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Collective excitations in molten iron above the melting point: A generalized collective-mode analysis
of simulations with embedded-atom potentials
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It is shown, that the embedded-atom potential nicely describing structural properties of high pressure Fe
[A. B. Belonoshko er al., Phys. Rev. Lett. 84, 3638 (2000)] can be successfully used for description
of collective dynamics of liquid iron. A combination of molecular dynamics simulations and a fit-
free analysis based on the approach of generalized collective modes (GCM) is used for calculations
of spectra of collective excitations and relaxing modes at 1843 K. The obtained spectrum of acoustic
excitations in the long-wavelength region perfectly agrees with the experimental speed of sound and
reproduces the dispersion estimated from inelastic X-ray scattering (IXS) experiments [S. Hosokawa et al.,
Phys. Rev. B 77, 174203 (2008)]. Heat fluctuations in liquid Fe were studied and resulted in calculated ratio
of specific heats y ~ 1.40 being in agreement with the IXS-experiment estimate. We report analysis of the
wave-number dependence of relaxation processes and their contributions to dynamic structure factors. This
permits estimation of most important relaxation processes contributing to the shape of dynamic structure factors

of liquid Fe in different regions of wave numbers.
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I. INTRODUCTION

The properties of iron in liquid and solid states are of great
importance for geophysical science due to their abundant pres-
ence in the outer and inner Earth cores. Structural, electronic,
and transport properties of iron were intensively studied in
wide ranges of temperatures and pressures experimentally '3
and by computer simulations.’>!

The choice of effective potentials for classical MD sim-
ulations is crucial for correct reproduction of structural and
transport properties of transition metals. One of the most
successful type of effective potentials for iron is the embedded-
atom potentials with parameters estimated from a fit to ab initio
linear muffin-tin orbital (LMTO) results of energy-volume
dependence for hcp and liquid iron.'?> Application of this
effective potential to high-pressure liquid iron demonstrated
nice reproduction of the experimentally determined structure
factor calculations up to the highest pressure of 58 GPa.'4

Previous simulation studies of dynamic properties of liquid
iron at high pressures were focused mainly on calculations of
transport coefficients! 141522 and estimation of speed of sound
along the ab initio derived Hugoniot pressure-volume curve.?
The phonon dispersion curves'®** and vibrational density
of states'>!® were reported only for solid iron. Collective
excitations in liquid Fe so far were not studied by MD simu-
lations, although there were reported simulations of dynamic
properties with embedded-atom potentials for molten Ni%>2°
and compared later on with IXS experiments.?’ Recently, there
appeared two reports on inelastic x-ray scattering experiments
performed on liquid Fe at the temperature of 1570 °C.”8 The
dispersion w(k) of collective excitations, obtained in these
scattering experiments had a linear long-wavelength region
with the slope that was close to the adiabatic speed of sound
3800 m/s.> Another important result of the IXS experiments
was the fact that analysis of the Landau-Placzek ratio led to
the estimated value of the ratio of specific heats y = C,/C,
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close to 1.4. The ratio of specific heats is a very important
quantity for dynamics of liquids because it is a measure of
coupling between thermal and viscous processes and, namely,
y is responsible for the relative intensity of the central peak of
dynamic structure factor S(k,w).?83°

It is not a simple task to calculate the dispersion of
collective excitations in liquids. In contrast to crystals or
glasses, where the atoms are supposed to vibrate around the
equilibrium positions, in liquids, there are no stable local
equilibrium positions for atoms because they take active
part in different relaxation processes: structural relaxation,
diffusion, and heat transfer. The methodology of theoretical
study of collective excitations in liquids must be based on
generalized hydrodynamics. This permits to study viscous
regime on macroscopic distances and elastic properties like
in solids on meso- and microscopic spatial scales. There exist
afew schemes of generalization of hydrodynamics,?® however,
for the purpose of calculations of dispersion of collective
excitations from MD data, mainly, a fit based on the memory
function formalism?'~3> was applied. Another approach within
the mode coupling theory was suggested recently,**” having
as an input only information on static structure factors S(k).
However, heat fluctuations in this scheme are completely
ignored that corresponds to viscoelastic description of liquids
with y close to unity.

