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Kramers-Kronig constrained modeling of soft x-ray reflectivity spectra: Obtaining depth resolution
of electronic and chemical structure
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Resonant x-ray scattering is a powerful technique for the study of electronic structure at the nanoscale.
In common practice, the optical properties of the constituent components of a material must be known prior
to modeling of the scattered intensity. We present a means of refining electronic structure, in the form of
optical properties, simultaneously with physical structure, in a Kramers-Kronig consistent manner. This approach
constitutes a sensitive and powerful extension of resonant x-ray scattering to materials where the optical properties
are not sufficiently well known. The application of this approach to specular reflectivity from a single crystal of
SrTiO3 is presented as an example case, wherein we find evidence for both a nonresonant surface contaminant
layer and a modified SrTiO3 surface region. Extrapolating from this study we comment on the potential utility of
this approach to resonant scattering studies in general.
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I. INTRODUCTION

Resonant x-ray scattering extends anomalous scattering1

across atomic core levels to combine the element and state
specific electronic structure available from absorption mea-
surements with information on spatial correlations available
from angle-resolved scattering. Such an approach can eluci-
date aspects of the spatial distribution of electronic or chemical
structure not available away from resonance.2–7 It constitutes
a growing application of tunable synchrotron radiation and
promises access to ultrafast electron dynamics at short length
scales in x-ray free-electron laser sources. Strong, sharp
absorption features at the soft x-ray core levels make resonant
x-ray scattering an attractive tool to study important aspects
in magnetic, correlated electron, and even polymeric systems
with nanometer-scale resolution and greater penetrating power
than powerful electron spectroscopies.

In the near-visible spectral region several methods are
widely used to obtain absolute optical constants, includ-
ing their spectral and depth dependence, from reflectance
data.8–10 Such methods include reflectometry, ellipsometry,
and polarimetry, and generally aim to determine the real and
imaginary parts of a complex index of refraction through
measurements of reflected intensity, phase change, and/or
polarization. At discrete photon energies, modeling angle-
resolved data is common and may or may not yield results
consistent with the Kramers-Kronig (KK) dispersion relation.
Full spectroscopic determinations require energy-resolved
measurements and their analysis in a manner ensuring KK
consistency. The same approaches and challenges apply in the
soft x-ray range, although here it is much easier to measure
scattered intensity than polarization or phase.

Resonant x-ray scattering intensities are generally de-
scribed as the modulus squared of a complex optical contrast
involving one or more complex refractive indices, n = 1 −
δ − iβ. Applications often require accurate resonant x-ray
absorption spectra (commonly referred to as XAS, NEXAFS,
or XANES) to interpret results. Such spectra are obtained
either from measurement or some form of model calculation,
and are often adequate for the problem at hand.11,12 However,

as resonant x-ray scattering applications become more refined,
cases are encountered in which the spatial distribution of
electronic structure itself is to be determined, and in such
cases it is not obvious that measured or model optical spectra
are sufficient. Rather, obtaining the spatial distribution of res-
onant optical properties directly by simultaneously modeling
spectroscopy and structure in fitting experimental data would
provide a useful alternative. Fixed-energy determinations of
optical constants are common in the x-ray region [generally
through fitting of angular resolved reflectivity, R(Q)].13–21

While this approach has been extended to fitting fixed energy
reflectivity data at a number of energies spanning the atomic
core level as a means of spectroscopy,22 full spectroscopic
analysis is not generally applied to reflectivity data.

Here we present a flexible approach to model spectra
and structure on equal footing in fitting reflected intensities,
using a variational algorithm23 to efficiently ensure KK
consistency between δ and β as they refine along with
structural parameters to yield a self-consistent model of the
spatial distribution of electronic structure. This variational
approach is designed to model spectra of arbitrary shape to
provide accurate absolute values for optical spectra within
the assumptions of the structural model, which may also
be refined in the modeling process. This is an extension
of an earlier approach to reflectivity modeling that used a
small number of Lorentzian peaks to describe the absorption
spectra.24 The current approach is similar, but allows for much
greater flexibility to fit the fine details of a measured reflectivity
spectrum.

