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We investigate layered acoustic metamaterials capable of exhibiting a wide variety of wave propagation
phenomena, including backward and forward waves with and without negative refraction. The metamaterials
are formed by periodically perforated hard plates, which we describe analytically in the limit of small holes
compared to both the period and the separation between plates. In particular, we derive expressions for the index
of refraction and the transmission and reflection coefficients of finite slabs. We provide illustrative examples of
near fields for all four combinations of backward and forward waves with and without negative refraction, along
with dispersion diagrams that explain the observed behavior. A comprehensive study of the range of geometrical
parameters in which these distinct phenomena are observed is presented as well. These metamaterials hold
great promise for achieving full control of sound using simple structures, with potential application to acoustic
technologies relying on subwavelength control and imaging of sound.
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I. INTRODUCTION

Sound enjoys a privileged status among the types of waves
commonly encountered in everyday life and in technology
(e.g., light, surface waves, etc.). It provides a natural source
of information on the environment and an effective means
of communication. Its propagation velocity varies orders of
magnitude for different materials, and it covers a broad
frequency range up to the gigahertz regime. Its interac-
tion with interfaces is subject to Neumann-type boundary
conditions (i.e., vanishing of the normal pressure gradient
in hard solids), and its impedance in gas-solid boundaries
can reach extremely high values. Not surprisingly, a long
tradition of understanding the scattering of sound by small
elements such as holes'™ has built up, partly triggered by
the goal of controlling sound propagation,* and recently
culminating in the design of acoustic metamaterials capa-
ble of molding the flow of sound down to subwavelength
scales.”™!* Applications to (bio)medical ultrasonography and
diagnostic imaging,'* acoustofluidic steering of microparticles
and microorganisms,'’ and sonochemistry'®!” have also been
devised.

Among the exotic properties already realized in wave
phenomena, negative refraction is appealing because of its
potential to achieve perfect imaging with resolution beyond
the diffraction limit (superlensing) using light waves.'® This
launched a race to produce the required optical materials,
which must simultaneously exhibit negative permittivity and
permeability.'®?° Inspired by these results, a negative acoustic
index of refraction was predicted in materials exhibiting
negative effective mass density and negative bulk modulus,’
while several acoustic metamaterial designs were proposed
containing resonators in the form of coated metallic spheres,’
lumped elements,® and perforations.'> Acoustic negative
refraction and backward wave propagation have also been
predicted®'* and experimentally demonstrated®* in two-
dimensional sonic crystals.

The vast range of phenomena associated with sound
propagion has led to applications to acoustic focusing,'!?>~27
waveguiding,”® cloaking,?®~3* negative refraction,''**3 res-
onant transmission through hole arrays,’***" and enhanced
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absorption,*! which are providing a major focus of attention.
In particular, cloaking has been predicted for both elastic* and
acoustic**? waves, including acoustic carpets.*> Cloaking
of sound has been demonstrated experimentally.* Acoustic
waves trapped at metamaterial surfaces have been investigated
as well.*>** Wave phenomena in general find their expression
in sound, and even classical analogs of quantum-optics effects
such as induced transparency have been realized.***>

The ability of perforated plates to negatively refract and
focus acoustic waves has already been established.!' In a
recent study,?’” we proposed the use of layered metamaterials
to achieve negative refraction, backward wave propagation,
and subwavelength imaging. In this paper, we provide further
details of the formalism used to analyze those metamaterials,
along with an exhaustive search of material parameters from
which we extract examples of all four combinations of
negative and positive refraction with backward and forward
wave propagation. This depicts an incredibly broad range of
propagation phenomena in this class of metamaterials, which
are reached by simply varying the wavelength in some cases,
or by changing the relevant geometrical parameters in general.

II. ANALYTICAL MODEL FOR ANISOTROPIC
PERFORATED METAMATERIALS

In this section, we elaborate an analytical model to describe
acoustic metamaterials formed by periodically perforated
plates, which are arranged as shown in Fig. 1(a). Holes of
diameter D are piercing the plates of thickness ¢. In the
calculations that follow, we consider square arrays of period d,
although the formalism is applicable to any lattice symmetry.
The plates form a stack that is also periodic along the z
direction perpendicular to the plates with period d,, so that
the interstitial region separating consecutive plates has a width
d, —t.

