
spin-polarized electron could escape. Yet, the region close to
the surface to the vacuum has been demagnetized, already after
100 fs, which is compensated by the increase of magnetization
at the metal/insulator interface [see Fig. 6(e3)]. A remark
appropriate at this point is that lateral superdiffusive outflow
of NEQ electrons will occur as well, but has not been included
in the present modeling.

If now both hybrid junctions are probed using a magneto-
optical probe (e.g., magneto-optical Kerr effect, MOKE)
in reflection, the magneto-optical sensitivity decays rather
quickly away from the vacuum surface. Supposing that the
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probe laser has a penetration depth λ then the measured
Kerr rotation change with respect to the unperturbed rotation
will be

�θL − �θu

�θL

=
∫

m(z)e− z
2λ dz − mu

∫
e
− z

2λ dz

mu

∫
e
− z

2λ dz
, (34)

where �θu is the Kerr rotation measured in the unperturbed
case, �θL the one after the laser excitation, m(z) is the position-
dependent magnetization profile after the laser excitation and
mu is the unperturbed (uniform) magnetization of the material.
Note that we assume here that the MOKE signal of the laser-
excited material follows the atomic magnetization linearly as
for the unperturbed material, which might not always be the
case.58,77

Figures 6(c) and 6(f) exhibit the predicted time dependence
of the normalized femtosecond MOKE signal change for the
Al and insulating substrates. In the latter case, the maximum
change in the MOKE signal is severely reduced compared to
the former case, but it is still present. An interesting feature
which can be extracted from these simulations is that the
demagnetization times of the metallic and insulating
heterostructures are different: by fitting the demagnetization
curves with a simple exponential decay, i.e., [M(t) −
M(0)]/M(0) ≈ −(1 − �MMAXe−t/τM ), one can extract
approximate demagnetization times τM . For the Ni/Al bilayer
structure (τM ≈ 160 fs), spin-polarized cascade electrons
cause an enhanced demagnetization by diffusing quickly
away from the Ni film, whereas for Ni on the insulating MgO
substrate the spatial inhomogeneity of the excitation, which
drives the demagnetization, fades away quickly (τM ≈ 60 fs)
after the first generation. Hence the resulting demagnetization
is smaller and it is effective approximately only as long as the
pump laser-pulse is active plus the majority-spin electron’s
lifetime.

In the x-ray regime, the penetration depth is different.
Considering the x-ray magnetic circular dichroism (XMCD) at
the Ni L edges, one would expect to measure an even smaller
transient demagnetization signal for the case of a Ni layer on
the insulator. As x rays still have a finite penetration depth the
demagnetization will be much smaller than in the case of the
metallic Al substrate.

The mechanism of ultrafast demagnetization occurring
in the Ni layer on metallic substrate has been outlined
previously29—spin-angular momentum is removed from the
Ni layer through superdiffusive motion of the excited hot
electrons. This spin transfer process proceeds on the timescale
of the superdiffusive flow, causing a typical demagnetization
time of some 300 fs. Concomitant with the Ni layer’s
demagnetization is the spin current entering the Al substrate
[see Figs. 6(b2) and 6(b3)]. A smaller percentage of the
less mobile spin-minority electrons also penetrates the Al
layer. Note that both the spin-majority and minority currents
are fully screened and are therefore pure spin currents.
However, the net spin-transfer current is about 90% at
200 fs for the Ni/Al heterostructure. Note that a higher
net spin polarization can be obtained by using a thicker
Ni layer.29

B. Fe/Al and Fe/MgO hybrid junctions

The transient spin-polarized electron dynamics has been
computed, too, for Fe/Al and Fe/MgO heterostructures. It is
instructive to compare the spin dynamics and demagnetization
to those obtained for the Ni-based systems. The computed
demagnetization times of Fe/Al and Fe/MgO are τM ≈ 130
and 45 fs, respectively, obtained again by fitting the calculated
curves with simple exponential decays (in the case of the
Fe/MgO heterostructure an exponential recovery has been
included in the fitting as well). Importantly, the spin-lifetimes
of excited electrons are different from those in Ni,65 and the
asymmetry between the two spin components is smaller in
Fe. From the results shown in Fig. 7 it can be observed that
the process of demagnetization induced by superdiffusive spin
transport in the Fe junctions is less efficient as that in the Ni-
based junctions. Note that the demagnetization values are now
plotted for a fluence ten times bigger than in the case of Ni. This
is partially understandable because the magnetic moment of Fe
(2.2 μB /atom) is larger than that of Ni (0.65 μB /atom), but a
further reduction of the efficiency of the demagnetization has
to be ascribed to the reduced asymmetry in the behavior of
majority- and minority-spin electrons and the poorer transport
properties (velocities and lifetimes) of the hot NEQ electrons
in Fe.65