One of the most advanced methods of generalized hydro-
dynamics that was namely developed for the purpose of theo-
retical analysis of time correlation functions obtained in MD
simulations is the approach of generalized collective modes
(GCM).*®* This theoretical approach is based on systematic
extension of the set of hydrodynamic (conserved) variables
by orthogonal to them ones, that are supposed to describe cor-
rectly more short-time collective processes in comparison with
most slow hydrodynamic ones. The extended set of N dynamic
variables is then used for calculation of a N x N generalized
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hydrodynamic matrix T(k), eigenvalues of which correspond
to either relaxing (real eigenvalues) or propagating (pairs of
complex-conjugated eigenvalues) modes that can exist in the
system. Since the hydrodynamic set of dynamic variables
contains energy (or heat) density, the GCM approach is able
to reproduce correctly all the features of crossover between
leading thermal relaxation in the long-wavelength region and
structural relaxation on the boundary of hydrodynamic regime
as well as the connected with this crossover so-called “positive
dispersion” of acoustic excitations.*’

Hence the aim of this study was to perform MD simulations
of liquid iron at the conditions of the IXS experiments’ and
calculate spectra of collective excitations in liquid Fe
avoiding any fit. Comparison of the obtained quantities with
experimental estimates can show whether the embedded-atom
model (EAM) effective potential is able to describe correctly
the collective dynamics in liquid iron at low pressures.

II. MOLECULAR DYNAMICS SIMULATIONS AND
METHODOLOGY OF ANALYSIS

Using the EAM potential with parameters suggested in
Ref. 12, we performed molecular dynamics simulations having
a system of 1000 particles in a cubic box under periodic
boundary conditions. First, we applied the NPT ensemble
to get the equilibrium volume for the system at ambient
pressure and temperature 7 = 1843 K that corresponded
to the temperature of IXS experiment.” During the second
stage, the obtained system in a cubic box with the boxlength
L = 23.569 A was equilibrated over 40 ps in constant volume
and temperature NVT ensemble. The Nose-Hoover thermostat
with relaxation time of 0.5 ps was used for the temperature
control. The time step in simulations was 2 fs, and the
production run was of 100 000 time steps. Sixty wave
numbers in the range 0.267-4.461 A~' were sampled, and
the average of static and time-dependent quantities over all
possible directions of wave vectors with the same module was
performed.

For the need of calculations of time correlation functions
and their GCM analysis, we sampled from MD data the
following Fourier components of microscopic hydrodynamic
variables: the density of particles

N
1 A
ntkt)=—=Y e, e))
the density of mass current
N
m .
J(kst) = = Vie_lkris (2)

that was easily projected onto longitudinal J%(k,t) and
transverse J (k,t) components, and energy density

N
1 .
e(k,t) = = > "ee 3)
i=1

where the single-particle energies were calculated in the
following way:

N
1 1
& = smv} + - ; D(rij) + F(py). )
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Here, ®(r) is the pairwise interaction between atoms i and j
at interatomic distance r. F(p) is the embedding function that
depends on local electron density p. The dynamic variable
of heat density (that is orthogonal to instantaneous particle
density) can easily be obtained as follows:

Bty = e(lr) — SR, (5)
(nkn_g)

The brackets in Eq. (5) mean the ensemble average.

The analysis of time correlation functions calculated in
MD simulations was performed by the GCM approach using
a five-variable extended set of dynamic variables:

A (k,1) = {nlk,1), J (k1) h(k,t),J"(k,t),h(k, 1)},  (6)

where the dotted variables mean the first time deriva-
tive of corresponding hydrodynamic variable. For the
case of transverse dynamics, the two-variable extended
model

ACD (k1) = {J"(k,1),J" (k1)) (7

was used. Since in classical mechanics the instantaneous cross
correlations between a dynamic variable and its first time
derivative is equivalent zero, the five-variable dynamic model
corresponds to the extension of hydrodynamics by two or-
thogonal dynamic variables. Namely, these extended variables
describe microscopic processes that cannot be obtained by
hydrodynamic approach. We would like to mention that the
hydrodynamics is essentially the continuum approach and
microscopic extension like dynamic model (6) permits to
describe correctly effect beyond the continuum picture, i.e.,
when atomistic structure and dynamics play important role.
The analytical solutions of the dynamic models (6) and (7) in
the long-wavelength limit were obtained in Refs. 41 and 42,
respectively. They will be used for analysis of obtained GCM
eigenvalues in the long-wavelength region.