For simplicity, we assume the plates to be made of a
hard material embedded in a fluid. Additionally, the apertures
are taken to be narrow compared to the sound wavelength
A, the distance between holes, and the separation between
plates. Under these assumptions, sound only propagates in
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FIG. 1. (Color online) Schematic representation of a metamate-
rial formed by a periodic stack of perforated plates and description
of the response of each of the holes. The holes form a square array
of period d, in each plate. (a) The hole diameter D, the stack period
d,, and the plate thickness 7 are shown by labels. The apertures are
described by the self-consistent scattering amplitudes produced on
either side of the plate. Amplitudes facing the interstitial region i
are denoted B; and B;. Sound comes from the bottom and propagates
toward the top. Analytical solutions are obtained here for a fixed
value of the wave vector parallel to the plate, k. Arbitrary external
sources are then represented as a sum of their different k components.
(b) When an external pressure field ¥ (r) is applied from the lower
part of a hole, monopole pressure sources are produced in response
on either side of the hole, with amplitudes proportional to the incident
pressure multiplied by scattering coefficients « and o', as shown in
the figure.

the fluid and the acoustic pressure must have vanishing
normal derivative at the plate and hole-wall surfaces (Neumann
boundary conditions).

A. Bulk waves in an infinitely extended metamaterial

It is convenient to decompose the external source of sound
into Fourier components along the x-y directions parallel to
the plates. Then, we separately solve the propagation equations
presented below for each value of the wave vector along those
directions, k. The dependence of the monopole amplitudes on
the position of the holes R ; along the planar arrays is given by
exp(ik) - R;). The amplitudes of the upper and lower apertures
facing each interstitial region i are denoted B; exp(ik - R;)
and B exp(ik - R;), respectively [see Fig. 1(a)].

Assuming that the apertures are small compared to both
their separation and the sound wavelength, the response
of each hole is given by the amplitudes of the scattering
monopoles that it produces on its upper and lower parts.
These amplitudes depend on the incident pressure acting on

PHYSICAL REVIEW B 86, 024301 (2012)

the hole, as illustrated in Fig. 1(b). Analytical expressions for
the monopole scattering coefficients « and &’ [see Fig. 1(b)]
for a hole infiltrated with a fluid are derived in detail in the
supplemental material of Ref. 27:

1

+ _ _ .
8" = e = opr 21— neotkir/2], ()
- 1 -8
8 =g = ppr 2 nantar/2l, (1b)

where ko = 27 /A is the sound wave vector in the fluid outside
the hole, k; is the wave vector in the fluid inside the hole,
n = p1ko/ pok is the acoustic impedance involving the density
inside (1) and outside (pg) the hole, and

I ~ (k§D*/16)(1 — 32i /37ko D).

These expressions, which are valid under the current assump-
tion kgD < 1, satisfy the optical theorem?’

Im{g*} < —ko, )

where the equal stands for nonabsorbing holes.

Now, using a procedure similar to a previous analysis for
periodic particle arrays,*® we can write the following self-
consistent relation for the scattering amplitudes of a given
hole, which are produced in response to the sum of monopole
contributions from all other holes in the two interstitial regions
that this hole communicates:

B =a(G'Bi + GB) +'(G'B;_; + GBi—1), (3a)
Bi-1 = &' (G'Bi + GB)) + a(G'B{_, + GBi—1), (3b)

where G describes the interaction with apertures in the same
plate as the given hole and G’ represents the contribution of
holes in the contiguous plates, which are placed an interstitial
region apart. For example, the first of these equations describes
the scattering amplitude B of the lower apertures in the
interstitial region i, which is the sum of two contributions:
the scattering of the field produced by holes in region i, via
the scattering coefficient «, and the scattering of the field
coming from apertures in region i — 1, via «’. The first of
these contributions involves both a sum over openings in the
same plate as the given hole (terms proportional to G) and a
sum over lattice sites in the plate immediately above it [terms
in G’, see Fig. 1(a)]. The rest of the terms admit a similarly
intuitive interpretation.