To illustrate this approach we apply it to determine the
resonant optical properties across the Ti L2,3 and O K edges
in a single crystal of SrTiO3 (001) (STO). This material was
chosen because STO remains technologically important and
because its near-surface region is known to exhibit subtle and
complex behavior which remains a topic of active study.24–27

We find evidence that two surface layers, a contamination layer
atop an STO-like layer departing from bulk properties, are
needed to explain the specific set of experimental data that we
model. Below, the variational approach and fitting strategy are
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described, followed by its systematic application to reflected
intensity spectra measured at several fixed incidence angles.
Comments on its broader potential utility are given in the
conclusion.

II. REFLECTIVITY MODELING

Our goal is to measure specular reflectivity as a function
of x-ray energy across the resonant absorption edges of a
material and then fit this with a model of both physical
and electronic structure. The electronic structure is, for our
purposes, that projected by resonant dipole transitions onto
the optical properties as represented by the complex refractive
index, n = 1 − δ − iβ. The real and imaginary parts of the
index of refraction are directly related to the complex atomic
scattering factors, f (hν) = f0 − f ′(hν) − if ′′(hν), through

n(hν) = 1 − δ(hν) − iβ(hν)

= 1 − rec
2NA

2πν2

∑
i

Zi

Ai

ρifi(hν), (1)

where re is the classical electron radius, ρi is the density due
to atom i such that

∑
ρi = ρ, NA is Avogadro’s number,

Zi and Ai are the atomic number and weight of atom i,
respectively, and f0 = Z − ( Z

82.5 )2.37. We wish to determine the
values of fi(hν) which give the best agreement to the measured
reflectivity. The KK relation allows us to determine the real
part of the atomic scattering factor from the imaginary part,
or vice versa. We work with the imaginary part of the atomic
scattering factor, as its features are generally well localized
and necessarily positive, as opposed to the dispersive nature
of the real part, which may also change sign near resonance.
The relevant KK relation is then given by

f ′(hν) = 2

π

∮ ∞

0

hν ′

(hν)2 − (hν ′)2
f ′′(hν ′) dhν ′. (2)

It is preferable to work with atomic scattering factors
instead of the real and imaginary components of the index
of refraction for a number of reasons. The simplest of these
is that the KK transform is more easily written for atomic
scattering factors. The appropriate KK transform relating
δ and β involves the number density of each atom to
properly determine the constant offset in δ. By working with
atomic scattering factors, the KK transform is independent of
considerations of density and composition, which are included
only at the higher level where (1) is used to calculate the
index of refraction, allowing those parameters to be more
easily refined. By considering atomic scattering factors we
may consider each species’ contribution to the total index
of refraction independently. This simplifies the assumption
that the refined spectra should agree with the tabulated values
away from resonance and leads to a natural means to deal with
compound edges.

Having measured the reflectivity at a discrete set of energies
{hνj }, it is natural to then determine f ′′ at these same energies.
We use the KK relation to obtain f ′ at these discrete energies
to calculate the reflectivity for comparison with measurement.
Unfortunately, the formula for specular reflectivity cannot, in
general, be inverted to directly solve for the atomic scattering
factors, so we must resort to iterative methods to solve for the

values of f ′′. Thus repeated KK transformations are required.
This can be efficiently achieved using KK consistent functions
to represent f ′′ and f ′, such as symmetrized Lorentzians or
Gaussians for absorption lines28 as we recently demonstrated
for resonant reflectivity.24 However, arbitrary f ′′ shapes are
not generally compatible with the extended tails of Lorentzian
absorption lines. Here we implement a much more flexible and
general approach to avoid repeated KK evaluations, namely the
variational approach of Kuzmenko.23

A. The variational approach

In the variational approach, we write f ′′ as a sum of basis
functions

f ′′(hν) =
∑

j

Cjf
basis
j (hν). (3)

In this way, we can uniquely define an arbitrary spectral
shape through the set of coefficients Cj and the appropriate
basis function. We assume the shape of f ′′ to be smooth
within the resolution of our measurement. To ensure that our
refined spectra have this feature, we select a basis function
that includes point to point correlations. Namely, we choose a
triangle function that extends to the next nearest neighbor, see
Fig. 1,

f basis
j (hν) = �j (hν) =

⎧⎪⎪⎨
⎪⎪⎩

(hν−hνj−2)
(hνj −hνj−2) hνj−2 < hν < hνj ,

(hνj+2−hν)
(hνj+2−hνj ) hνj < hν < hνj+2,

0 otherwise.