What is more interesting is that in both cases of conduct-
ing and insulating substrates, the initial demagnetization is
followed by a partial recovery. This is ultimately due to the
fact that the lifetimes for both spin-majority and spin-minority
electrons in Fe are relatively high.65 To achieve a more precise
understanding of the process, we focus on the case of the insu-
lating substrate. After the spatially inhomogeneous excitation
by the laser, the diffusion process tends to spread the electronic
density evenly. Majority-spin diffusion drives a decrease of
magnetization in the more excited regions, whereas minority-
spin motion would cause an increase. The mentioned process
is more efficient for the spin-majority electrons since they have
higher velocities65 [see the red line in Figs. 7(e1)–7(e3)], but it
soon saturates since a completely uniform density is achieved
even before the electrons have thermalized (approximate elec-
tron thermalization time46–48 is about 500 fs). Conversely, for
spin-minority carriers the process is far less efficient because
of the fairly low velocities,65 but it remains active as long as the
electrons have not thermalized [see the blue line in Figs. 7(e1)–
7(e3)]. In Fig. 7(f), one may observe how the spin-majority
diffusion saturates in less than 100 fs, while the spin-minority
diffusion persists until the thermalization is achieved. In the
case of the Al substrate the effect reported above is mixed with
spin dynamics in Al and the different effects cannot be as easily
decoupled.

As the asymmetry of the spin lifetimes and velocities is
smaller in Fe than in Ni the superdiffusive spin current injected
into the Al layer is different. Spin-minority electrons become
more easily trapped at the Fe/Al interface, causing a decrease
of Fe magnetization in the interface region. Nonetheless, for Fe
more comparable amounts of spin-majority and spin-minority
NEQ hot electrons enter the nonmagnetic Al. Consequently,
the spin-transfer current induced in the nonmagnetic Al layer
has only a net spin polarization of about 65% to maximally
70%, for 100 and 200 fs, respectively.
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FIG. 7. (Color online) Comparison of ultrafast laser-induced spin dynamics in Fe on different substrates. Panels on the left-hand side show
the case of 10 nm of Fe grown on Al, computed for excitation by a laser of 1.5 eV photon-energy and an average number of photons absorbed
per Fe atom of 1.0. Panels on the right-hand side display the computed electron and spin dynamics for the case of a 10-nm Fe film grown on
an insulating substrate like MgO. The quantities displayed in each panel are the same as given in the caption of Fig. 6.

VIII. DISCUSSION

The above reported investigations reveal several
interesting aspects of laser-induced NEQ transport in
ferromagnetic/nonmagnetic hybrid junctions. To start with,
the obtained results emphasize generally the importance of
NEQ spin transport in explanations of ultrafast laser-induced
demagnetization. Nearly, all recent theories for ultrafast
demagnetization consider an ultrafast, locally operating
spin-flip channel,19,23,24,27,30,36 but completely ignore
spin-dependent transport of energetic electrons. Our explicit
calculations of laser-induced demagnetization in Ni and Fe
hybrid junctions purport that superdiffusive spin transport
plays in fact a significant role in achieving an ultrafast
spin removal. Moreover, recent ab initio investigations31,35

of how much demagnetization local electron-phonon and
electron-electron spin-flip scattering might deliver predicted
rather small numbers (a few percent) that are insufficient
to explain femtosecond laser-induced demagnetization.
Notably, superdiffusive spin transport is highly active as long
as the NEQ hot electrons have not thermalized. Electron

thermalization times in transition metals are of the order of
500 fs,46–48 i.e., typically very similar to the time on which
the demagnetization process is completed.17,20,45,66,67,78

Other model approaches to describe the ultrafast demag-
netization, such as the microscopic three temperature model
(M3TM)30 assume an instantaneous thermalization of the
excited NEQ electrons, i.e., completed at t = 0. Also the
Landau-Lifshitz-Bloch and Landau-Lifshitz-Gilbert atomistic
approaches38,40,41 assume the existence of an equilibrated
spin-temperature at t = 0. Inherent to this assumption is
that the effects of NEQ spin transport are excluded in these
theoretical approaches. However, an electronic equilibration
time of 500 fs would strictly speaking imply that only
magnetization dynamics occurring at timescales reasonably
larger than 500 fs could reliably be addressed by these model
approaches. This would thus be the regime of slower thermal
equilibrium magnetization dynamics.