The lattice sums are easily constructed from the direct
monopoles induced at the hole apertures and the subsequent
infinite series of identical monopole mirror images upon
reflection on the plate boundaries. This allows us to write

eiko ‘/Rj2-+4n2(d<.—t)2
253>
Fa = \/Rz tdn2(d, — t)2
o/ R3+Qn+1)2(d.~1)?
-y

P \/RZ £ Qn+12(d, — 1)

where R; runs over the 2D lattice of holes and the sum in G
is such that either R; # 0 or n # 0. Ewald’s method is ideally
suited for a fast evaluation of these expressions, as shown
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explicitly in the supplemental material of Ref. 27, where the
important properties

Im{G} = —ky, (4a)
Im{G'} =0 (4b)

are also derived in detail.
It is convenient to write Egs. (3) in matrix notation as

B /3{_1}
=T , 5
[ﬁi] |:/351 ©)

(1—aG)? —a?G?
- a'G’ '

Now, we define the component of the wave vector along the
plates normal k, for waves propagating in the metamaterial in
terms of the eigenvalues of T,

e:l:ik:d: — S + \/g):ZTL (6)

where

£ [(G—g"NG—g)—G"l. (D

(&~ —8NHG’
In writing Eq. (6) we have used the property that 7 has
unit determinant (i.e., the product of its two eigenvalues
must be equal to 1). Using the optical theorem [Eq. (2)] for
nonabsorbing plates (Im{g*} = —k) together with Egs. (4),
we find that

1

_ _ ot o) 72
_—Re{g——g+}G’[Re{G 8T IRe{G —¢g"} -G7] (8

3
is a real number. And from Eq. (6), we conclude that k,
is imaginary for |£| > 1, implying that wave propagation is
forbidden in the metamaterial. In contrast, propagating modes
exist under the condition |£] < 1, which leads to real wave
vectors

k, = :I:l cos L&, ®
d;
where the & sign is determined by the physical condition
Im{k,} > O (see below) and we take 0 < cos™!' & < 7.

In our retarded response formalism, waves propagate in
the direction of positive Im{k,} as a requirement of energy
conservation. Then, backward wave propagation is signaled
by the condition that Re{k,} and Im{k,} have opposite signs.
Here, we introduce absorption inside the holes through a
small positive imaginary part in k; = kj + i k’i [see Egs. (1)],
so that Im{g*} ~ —ky — k’i{i, where ¢+ = —dg*/dk,. More
precisely,

gt 1
koD? cos2(kyt/2)’
B 4nt 1
é‘ —

"~ koD? sin?(k1/2)
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Now, Taylor expanding Eq. (7), we find that Eq. (8) must be
supplemented by a small imaginary part given by

1
[(Ref{g™ — g1’ + (&4 —¢-)°1G
x [(Re{G — g")*- — Re(G — g™}’
+(G7 + 410 — )
Finally, we find from Eq. (6) that Re{k.} and Im{k,} have
different signs (the condition for backward wave propagation)
if and only if Im{£} > 0, in which case the — sign has to be

chosen in Eq. (9) in order to have Im{k,} > 0. Otherwise, we
have forward waves and the + sign must be used.

B. Reflection and transmission coefficients of finite
metamaterial films

For a finite metamaterial stack in which sound is incident
andreflected inregioni = 0 and transmitted to the top in region
i = N, we can proceed in a way similar to the derivation of
Egs. (3) and (5) for the upper and lower plates. We find

I:IB{] _ TO[zwinC/Gr}’
Bi Bo

8 ]=nlin)

where the matrices

T_a b T_a b
"y | Ny

have unit determinant, and

(10a)

(10b)

2 2
, o —a o
b= Gty

_ (1—aG)(1 —aGg) —a”’GGy
- a'G’ '

d/

The factor of 2 in Eq. (10a) originates in the wave directly
reflected by the lower plate in the absence of the holes. Here,
Gy is the sum over hole positions in the top and bottom planar
interfaces of the overall structure,
eikoR; R,
G() = RZ Rj € .
70

We evaluate G following the methods elaborated by Kambe.*’
Its imaginary part below the diffraction threshold admits
the analytical expressions®® Im{G(} = —ko outside the sound
cone and Im{Gy} = —ko + 27 /k, A inside it, where k, =

/k§ — ki 4 i0* is the normal wave vector outside the meta-

material and A is the unit cell area of the hole arrays.
Using Egs. (5) and (10), the near- and far-side amplitudes
Bo and B, are related by

ﬂ;\’ _ Voo zwinC/G/
o =m0
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—o— Full expansion, round holes
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FIG. 2. (Color online) Acoustic normal-incidence transmittance through one (a)-(c) and two (d)—(e) perforated plates arranged as in
Fig. 1(a), with geometrical parameters as shown by labels. The results of our monopole analytical formalism (blue curves and crosses) are
compared with full-wave expansions of the pressure field, both for round holes (black curves and circles) and square holes of the same area
(red curves and squares). All lengths are normalized to the period of the square hole array d,. The fluid is the same inside and outside the holes.

