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Elastic properties of the Zintl ferromagnet Yb14MnSb11
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We report measurements of the elastic moduli as a function of temperature (5–300) K and magnetic field
(0–2 T) for the Zintl ferromagnet Yb14MnSb11, which is believed to be a rare example of an underscreened
Kondo lattice. The elastic moduli measured below the Curie temperature in this complex ferromagnet exhibit
unusual lattice stiffening that is independent of the magnetic field and can be adequately modeled using the
Landau theory.
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I. INTRODUCTION

The soft Zintl ferromagnet Yb14MnSb11 belongs to the
family of “14-1-11” compounds, which are known to exhibit
a wide range of unusual magnetic and electronic transport
properties.1–4 Isostructural to the Zintl compounds Ca14AlSb11

and Ca14MnB11,5,6 Yb14MnSb11 crystallizes in a tetragonal
lattice of the space group I41/acd with 208 atoms per unit
cell. The complex structure combined with the large number
of atoms per unit cell and the heavy atomic masses of Yb
and Sb leads to a relatively low thermal conductivity, and
the compound has recently attracted attention for its potential
as a p-type thermoelectric material at high temperatures.7 In
addition, Yb14MnSb11 displays highly unusual magnetism,
an understanding of which is expected to provide insights
into the complex physics of ferromagnetic semiconductors,
the key components of spintronic devices.8–10 It has been
suggested that the Yb14MnSb11 is a rare example of an
underscreened Kondo lattice.8,11,12 The Yb2+ ions in the
Yb14MnSb11 are nonmagnetic due to their filled 4f shells
(4f 14), and x-ray magnetic circular dichroism measurements
(XMCD) indicate a divalent Mn+2 (d5) configuration.13 The
magnetic Mn atoms in the Yb14MnSb11 are found to be
located at unique crystallographic sites within the MnSb4

tetrahedra, which results in a nearest neighbor Mn-Mn distance
of approximately 10 Å.1,8 Hence, the ferromagnetic order in
the Yb14MnSb11, whose onset temperature is Tc = 53 K, is
attributed to RKKY interaction between the localized Mn
3d moments mediated via conduction holes from the Sb 5p

bands.14,15

In this paper, we present and discuss the temperature
dependence of the elastic moduli of Yb14MnSb11 below
Tc. Changes in Young’s modulus with magnetization were
recognized over 100 years ago in materials such as iron and
nickel. These materials show a sudden drop in the elastic
modulus below Tc, which is referred to as the “delta-E effect”
(�E effect). This strongly field-dependent change in the elastic
moduli occurs because of domain-wall motion under stress.16

In contrast, the temperature and field dependence of the
elastic moduli obtained on Yb14MnSb11, show no significant
�E effect below the Curie temperature. Instead, a lattice

stiffening is observed below Tc, similar to the temperature
dependence of the elastic moduli of the ferromagnetic Mott
insulator YTiO3.17 The classical Landau theory18–20 is used
to model the thermodynamics of this second-order magnetic
phase transition.

II. EXPERIMENTAL TECHNIQUE

Yb14MnSb11 polycrystals and single crystals were synthe-
sized at Oak Ridge National Laboratory, using a molten metal
flux as first reported by Fisher et al.2 Resonant ultrasound
spectroscopy (RUS) was used to measure the elastic moduli
as a function of temperature and magnetic field. RUS is based
on the measurement of the resonances of a freely vibrating
body.21–23 The mechanical resonances can be calculated for
a sample with known dimensions, density, and elastic tensor.
In a RUS experiment, the mechanical resonances of a freely
vibrating solid of known shape are measured, and a nonlinear
optimization procedure is used to model the measured lines
with the calculated spectrum. The RUS data reported here
were carried out as a function of temperature (5–300 K) and
magnetic field (0–2 T) on two polycrystalline rectangular
parallelepipeds of approximately 2 × 2 × 5 mm3, using a
custom-designed probe that can be inserted in a commercial
Quantum Design Physical Properties Measurement System
(PPMS). In addition, RUS data have been collected for a
shard of single-crystalline Yb14MnSb11. The shape and size
of this single crystal did not allow us to cut an oriented par-
allelepiped (i.e., a parallelepiped with all faces perpendicular
on the tetragonal crystal axes), which is essential to obtain
quantitative values of the single-crystalline moduli. However,
RUS measurements can give important information even when
it is not possible to obtain an absolute value for the elastic con-
stants: anomalous thermodynamic behavior will be reflected in
the temperature dependence of the resonant frequencies, and
these can be measured regardless of sample shape or symmetry.
The magnetization data used in the Landau analysis were
obtained through standard susceptibility measurements in a
Quantum Design Magnetic Properties Measurement System
(MPMS).
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FIG. 1. (Color online) Elastic moduli vs temperature for poly-
crystalline Yb14MnSb11 in 0 and 2 T magnetic fields: (a) longitudinal
modulus c11; (b) shear modulus c44.