(4)

Thus each point will depend on its nearest neighbors,

f ′′(hνj ) = Cj−1�j−1(hνj ) + Cj�j (hνj ) + Cj+1�j+1(hνj ),

(5)

so that there is an inherent point to point correlation in any
result, ensuring local smoothness. While we have chosen this
particular basis function for its convenience, there are many
others that would also be suitable, as detailed more thoroughly
in the work by Kuzmenko.23 However, this ensemble of
triangle functions allows for a locally smooth, continuous

FIG. 1. (Color online) A Gaussian function (dashed line), sam-
pled at discreet points (circles), and approximated by a sum of
basis triangle functions (gray), leading to a linear approximation to
the original function (blue). The KK transform of a single triangle
function (green) as well as the sum of all such functions representing
the KK transform of the full Gaussian function (red) are also shown.
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result from a large number of nearly independent parameters,
avoiding the issue of overlap that would arise from any function
with extended tails, such as Gaussian or Lorentzian functions.

The primary benefit to expressing f ′′ in this manner is that
we can write an analytical expression for the KK transform of
our basis function,

KK[�j (hν)]

= 1

π

[
g(hν,hνj−2)

hνj − hνj−2
− (hνj+2 − hνj−2)g(hν,hνj )

(hνj − hνj−2)(hνj+2 − hνj )

+ g(hν,hνj+2)

hνj+2 − hνj

]
(6)

with

g(x,y) ≡ (x + y) ln |x + y| + (x − y) ln |x − y|, (7)

which allows us to write f ′ as the linear combination

f ′(hν) =
∑

j

CjKK{�j (hν)}. (8)

Evidently, as both f ′(hν) and f ′′(hν) depend on the same set
of coefficients Cj , changing a single point in f ′′(hν) does not
require the full KK transformation to update f ′(hν); instead a
single term of the above sum is simply adjusted to update
the previous spectrum and maintain KK consistency. This
variational approach greatly reduces the computational burden
while maximizing the flexibility to represent arbitrary spectral
shapes.

B. Maximum entropy

One drawback to the variational approach to modeling
reflectivity data is the large number of free parameters needed
to define a spectral and physical model. Parameterizing the
absorption spectra at each measured x-ray energy implies a
roughly equal number of refinable parameters as data points,
making the problem underconstrained. As a result, we cannot
be certain to refine towards a stable solution representing the
global minimum, nor that any such solution will be unique.
We find a solution to this problem in the field of information
theory, namely the principle of maximum entropy.29 We define
an entropy as

S =
∑

j

Cj − mj − Cj ln
Cj

mj

, (9)

where mj are the default values for our parameters and
represent the solution we would prefer in the absence of any
data, which for practical purposes is our set of starting values.
We consider the entropy as a constraint in our fit to the data
which helps to stabilize the least-squares fitting for a free-form
solution. Instead of considering just the set of parameters
which give the best fit to the measured data, we will search
for the set of parameters that give sufficient agreement with
the data and simultaneously maximize the entropy. This can
be accomplished through the use of a Lagrange multiplier, λ,
in maximizing

λS − χ2

2
, (10)

where χ2 represents the least-squares metric, or other appro-
priate figure of merit.

The maximum entropy solution is unique, and will deviate
as little as necessary from the starting model while still
fitting the data. While there are many ways of solving
the maximum entropy equation (10),30–32 they will all, in
general, maintain positivity for the refined parameters. As
all of the parameters should be positive (representing things
such as layer thickness, roughness, density, composition, or
absorption, all of which may be refined33), this is an advanta-
geous feature which helps to ensure a physically meaningful
result.

III. THE SrTiO3 (001) SURFACE: AN EXAMPLE CASE

As an example of the method, we consider the Ti L edge
and O K edge of a SrTiO3 (100) single crystal measured using
specular reflectivity data, R(hν), at several discrete incidence
angles, θ . SrTiO3 (STO) is a common substrate for thin film
growth and an important dielectric material in its own right.
STO represents an interesting test case which has been well
studied and is suitably complex so as not to be trivial. In fact,
the large number of studies on the STO surface are not all in
agreement, possibly due to the dynamic nature of the surface.
While this makes comparison of our results to those in the
literature difficult, it also presents an opportunity for a unique
look at this complex system.