The generalized hydrodynamic matrix T(k)’® was calcu-
lated for both dynamic models (6) and (7) for each k point
sampled in MD. Corresponding eigenvalues were estimated
and from the imaginary parts of complex eigenvalues the
dispersions of collective excitations were obtained. The eigen-
vectors associated with relevant eigenvalues were analyzed
with the purpose to estimate the mode contributions to the
time correlation functions (or dynamic structure factors) of
interest.

)38

III. RESULTS AND DISCUSSION

A. Structural properties and generalized
thermodynamic quantities

The structure factor of liquid Fe calculated as the density-
density statistical average

S(k) = Fup(k,t = 0) = (ngn—)

is shown in the top panel of Fig. 1. The obtained smooth de-
pendence S(k) gives evidence of good statistics in calculations
of static averages. The first sharp diffraction peak of S(k) is
located at k 3.05 A and has the amplitude close to 2.4 that is
in reasonable agreement with experimental S(k).°

Since in MD simulations we estimated the energy fluc-
tuations in liquid Fe, we were able to study wave-number-
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FIG. 1. (Color online) Generalized thermodynamic quantities for
liquid iron at 1843 K: structure factor (isothermal compressibility)
S(k), linear thermal expansion coefficient oy (k), and ratio of specific
heats y (k). The generalized wave-number dependent quantities tend
in the kK — 0 limit to their regular macroscopic values.

dependent generalized thermodynamic quantities like linear
thermal expansion coefficient o7 (k), specific heats C,(k)
and C,(k), and their ratio y(k).*** In the long-wavelength
limit, these generalized thermodynamic quantities tend to their
macroscopic values. In the middle and bottom panels of Fig. 1,
the wave number dependencies of dimensionless quantity
a7 (k)T and the ratio of specific heats y (k) are shown. Both
wave number dependencies show pronounced peaks at the
location of the first sharp diffraction peak of S(k), similarly as
it was observed for other liquid metals. In the long-wavelength
limit, the a7 (k) tends to a value ~9.0 x 10~> K~!, that is, in
agreement with the experimental value.> The wave-number
dependence of y(k) tends to a macroscopic value of the
ratio of specific heats ~1.4, that is right the value reported
in Ref. 7 from analysis of the Landau-Placzek ratio in IXS
experiments. It should be mentioned thatin Ref. 7, the expected
value of y calculated by using the known experimental values
of heat capacity, temperature, volume, thermal expansion
coefficient, and adiabatic compressibility was 1.72, which
was very close to the value of y = 1.8 for liquid Fe at
the melting point.** Indeed, for liquid metals, the values
of specific heats and transport coefficients estimated from
the scattering experiments and MD simulations usually are
essentially smaller than the values obtained from calorimetric
experiments or measurements of kinetic properties. The
scattering experiments and MD simulations reflect only the
atomic contribution to the dynamic properties that explains
the smaller values of y obtained from the Landau-Placzek
ratio. Our estimated value of y being in good agreement with
the IXS experiments’ is the evidence that the embedded atom
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potential used in the present simulations of liquid Fe correctly
reproduces energy and heat fluctuations.

B. Time correlation functions

Time-correlation functions, calculated in MD simulations,
keep all the information on dynamic processes that occur in
the liquid on different spatial and time scales. Sampling of
energy fluctuations for liquid Fe made possible calculations not
only standard density-density time correlation functions, but
density-energy and energy-energy time correlation functions
too. Namely, these three time correlation functions are called
as hydrodynamic time correlation functions, and associated
with them correlation times contain the information on the
transport coefficients.*’

In order to understand what kind of processes contribute
to the shape of these time correlation functions, one has
to perform theoretical analysis based on some model of
generalized hydrodynamics. As we stated above, the GCM
approach avoids any free fit to the MD-derived time correlation
functions. For analysis of hydrodynamic time-correlation
functions that reflect longitudinal dynamics, we use the
five-variable dynamic model (6) known as thermoviscoelastic
one.*Y Using eigenvectors associated with the eigenvalues
Za(k) of the 5 x 5 generalized hydrodynamic matrix T(k),
the theoretical replicas of hydrodynamic time correlation
functions is represented as follows:

5
FO%ht) =Y Gike ™™, ij=ne ()

a=1

where each term corresponds to a contribution from a collec-
tive mode z4(k), and the mode amplitudes G (k) are in general
case complex numbers. The analysis of mode contributions is
more convenient to perform with real amplitudes, therefore, in
Ref. 46 it was shown, how in general, the form (8) is reduced
to the hydrodynamic-like expression*> with real amplitudes of
mode contributions,

FOk,1) 3 12)
L Bt A a —dy k)t a
Fykit=0) ; Aij ke + ; [ B (k) cos(wa (k)1)

+ DE (k) sin(a, (k)1)]e = ®", ©)

with real k-dependent amplitudes of mode contributions: from
relaxation processes A7’ (k), symmetric B/(k) and asymmetric
D;"j(k) contributions from «th collective excitation. This
expression is the direct extension of the hydrodynamic time
correlation functions on the case of existing nonhydrodynamic
relaxing and propagating modes. These amplitudes of mode
contributions keep all the information about the strength of
different collective processes in various windows of wave
numbers. Within the GCM approach, the wave-number-
dependent amplitudes of mode contributions are estimated
in a fit-free way solely from the eigenvector analysis. The
different numbers of the exponential and oscillating terms
in Eq. (9) reflects the fact that the dynamic model (6) is
able to describe solutions with two types of propagating
modes.

In Fig. 2, we show the comparison of MD-derived hy-
drodynamic time correlation functions F,(k,t), Fy.(k,t), and
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FIG. 2. (Color online) Time-correlation functions obtained from
MD simulations (solid line) and their fit-free GCM replicas (dashed
line), obtained within the five-variable dynamic model (6): density-
density, density-energy, and energy-energy for liquid iron at the wave
numbers k& = 0.267 A~' (left) and k = 2.920 A" (right). The time
scale for reduced unit is 0.78115 ps.

F,.(k,t) with their theoretical GCM replicas (8) for two wave
numbers. One can see that the strongly oscillating form of the
density-density and density-energy time correlation functions
close to the hydrodynamic regime are well reproduced as
well as solely as a relaxation form of the time correlation
functions in the region of so-called deGennes slowing-down
of density fluctuations close to the first sharp diffraction peak
of S(k). This perfect reproduction of the MD time correlation
functions by their theoretical GCM replicas is provided by the
high number of the sum rules satisfied by expression (9). The
density-density time correlation functions within the dynamic
model (6) exactly match the first five frequency moments
(short-time behavior) and zero time moment of corresponding
MD functions. For energy-energy time correlation functions,
only the first three frequency moments and zero time moment
exactly match the MD functions, because only the first time
derivative of hydrodynamic variable of energy (or heat) density
is present is the set (6).

The perfect reproduction of the MD time correlation
functions by their theoretical GCM replicas in a wide region
of wave numbers (see Fig. 2) means that the five-variable
model is correct for description of the relaxation processes
and collective excitations in liquid Fe at 1843 K.

C. Longitudinal and transverse
collective excitations

Longitudinal dynamics of pure liquids on macroscopic
spatial and time scales is completely described by hydro-
dynamic theory in terms of contributions from a single heat
relaxation mode and acoustic collective excitations. Therefore
any successful generalized hydrodynamic theory must lead to
correct hydrodynamic asymptotes of collective modes in the
long-wavelength limit.

PHYSICAL REVIEW B 86, 024202 (2012)
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FIG. 3. (Color online) Dispersion and damping of collective
excitations in liquid iron at 1843 K, obtained from simulations with
EAM potential and GCM analysis. The straight line in the top panel
corresponds to hydrodynamic dispersion law with experimental value
of speed of sound 3800 m/s. In the bottom panel, the quadratic
dependence on k of damping permits to estimate the damping
coefficient I' = 19.1 A2 /ps.