III. RESULTS AND DISCUSSION

Figure 1 shows the elastic moduli vs temperature for
polycrystalline Yb14MnSb11 measured for B = 0 T and B
= 2 T. If untextured, polycrystalline materials are elastically
isotropic and have only two independent elastic moduli,
the longitudinal modulus c11 [Fig. 1(a)], and the shear
modulus c44 [Fig. 1(b)], which are related to, respectively,
the longitudinal and transverse sound velocity in the material.
Normal elastic behavior can be modeled with the so-called
Varshni function,24 which shows a gradual increase of c11

with decreasing temperature, leveling off at low temperatures.
The elastic response of Yb14MnSb11 clearly deviates from
Varshni behavior: whereas both the longitudinal and shear
modulus increase with decreasing temperature, a rather abrupt
stiffening is observed below the Curie temperature (Tc = 53 K),
which is not affected by the application of a magnetic field. A
similar behavior is observed in single-crystalline Yb14MnSb11,
as shown by the temperature dependence of a resonant fre-
quency measured for a shard of single-crystalline Yb14MnSb11

(Fig. 2). Since the square of the resonant frequencies is directly
proportional to the elastic moduli, the substantial increase in
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FIG. 2. (Color online) Resonant frequency vs temperature for a
single crystal of Yb14MnSb11.

frequency observed below Tc reflects a stiffening of the elastic
moduli and confirms the observations for the polycrystal.
The mean velocity of sound vm can be calculated from the
measured values of the polycrystalline moduli c11 and c44 using
vL =

√
c11
ρ

, vT =
√

c44
ρ

, and vm = ( 1
3 [ 2

v3
T

+ 1
v3

L

])−1/3.25 The

values of vm calculated from the longitudinal and transverse
components of the elastic moduli varies from 1920 m/sec at
300 K to 1942 m/sec at 10 K, resulting in a 1% increase in
the mean velocity of sound in polycrystalline Yb14MnSb11

at temperatures below Tc. The Debye temperature (�D)
calculated from the mean velocity of sound is �D ≈ 186 K
at room temperature, using �D = h

kB
[ 3qNρ

4πM
]1/3vm

25 in fair
agreement with estimates from specific heat measurements,
which yielded �D ≈ (160 ± 10) K.1

We track the temperature dependence of the elastic con-
stants by calculating them as the second derivatives of the
free energy with respect to strain at constant temperature.
Although the RUS frequencies used in the experiment probe
the adiabatic elastic constants, nominally obtained as second-
order derivatives of the internal energy in respect with the
strain, from general thermodynamic considerations one can
show that the ratio of the two sets of coefficients is proportional
with the ratio of the heat capacities of the material measured
at constant strain and constant force, respectively (generalized
Reech relation), which in a solid is close to unity.

In a magnetic system, however, the temperature dependence
of the elastic moduli is expected to be sensitive to changes
in the magnetization of a material, because a change in the
alignment of magnetic moments with changing temperature
will affect the magnetic contribution to the free energy. We
incorporate these aspects in a theoretical model based on the
phenomenological Landau theory of phase transitions,18–20

which permits an analysis of the temperature dependence of
the elastic moduli in the presence of ferromagnetic ordering.

In this approach, the free energy F of a ferromagnet
is written as a sum of terms that depend only on the
order parameter, which is the spontaneous magnetization M ,
contributions from the elastic strain e, independent of M , and a
contribution from the coupling between the order parameter M

024402-2



ELASTIC PROPERTIES OF ZINTL FERROMAGNET Yb . . . PHYSICAL REVIEW B 86, 024402 (2012)

and the elastic strain e. In a crystal with tetragonal symmetry,
the free energy thus constituted is written as

F = −a

2
M2 + b

4
M4 + 1

2
c11

(
e2
xx + e2

yy

) + c12exxeyy

+ c13(exxezz + eyyezz) + 1

2
c33e

2
zz + 1

2
c44

(
e2
yz + e2

xz

)

+ 1

2
c66e

2
xy + M2

[
d1

(
e2
xx + e2

yy

) + d2exxeyy

+ d3ezz(exx + eyy) + d4e
2
zz + d5

(
e2
yz + e2

zx

)
+ d6e

2
xy + d7ezz + d8(exx + eyy)

]
. (1)

The above expression for the free energy includes only even
powers of M to reflect the invariance under time reversal. The
easy direction of spontaneous magnetization is the c axis in
this case, which belongs to the point group A2g representation
of 4/mmm. The latter terms result in the development of a strain
under magnetization, preserving the tetragonal symmetry.