The data presented here were measured from a commer-
cially obtained (100) oriented substrate roughly 5 mm square.
The sample had been exposed to x-rays under vacuum during
previous measurements and stored under atmosphere for ex-
tended periods between measurement periods. As the surface
state of STO has been observed to change,24 the complex
history of this sample makes its exact surface state uncertain
at the time of data collection. Data were collected at beamline
6.3.2 of the Advanced Light Source at Lawrence Berkeley
National Laboratory at incidence angles of 14◦, 15◦, 16◦, 17◦,
and 30◦ in a single session and are considered internally
self-consistent. Care was taken to correctly normalize all
reflectivity spectra to the incident beam spectrum in order to
obtain the best values for the absolute reflectivity. Refinements
were done using our reflectivity analysis program written
in PYTHON. The program uses the variational approach and
maximum entropy to refine f ′′ values of resonant atoms and
physical parameters of the model for the sample. Reflectivities
are calculated using the Parratt formalism34 with the inclusion
of a Névot-Croce35 roughness correction for each interface.
Refinement details for each model considered can be found in
Table I.

To start, we consider the simplest possible model, that of
a semi-infinite slab of stoichiometric STO (model 1). In order
to simplify and speed up the refinement procedure, we begin
by considering only the data measured over the Ti edge at
an incidence angle of θ = 14◦. The refinement starts from a
four-Lorentzian model spectrum for the Ti edge, similar to that
used by Valvidares et al.24 The results are shown in Fig. 2. The
fit to the measured reflectivity is essentially perfect, indicating
that the refinement has proceeded as intended. However, even
a cursory inspection of the resulting f ′′ spectrum shows
serious deficiencies. The dotted line is the tabulated data36
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TABLE I. Refinement details for each of the models considered. Those parameter values marked with an asterisk (*) were held fixed during
refinement.

Model 1 Model 2 Model 3a Model 3b

Surface Layer Thickness (Å) 4.93 9.54 9.62
Surface Layer Roughness (Å) 3.30 3.93 3.48
Surface Layer Density (g/cm3) 1.674 1.057 1.073
Surface Layer Composition C∗ C∗ C∗

STO Surface Layer Thickness (Å) 21.65 21.24
STO Surface Layer Roughness (Å) 2.73 2.42
STO Surface Layer Density (g/cm3) 5.13∗ 5.13∗

STO Surface Layer Composition Sr1.10Ti0.88O2.86 Sr1.09Ti0.88O2.85

STO Bulk Layer Thickness (Å) ∞∗ ∞∗ ∞∗ ∞∗

STO Bulk Layer Roughness (Å) 10.60 5.42 9.35 6.75
STO Bulk Layer Density (g/cm3) 5.13∗ 5.13∗ 5.13∗ 5.13∗

STO Bulk Layer Composition SrTiO∗
3 SrTiO∗

3 SrTiO∗
3 SrTiO∗

3

Figure of Merit (
∑

[ Yobs−Ycalc
Yobs

]2) 0.0368 3.258 5.344 3.518
Number of Parameters 221 302 307 607
Number of Data Points 224 1356 1695 1695

showing the continuum step, and the solid line is the result of
the refinement. A physically meaningful absorption spectrum
should approach the tabulated values away from resonance,
and have a sharp onset of resonant features near the continuum
step in the tabulated data. The refined spectrum has two
obvious problems: It rises significantly at energies well below
the onset of resonance, and it dips slightly below the pre-edge

FIG. 2. (Color online) Results of refinement of model 1.
Reflectivity (a) across the Ti L2,3 edge measured at θ = 14◦ (black
circles) and calculated from the refined model (red line). The resulting
spectrum for the atomic scattering factor f is shown in (b), along with
the step function from the tabulated data (dotted line) for that edge for
comparison. Only the data shown were considered for the refinement
of this model.

values at energies above resonance (∼468 eV). Both of these
features are unphysical, indicating that this structural model is
incorrect in some way.