There has recently been an interest in spin currents that can
be created in nanodevices, e.g., through spin pumping50,79,80

or through the spin Seebeck effect.54,55 An essential difference
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between the spin currents created through spin pumping80

and those induced through femtosecond laser radiation is that
the former are transversal spin currents whereas the later
are longitudinal spin currents. Moreover, we anticipate the
laser-generated spin currents to be considerably larger than
the transversal spin-pumped currents.

Spin currents induced through a temperature gradient in the
spin Seebeck effect54,55 have attracted attention recently; these
can for example be employed for spin injection56 or shifting of
magnetic domain walls.81 We note here that there exists a close
analogy between the superdiffusive spin currents and those
created in the spin Seebeck effect.54 The pump laser creates a
strong energy concentration gradient in the system by deposing
the greatest part of the photons within a region a few times the
penetration depth. This happens on a timescale (�500 fs) on
which one cannot yet talk about a temperature gradient since
the electron system has not yet thermalized. After laser irradi-
ation, the electrons superdiffusively migrate from the “warm”
towards the “cold” region due to the excitation inhomogeneity.
A first observation of the generation of a thermal spin current
due to laser heating and flowing along the temperature gradient
was reported recently.57 In a ferromagnetic material with a
strong laser-created energy gradient, the different mobilities of
spin-majority and minority electrons favor the superdiffusion
of majority-spin carriers resulting in a net longitudinal spin
current. In this sense, it would actually not be inappropriate to
consider the superdiffusive spin transport as an ultrafast spin
Seebeck effect. The superdiffusive spin transport is not only
an ultrafast counterpart of the spin Seebeck effect, it has the
additional advantage of generating longitudinal spin currents
that are orders of magnitude larger, yet they act only for a very
short time of a few hundred femtoseconds.

IX. CONCLUSION AND OUTLOOK

We have derived a mathematical model to describe the
ultrafast diffusion of energetic spin-bearing particles for the
case in which the limits of infinitely short lifetimes and
mean-free paths and infinitely large velocities—as assumed
in the standard thermal diffusion equation—cannot be used.
Although the theory may be of general mathematical and
physical interest, we have specifically focused on the descrip-
tion of the NEQ charge and spin motion occurring in layered
heterostructures after an optical excitation on the femtosecond

timescale. Our explicit calculations of the induced superdif-
fusive particle transport have shown that in ferromagnetic
materials it creates a substantial chargeless spin transfer. In
particular, in ferromagnetic/nonmagnetic metallic junctions
a sizable spin current can be injected in the nonmagnetic
layer. Also, we have shown how the superdiffusive spin
transfer effect leads to an ultrafast laser-induced demagnetiza-
tion. The magnitude of the thus-achieved demagnetization is
comparable to that observed in femtosecond magneto-optical
pump-probe experiments and it can therefore, in principle,
completely explain this phenomenon. With the derived model
we anticipate to have provided a solid theoretical basis for the
emerging area of NEQ femtomagnetotransport.

The generation of ultrafast spin currents in metallic het-
erostructures through femtosecond laser excitation opens up
interesting new avenues for utilization of the spin, rather than
the charge, in nanoscale electronic devices. A known obstacle
in nanoelectronic devices is the energy loss caused by the flow
of the electric current (Joule heating). Employing spin-based
transport could considerably reduce the energy dissipation
and hence provide a basis for development of energy saving
spintronics. Chargeless spin transport has already become
considered.50–53 Extra dimensions that could be added in
the near future through laser-generated superdiffusive spin
currents are the ultrafast timescale of a few hundreds of
femtoseconds of the spin transport as well as the remarkable
size of the longitudinal spin-transfer current. Such a large spin
current could be employed, for example, to move domain walls
in linear magnetic memory devices. Recently, it has predicted
that spin currents generated through the spin Seebeck effect
could be used for this purpose.81 This strongly suggests that
superdiffusive spin currents—being an ultrafast analog of the
spin Seebeck effect—could be utilized for shifting domain
walls and even for switching of magnetic nanoelements. More
generally, spintronic devices operating on the femtosecond
timescale could become realized in the future.
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