To simplify the calculation, we use a reduced generic
version of Eq. (1), written as

F = −a

2
M2 + b

4
M4 + H (ei,ej ) + M2G(ei,ej ). (2)

The first two terms in Eq. (2) represent the pure magnetic
contribution to the free energy. In the vicinity of the critical
temperature, the phenomenological parameter a assumes a
temperature dependence of the form a(T ) = a0(Tc − T ), with
a0 a temperature-independent constant. The second phe-
nomenological parameter b is also temperature independent.
H (ei,ej ) = 1

2

∑6
ij cij eiej describes the elastic part with the

strain in the absence of M . The components of the strain
tensor are indexed by i, j = 1 to 6 such that 1 ≡ xx; 2 ≡ yy;
3 ≡ zz; 4 ≡ yz; 5 ≡ zx; 6 ≡ xy.26 Finally, G(ei , ej ) results
from the coupling between elastic strain and the magnetization,
with di the magnetoelastic coupling constants. Following the
Slonczewski-Thomas model,27 the magnetization is assumed
to vary quasistatically as a function of the deformation, such
that it maintains its equilibrium value. This is obtained by
differentiating the free energy in respect to the magnetization.
Therefore,

∂F

∂M
= 0, (3)

which leads to

−aM + bM3 + 2GM = 0. (4)

The nontrivial solution for magnetization is

M2
0 = a − 2G

b
. (5)

We note that on account of the explicit temperature
dependence assumed for a, as discussed above, the equilibrium
magnetization acquires, in a first-order approximation where
the contribution from the elastic deformation is neglected, the
same behavior.

When Eq. (5) is substituted back in F , the free energy
becomes a function of ei , ej . The dependence is explicit and
also implicit through M . This new form of the free energy is
labeled F̂ following the Slonczewski-Thomas notation. The

elastic coefficients are calculated as the second derivative with
respect to a certain displacement of F̂ . Using our simplified
expression, Eq. (2), the elastic constants are

c11 = ∂2F̂ /∂e2
1 = ∂

∂e1

(
∂F̂

∂e1

)

= ∂

∂e1

[( − aM0 + bM3
0 + 2M0G

)∂M0

∂e1

+ ∂H

∂e1
+ M2

0
∂G

∂e1

]
(6)

Using the equilibrium condition of magnetization from
Eq. (4),

c11 = ∂

∂e1

[
∂H

∂e1
+ M2

0
∂G

∂e1

]

= ∂2H

∂e2
1

+ 2M0

(
∂M0

∂e1

)
∂G

∂e1
+ M2

0
∂2G

∂e2
1

. (7)

The first term in Eq. (7) ∂2H

∂e2
1

= c0
11 is recognized as the

elastic coefficient in the absence of magnetization.
Further, from Eq. (5) 2M0

∂M0
∂e1

= − 2
b

∂G
∂e1

leading to

∂M0

∂e1
= − 1

bM0

∂G

∂e1
. (8)

Using Eqs. (5) and (8) in Eq. (6), we obtain

c11 = c0
11 − 2

b

(
∂G

∂e1

)2

+ M2
0
∂2G

∂e2
1

. (9)

When M0
2 is considered from Eq. (5), it is easily obtained

that

c11 = c0
11 − 2

b

(
∂G

∂e1

)2

+ a

b

∂2G

∂e2
1

, (10)

where second-order contributions from the elastic part of the
free energy were neglected.

Clearly, the temperature dependence of c11 originates in
the coupling with the equilibrium magnetization, through its
proportionality with a(T), expressed in the last term of the
Eq. (10). Using the complete form of the free energy, Eq. (1),
the six elastic moduli for a single crystal with tetragonal
structure are

c11 = c0
11 − 2

b
d2

8 + 2a

b
d1 = c0

11 − 2

b
d2

8 + 2d1M
2
0 . (11)

Similarly,

c44 = ∂2F̂ /∂e2
4 = ∂2H

∂e2
4

+ 2M0

(
∂M0

∂e4

)
∂G

∂e4
+ M2

0
∂2G

∂e2
4

= c0
44 + 2d5M

2
0 , (12)

c33 = c0
33 − 2

b
d2

7 + 2d4M
2
0 , (13)

c66 = c0
66 + 2d6M

2
0 . (14)
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FIG. 3. (Color online) �c11 vs M2 (b) Landau model for change in
longitudinal elastic moduli �c11 below the magnetic phase transition
using values of slope and intercept from (a). See text for details of
the model calculation.