In Fig. 3, the calculated dispersion w; (k) and damping o, (k)
of acoustic excitations are shown. In the long-wavelength limit,
the dispersion and damping tend to hydrodynamic asymptotes
(shown by dashed lines in Fig. 3):

o™i(k) = ¢k, o™i(k) =Tk,

where ¢, is the adiabatic speed of sound and I" is the sound
damping coefficient

['=3[D.+(y — DDr],

where D; and Dy are the kinematic viscosity and thermal
diffusivity. One can see that the obtained dispersion in long-
wavelength region is very close to the linear dependence with
the experimental value of the speed of sound of 3800 m/s.”
The estimated from the hydrodynamic asymptote damping
coefficient I" is 1.91 x 10~ "m?/s. We would like to stress that
the experimental measurements of speed of sound in liquid
systems are very sensitive to the temperature and pressure and
one can expect the error bars up to 10% for the reported in the
literature values. Indeed, in Ref. 44, there are values of 4400
and 3985 m/s for ¢, of liquid Fe at melting point. Perhaps
future classical and ab initio MD simulations of liquid Fe
close to melting point will provide more information on the
adiabatic speed of sound in the particular ranges of pressures
and temperatures.

Beyond the hydrodynamic regime the dispersion wy(k)
of collective excitations deviates from the linear dispersion
law. One can see around k ~ 0.6 A~! a shift towards higher
energies with respect to the dashed line in the top panel of in
Fig. 3. This deviation is called the “positive dispersion” and
as it was shown in Ref. 40, the nonhydrodynamic structural
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FIG. 4. (Color online) Real eigenvalues that correspond to lead-
ing relaxation processes in longitudinal dynamics. The lines in
small-k region correspond to analytical long-wavelength asymptotes
of relaxation processes. !

relaxation is responsible for this change from hydrodynamic
to high-frequency behavior in sound dispersion. The sound
damping in this region also shows a strong deviation from the
hydrodynamic asymptote. For the short-wavelength collective
excitations, the standard minimum of wy(k) is observed in the
region of deGennes slowing-down of density fluctuations. This
minimum in the dispersion occurs together with the strong
increase of sound damping, that corresponds to the strong
scattering of collective excitations on the cages of nearest
atoms.

Among the five eigenvalues of the generalized hydro-
dynamic matrix we obtained for k < 0.72 A~! three real
eigenvalues in addition to a pair of complex-conjugated sound
modes. For larger wave numbers, the eigenvalues had only
one real value and two pairs of complex-conjugated numbers,
corresponding to acoustic modes and nonhydrodynamic heat
waves. First, we will analyze real eigenvalues. In Fig. 4,
we show the obtained real eigenvalues that correspond to
relaxation processes in liquid Fe. We would like to remind
that the real eigenvalue has the meaning of the inverse
relaxation time of corresponding process on the spatial scale
L ~ 2w /k. The lowest real eigenmode is easy to identify. It
has the hydrodynamic asymptote ~k> and hence this mode
corresponds to hydrodynamic thermal relaxation:

di(k) = Drk*>,  k— 0,

where D7 is thermal diffusivity. From the hydrodynamic
asymptote shown in Fig. 4 by a dotted line, one can estimate
the value of thermal diffusivity 2.3 x 1077 m?/s. The other
relaxing modes can be identified by making use of analytic
solutions of the thermoviscoelastic model (6) in the long-
wavelength limit.** Two relaxing modes d, (k) and d3 (k) tend to
nonzero values in the long-wavelength limit, that means their
finite relaxation times on macroscopic distances. Hence in
comparison with hydrodynamic modes they do not contribute
to dynamics on macroscopic spatial and time scales. This is
a general feature of nonhydrodynamic processes. The mode
d, (k) according to analytic solutions corresponds to structural
relaxation and behaves in long-wavelength limit as*’

2

2
k) = == - DU+ (y — DAR, (10)
L
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FIG. 5. (Color online) Dispersion of nonhydrodynamic collective
propagating modes that correspond to heat waves in liquid iron at
1843 K.

where ¢, is the high-frequency speed of sound, and A
is a factor due to coupling between the modes d»(k) and
dj(k). One can see in Fig. 4, that the MD results nicely
reproduce the analytical long-wavelength behavior of d,(k)
tending to the value of inversed relaxation time of structural
relaxation 29.7 ps’l, which means much smaller relaxation
time in comparison with hydrodynamic relaxation processes.
The relaxing more dz(k) is of thermal origin and corresponds
to relaxation of heat current. The d;(k) usually tends to
higher values then d,(k), however it decays with wave number
faster. Namely, the decay rate of the nonhydrodynamic mode
ds(k) defines the region of wave numbers where exist two
relaxation processes of heat origin. In Fig. 4, one can see
that for wave numbers k > 0.72 A~!, the main contribution
to the relaxation of the density-density correlations comes
from the only relaxing mode d»(k). This is in contrast with
hydrodynamic region where the main contribution to the
central peak of dynamic structure factor is of thermal origin
(lowest relaxing mode). For large wave numbers, mainly the
structural relaxation, as the most slow relaxation process,
defines the central peak of dynamic structure factor.