Incidentally, it is useful to change to a basis set in which 7T is Now, introducing the explicit notation for the elements of the

diagonal, which allows us to readily evaluate TV ~2 as transmission matrix
T TN-2T, — I:Tll T12i|,
- -1 [—b | —b. j| 1 2
2bsin(k.d,) [ a —elk%  q — ek we find
eihed:(N=2) 0 a—eikd p Bo/ Y™ = 2151 /122G,
) |: 0 e e (N=2) i| |: —a + ek —d] By /Y™ = 2(t11T2 — T1aT1)/T22G .

transmittance|

FIG. 3. (Color online) (a) Regimes of wave propagation inside a metamaterial as a function of wavelength and hole array spacing (see
Fig. 1) for D/d, = 0.4, t/d, = 0.5, n = 0.6 [see Eq. (1)], and k; = /A (30° angle of incidence). All lengths are normalized to the period
of the square hole array d,. The wave vector inside the holes is the same as outside (k; = ko). Regions of no propagation correspond
to Im{k,} > 0.02ky. (b) Transmittance through a metamaterial slab consisting of N = 250 perforated plates. (c) Real part of the index of
refraction n,,.
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These expressions are valid for metamaterial slabs containing
N > 2 perforated plates. For N = 1, one simply has By =
(8+ — Go) ™' +(g- — Go) " and B} = (g4 — Go) ' — (g —
Go)~'. Finally, summing over the monopole contributions
to the far-field pressure coming from holes in the near and
far sides of the structure, the reflection and transmission
coefficients reduce to

2wiBo/y™) 2w/

=1
rkl\ + AkJ_ Ky AkJ_

In the absence of diffraction for nonabsorbing materials, we
have |}’k“|2 + |tkH |2 =1.

C. Accuracy of the monopole model

We test the accuracy of our monopole analytical approach
by comparing results for one and two perforated plates
obtained with a complete full-mode expansion of the pressure
field, available for square*® and circular®® holes. We are consid-
ering circular holes in the analytical approach, so we take the
same hole areas in both calculations, as the actual hole shape
is expected to play a minor role for small apertures. Figure 2
shows the resulting transmittance for reasonable choices of
geometrical parameters. The transmittance is represented as a
function of the wavelength relative to the hole spacing, A/d.
These are the basic building blocks of our metamaterials, so
it is important to show that they are well described within the
analytical formalism. We conclude from Fig. 2 that the results
of rigorous calculations agree qualitatively well with our
monopole-based model, and even the quantitative agreement
is rather satisfactory down to relatively low values of A /d,.

III. WAVE PROPAGATION REGIMES

We are now ready to explore the exotic wave propaga-
tion properties of our layered perforated metamaterials. In
particular, we tune the parameters of the structure to exhibit
negative and positive refraction with backward or forward
wave propagation. For this purpose, we must be careful when
defining the phase and group velocities v, and v,, as well as
the group refraction index 7.

The phase velocity describes the evolution of equal-phase
planes in a plane wave mode and can be written in terms of
the wave vector inside the metamaterial k = Kk 4 k.2 and the
frequency  as v, = wk/|k|?. In contrast, the group velocity
describes the direction and speed of energy propagation inside
the material and is associated with the condition of stationary
phase in exp(ik - r), which leads to the well-known expression
v, = Vi, indicating that the group velocity is normal to the
equifrequency surfaces in wave-vector space. Since we have k,
expressed in terms of k;j and w in Eq. (9), instead of w in terms
of k and k., we need to transform Viw into the equivalent
expression

= —— (Vg k, + 2).
Yo = G jaw ket
For k| = kX along a high-symmetry direction X of the planar
hole arrays, we find Vi k; = (3k;/dk))X. It is also convenient
to define the group index of refraction ng from Snell’s law,
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Ald, =195
d.Jd =257

Ad =211
d./d, =152

FIG. 4. (Color online) Left: Near-field pressure intensity plots
for all four combinations of backward and forward waves with
and without negative refraction. The conditions for plots (a)—(d)
correspond to the crosses A-D of Fig. 3(a), with 30° incidence angle.
The broken lines indicate the slab interfaces. Right: Equifrequency
curves for sound propagation in free space (blue curves) and in the
metamaterials (red curves), for the same geometrical parameters and
wavelengths as in the left plots. The group (phase) velocity is shown as
thick (thin) arrows. Equifrequency curves for slightly larger frequency
are added as broken curves to illustrate the direction of the group
velocity. The parallel component of the phase velocity is conserved
across the interface. The transmission group velocity must be oriented
towards positive z’s, and this determines the sign of the phase velocity
once inside the metamaterial.
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which yields