For mixed coefficients,

c12 = ∂2H

∂e1∂e2
− 2

b

(
∂G

∂e1

)(
∂G

∂e2

)
+ a

b

∂2G

∂e1∂e2

= c0
12 − 2

b
d2

8 + d2M
2
0 . (15)

Similarly,

c13 = c0
13 − 2

b
d7d8 + d3M

2
0 . (16)

Whereas the above calculations yield expressions for the
elastic moduli of single crystals, the elastic moduli for isotropic
polycrystals can be estimated using the Voigt averaging
scheme, which provides an upper limit for the shear and bulk
modulus of a polycrystalline solid under the assumption that
the stress is uniform everywhere within the sample.28 The
general expressions for the Voigt approximation for the bulk
modulus K and shear modulus S are given by

K = 1
9 (c11 + c22 + c33) + 2

9 (c12 + c23 + c13), (17)

S = 1
15 (c11 + c22 + c33) − 1

15 (c12 + c23 + c13)

+ 1
5 (c44 + c55 + c66). (18)

For a tetragonal lattice, the elastic constants satisfy c11=
c22, c13= c23,c44= c55, and other elements other than c12
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FIG. 4. (Color online) (a) �c44 vs M2 (b) Landau model for
change in shear moduli �c44 below the magnetic phase transition
using value of the slope from (a). See text for more details.

and c66 are zero. With all elastic moduli cij having an
M2 dependence, it is clear that the Voigt average for the
polycrystalline bulk and shear modulus will display an M2

dependence as well. Figures 3 and 4 illustrate the model
calculations for the polycrystalline moduli c44 (= S) and c11

(= K + 4S/3), using cij = c0
ij + DijM

2 + Aij , where Dij

and Aij are constants comprising of the Landau coefficients b

and dl , where l = 1 to 8 obtained from Eqs. (11)–(16).
Using the equilibrium value of M2 = a/b, the val-

ues of the Landau coefficients corresponding to c11, i.e.,
D11∼0.34 GPa/emu2, and A11∼− 0.29 GPa are estimated
from the slope and intercept of �c11 vs M2 in the tem-
perature range (10–50) K below Tc as shown in Fig. 3(a),
where �c1=c11 − c0

11. The Landau coefficient for c44, i.e.,
D44∼0.105 GPa, and A44∼− 0.02 GPa are estimated from the
slope of �c44 vs M2 in the temperature range (10–50) K below
Tc as shown in Fig. 4(a). c11

0 and c44
0 were estimated assuming

a temperature-independent (Varshni-like) behavior of the
elastic moduli in the absence of magnetization. The Landau co-
efficients used to model the elastic moduli are tabulated below:

Elastic Landau coefficients Landau
moduli (GPa/emu2) coefficients (GPa)

c11 D11 = 0.34 A11 = − 0.29
c44 D44 = 0.105 A44 = − 0.02

024402-4
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As shown in Figs. 3(b) and 4(b), using the above values of
the Landau coefficients, excellent agreement is found between
the measured elastic moduli c11 and c44 below Tc and the
Landau model derived for the polycrystalline Yb14MnSb11.
A quadratic coupling of elastic strain and the spontaneous
magnetization, which is the order parameter here, provides
an accurate model for the stiffening of the elastic constants
in the Yb14MnSb11 below Tc. The elastic properties of the
rare-earth ferromagnet Gd also exhibit similar lattice stiffening
below the ferromagnetic ordering temperature (Tc ∼ 293.5 K),
and the spontaneous magnetic contribution to the Young’s
modulus in the metal is found to be proportional to the squared
magnetization.29 This may indicate that the Yb14MnSb11

behaves more like a rare-earth ferromagnet, with no direct
overlap of magnetic orbitals, owing to the distance between
the magnetic Mn2+ ions. Despite the complex nature of
ferromagnetism in the Yb14MnSb11, the Landau theory of
ferromagnetism based on the simple mean-field theory can
successfully model the temperature dependence of the elastic
moduli near and below the magnetic ordering temperature Tc.

IV. CONCLUSIONS

The elastic moduli of the Zintl ferromagnet Yb14MnSb11

have been investigated as a function of temperature and

magnetic fields, using RUS. The two elastic constants c11

and c44 for the polycrystalline Yb14MnSb11 show unusual
stiffening below the ferromagnetic ordering temperature, Tc ≈
53 K that corresponds to a 1% increase in the longitudinal and
transverse velocities of sound. A similar behavior is observed
in the temperature dependence of the resonant frequencies
measured for crystallographically unoriented single crystals
of Yb14MnSb11. The observed stiffening in the Yb14MnSb11

below Tc is found to be independent of applied magnetic fields,
B = 0–2 T. A simple model based on Landau theory for
ferromagnetism, using a quadratic coupling between the elastic
strain and the ferromagnetic order parameter, successfully
models the stiffening of the elastic moduli of the Yb14MnSb11

below Tc.
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