For wave numbers k > 0.72 A~!, liquid Fe can support
heat waves that provide another mechanism of heat transfer
on nanoscale. In Fig. 5, we show the imaginary part (dis-
persion) of complex-conjugated pair of eigenvalues obtained
in addition to the acoustic modes. The absence of heat
waves in the long-wavelength region is in complete agreement
with hydrodynamics—similarly as this is for the case of
transverse sound—liquids do not support the long-wavelength
heat waves.*® The issue of existence on nanoscale heat waves
in liquids and their detection is timely because for solids these
collective modes were experimentally indentified.*>>" The
propagation gap dispersion of heat waves in liquid Fe shown
in Fig. 5 gives evidence that these collective modes can take
part in heat transfer on the distances not larger ~9 A. On larger
distances, the heat relaxation processes d;(k) and d;(k) play
the main role in heat transfer. The microscopic theory of heat
waves in liquid metals*->! can explain the existing propagating
gap for the heat waves and reveals factors that define its width
in wave number region. The issue of contributions from heat
waves to dynamic structure factors will be discussed in the
next section.
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FIG. 6. (Color online) Dispersion and damping of collective shear
waves (plus symbols) and main relaxation processes of transverse
dynamics in liquid iron at 1843 K. The lines in small-k region
correspond to analytical long-wavelength asymptotes of relaxation
processes.*?

Another type of nonhydrodynamic collective excitations
that exist on nanoscales are the shear waves in liquids. The
spectrum of collective modes for transverse dynamics was
obtained by the GCM approach using the extended set of
transverse dynamic variables (7). The dispersion of shear
waves in liquid Fe is shown in the top panel of Fig. 6, while
damping of shear waves and transverse relaxing modes are
shown in the bottom panel. In agreement with hydrodynamics,
the liquids do not support macroscopic transverse sound,
therefore for k < 0.5 A~! there exists a propagation gap
for shear waves in liquid Fe. One should note that the
widths of propagation gaps for shear and heat waves do not
correlate since they are defined by collective processes of
different origin. In the long-wavelength region, there exist two
transverse relaxing modes and their wave number dependence
nicely corresponds to expected behavior from analytical
results.*> The dispersion of shear waves is quite different from
the dispersion of longitudinal acoustic excitations. Except the
existing propagation gap the transverse collective excitations
have very flat dispersion in the short-wavelength region in
contrast to strongly nonmonotonic behavior of dispersion of
longitudinal modes (see Fig. 3). This is again in agreement
with the expected asymptotes for short-wavelength transverse
current fluctuations predicted in Ref. 42.

D. Mode contributions to the dynamic
structure factors

The GCM approach makes possible to study contribu-
tions from different collective modes—relaxing and collec-
tive excitations—to dynamic structure factors. The GCM
expression for the density-density time correlation function
is connected with the dynamic structure factor via time
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Fourier transformation. This yields the expression for S(k,w),
that is a direct extension of the dynamic structure factor in
hydrodynamic limit:*%2°

Sho) R o 2da(k)
s~ 20w
12)
. 0u(h)
M L e e

+,a=1

Y

L D% () ® £ wy(k) } .

[0 £ 0y ()]* + 05(k)

Here, the amplitudes of mode contributions (or as called in
Ref. 52 mode strengths) are dependent on wave number:
A2 (k) describes contribution from the «-s relaxing mode to
the central peak of S(k,w), By, (k) is a symmetric contribution
from the corresponding propagating mode to the side peaks of
S(k,w), and D;;, (k) are so-called non-Lorentzian corrections®
responsible for the asymmetry of Brillouin peaks. Note that
the non-Lorentzian corrections are vanishing in the long-
wavelength limit, while the mode strengths AZ, (k) and By, (k)
of hydrodynamic modes tend in k — 0 limit to their values
predicted by hydrodynamics.