_ (ky/ko) 5
ng = —akz/ak”‘/l + (0k, )k 2. (11)

The value of k is determined by the direction of the incident
wave vector in the near side of the metamaterial. Assuming that
the external medium is a conventional fluid, the incident wave
moves toward the right for k; > 0. However, the group velocity
inside the metamaterial can be directed either toward the left
(negative refraction) or toward the right (positive refraction),
depending whether the sign of dk,/dk is positive or negative,
respectively. Additionally, positive (negative) refraction is
signaled by Re{n,} > 0 (Re{nz} < 0), according to Eq. (11).

In order to distinguish between different wave propagation
regimes, we separate in Fig. 3(a) different regions according to
the signs of Re{k;} and Re{n,} [see Egs. (9) and (11)] for a wide
range of wavelengths and plate separations. We consider holes
of diameter D/d, = 0.4, thickness ¢/d, = 0.5, and impedance
n = 0.6 [see Eq. (1)], and we fix the parallel wave-vector
kj = 0.5ko. Regions for all four combinations of positive and
negative refraction (Re{ng} > OandRe{n,} < 0) with forward
and backward propagation (Re{k,} > 0 and Re{k,} < 0) are
identified. We further show in Fig. 3(b) the transmittance
associated with the regimes of wave propagation for a finite
metamaterial stack consisting of N = 250 perforated plates.
The transmittance displays large values for the regimes of
unusual wave propagation from Fig. 3(a), mainly at small
wavelengths, while the index of refraction takes moderate
values, as shown in Fig. 3(c).

We illustrate in Fig. 4 these four different propagation
regimes through near-field pressure maps for an incident
Gaussian beam at the specific values of d, — ¢ and X indicated
by crosses in Fig. 3(a). Additionally, we show equifrequency
curves (right plots of Fig. 4, solid curves) obtained by plotting
k- [Eq. (9)] as a function of k. For free-space wave propagation
(blue curves), the group velocity (thick arrows) coincides
with the phase velocity (thin arrows, not to scale). The four
scenarios represented in Fig. 4 clearly illustrate each of the four
different propagation regimes. As pointed out above, the group
velocity (and hence the direction of energy flow) is normal to
the equifrequency curves and oriented toward the direction of
increasing frequency (dotted equifrequency curves are shown
at slightly higher frequency).

In contrast to Fig. 4(a), which resembles an anisotropic
medium of elliptical equifrequency curves, we find in Fig. 4(b)
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a hyperbolic metamaterial behavior that gives rise to backward
wave propagation with positive refraction, characterized by a
different direction of phase propagation and intensity flux with
respect to the interface normal. Varying the wavelength and the
d,/d, ratio slightly, as indicated and calculated in Figs. 4(c)
and 4(d), we predict that the incident Gaussian beam undergoes
negative refraction. Although the equifrequency curve of
Fig. 4(c) again displays signs of anisotropy, we clearly see that
the free-space and metamaterial group velocities are oriented
towards different directions with respect to the interface
normal, which is a clear indication of negative refraction, as
confirmed by the pressure field map. Additionally, a broad-
angle negative-index behavior is predicted by the right plot of
Fig. 4(d), leading to group and phase velocities with opposite
sign in their z components. Remarkably, this vast range of
wave phenomena occurs within the same type of metamaterial
structure, in which only the ratios d, /d, and A /d, are changed.

IV. CONCLUSIONS

We have theoretically analyzed layered acoustic metama-
terials based upon perforated plates and shown that these
structures sustain backward and forward propagating waves
with and without negative refraction. We have derived analyt-
ical expressions for the acoustic transmission and reflection
coefficients of metamaterial slabs and explored different
geometrical parameters to show that all four combinations
of propagation regimes are reachable by suitably choosing
those parameters. A wide variety of material properties
can be obtained by changing the separation and size of
the holes, or even by scanning the wavelength for a fixed
metamaterial configuration, and thus, we foresee that these
layered structures can find important applications to the field
of subwavelength acoustic imaging, as well as to focusing?®?’
and guiding®* of sound, adding up to recent alternative designs
with extraordinary acoustic properties.®’
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