For the case of liquid Fe, the strengths of leading processes
contributing to the shape of S(k,w) are shown in Fig. 7. As
it follows from the wave number dependence of the mode
strengths the hydrodynamic collective processes: acoustic
excitations and heat relaxation d;(k)—tend to the hydrody-
namic values 1/y and 1 — 1/y, respectively (see Fig. 7). The
obtained in this study wave number dependence of generalized
ratio y (k) tends in the long-wavelength limit to a value ~1.40
and is in good agreement of experimental estimate from
analysis of Landau-Placzek ratio of IXS-measured dynamic
structure factors.” The values of mode strengths from acoustic
excitations and heat relaxation d;(k) tend to the values
Bk — 0) ~0.72 and A} (k — 0) ~0.28 as it is seen
from Fig. 7.

The mode strengths from the non-hydrodynamic processes
tend to zero in the long-wavelength limit that means the

14 T T T T T T T T
12 | .
1 .
0.8
0.6 |
04 |
0.2
0
0.2

0.4 1 1 1 1 1 1 1 1
156 2 25 3 35 4 45

KA

++++7

[ . njaln/c
P +Be

Mode strengths

FIG. 7. (Color online) Mode strengths of hydrodynamic and
nonhydrodynamic collective modes in dynamic structure factors of
liquid iron at 1843 K: plus symbols are sound excitations, open
boxes are nonhydrodynamic heat waves, stars are hydrodynamic heat
relaxation d,(k), and cross symbols are structural relaxation d,(k).
Hydrodynamic results for contributions from acoustic modes and heat
relaxation are shown at k = 0 by symbols plus and star, respectively.
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complete agreement with hydrodynamics. However, the non-
hydrodynamic modes become very important beyond the
hydrodynamic region. Atk ~ 0.5 A~!, there exists a crossover
in mode strengths A% (k) to the central peak of dynamic
structure factors: the contribution from structural relaxation
becomes the leading one and completely defined the central
peak of S(k,w) for large wave numbers. The contribution from
acoustic collective excitations drops from its hydrodynamic
value 1/y to very low level and practically it is not important in
the region of deGennes slowing down of density fluctuations.
In this region, only the one-peak shape of S(k,w) is observed
that is defined almost completely by structural relaxation. The
nonhydrodynamic heat waves marginally contribute to the
dynamic structure factors and therefore cannot be detected by
scattering experiments. However, very recently it was shown>?
that analysis of “positive dispersion” obtained from the peak
position of S(k,w) or current spectral function C*(k,w) can
keep information from coupling between heat waves and
high-frequency sound, though this was found for not very
dense liquids. For the case of liquid Fe, the heat waves
practically do not contribute to the shape of S(k,w).

IV. CONCLUSIONS

We reported the fit-free analysis of collective dynamics
from MD simulations of liquid iron at temperature 1843 K
performed with embedded-atom potentials. The shape of
density-density, density-energy, and energy-energy time cor-
relation functions was analyzed by a five-variable dynamic
model of generalized hydrodynamics. The obtained results

PHYSICAL REVIEW B 86, 024202 (2012)

give evidence that the embedded-atom model for liquid
Fe proposed in Ref. 12 nicely describes the collective
dynamics of iron even not far above the ambient melting
point.

The main results of this study are the following. (i) We
found that the applied embedded-atom potential for iron
reasonably reproduces heat fluctuations resulting in the value
of the ratio of specific heats y close to 1.4, which is in
very good agreement with the value obtained by Hosokawa
et al. from IXS experiments.” (ii) The obtained dispersion of
collective excitations tends in the long-wavelength limit to the
hydrodynamic dispersion law with an estimated speed of sound
very close to the experimental value of 3800 m/s.” (iii) We ob-
tained among the dynamic eigenmodes the nonhydrodynamic
collective excitations: shear and heat waves, which do not
exist on macroscopic distances, however, they can propagate in
liquid iron with wave numbers larger than ~0.5 and 0.72 A~!,
respectively. (iv) The detailed analysis of contributions to
the dynamic structure factors, obtained from the eigenvectors
associated with corresponding eigenvalues, was performed and
revealed the good agreement with hydrodynamic asymptotes
for acoustic modes and heat relaxation. The heat waves
practically do not contribute to the S(k,w).
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