As a modification to the naı̈ve model 1, we include the
possibility of a nonresonant surface layer, which we assume
to be composed of carbonaceous material (model 2). This
is the simplest modification of model 1 and represents the
likely possibility that the sample surface is not perfectly clean.
We fit model 2 to a larger subset of the available data, that
at θ = 14◦,15◦,16◦, and 17◦ over both the Ti and O edges.
Note that this approach deals naturally with compound edges
where absorption features of different atoms may overlap.
We refine the thickness, density, and surface roughness of
the nonresonant surface layer, the interfacial roughness, and
the f ′′ spectra for Ti and O in the STO layer. We limit the
refinable range for the absorption spectra to be between 440 eV
and 500 eV for Ti and between 525 eV and 600 eV for O. The
starting point for this model will be the result of the Lorentzian
modeling for the Ti spectra and the absorption measured from
appropriately normalized total electron yield for the O edge
measured concomitantly with the θ = 15◦ reflectivity with a
5 Å thick carbon top layer and all roughnesses being equal to
2 Å; these parameters are then refined. The results of model 2
are shown in Fig. 3.

Model 2 represents a significant improvement from the re-
sult of model 1. The fit to all of the refined data is good, though
not perfect, but more importantly, the resulting f ′′ spectrum
does not show the same severe unphysical behavior as in
model 1. Examination of the physical structure shows plausible
parameters as well (Table I). However, closer inspection of the
reflectivity fits, especially at the Ti edge, shows a systematic
variation as we move up in angle such that the model progresses
towards an underestimation of the data on resonance, and
an overestimation away from resonance. This systematic
trend is extremely pronounced at θ = 30◦, indicating again
that structural model 2 is oversimplified. Understanding the
nature of Keissig (thickness) fringes whereby interference
minima move from high Q toward low Q as layer thickness
increases, the strong θ dependence of fit quality suggests the
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FIG. 3. (Color online) Results of refinement of model 2. Reflectivity (a) across the Ti L2,3 and O K edges measured at θ = 14◦,15◦,16◦,17◦,
and 30◦ (black circles) and calculated from the refined model (red line) is shown top to bottom. The Ti L2,3 edge is shown in finer detail in (b),
showing the systematic trend towards underfitting of the data at higher angle. Note that the reflectivity at θ = 30◦ is shown here, but was not
considered in the refinement of this model. The resulting spectra for the atomic scattering factors f are shown in (c) for Ti and (d) for O, along
with the step functions from the tabulated data for that edge for comparison (dotted lines).

presence of a thicker layer in addition to the thin carbonaceous
layer.

Clearly, the inclusion of a nonresonant surface layer is
important, but not sufficient to explain our data. It is also clear
that we benefit from the inclusion of as much data as possible
in our model refinements, and so will refine our models against
all available data henceforth. As a further modification of
our STO model, we refer to the literature on this material,
which suggests that there may exist a distinct surface region
within the STO itself.24–27 This surface region may have a
composition distinct from the bulk STO and/or may exhibit
different spectral features for the resonant atoms. This suggests
two possible models, one with distinct composition between
the two STO regions, but common spectra for the resonant
atoms (model 3a), and one with both distinct composition and
spectra (model 3b).37 We consider the simpler of these, model
3a, first.

The thickness of the resonant STO surface region is initially
assumed to be 20 Å, in accord with recent results from
Valvidares et al.24 We make the starting point of the refinement
of model 3a the endpoint of model 2 by giving the resonant
surface region the same composition as that of the bulk, and
setting the spectra for both to the refined result of model 2. In
the interest of charge balance, we constrain the composition of
the surface region in our model to be a mixture of SrO and TiO2.
This constraint allows for either an enrichment or depletion of
Sr or Ti while adjusting the amount of O accordingly. For
stoichiometric STO, such as we assume for the bulk, the ratio
of SrO to TiO2 will be 1:1. This is a much simpler calculation

than for model 3b while still allowing for a distinct STO-like
surface region to exist, the results of which can be seen in
Fig. 4. The resonant surface layer refines to a thickness of
21.65 Å, in good accord with our starting value.

Model 3a is a significant improvement upon model 2. The
reflectivity spectra are all well fitted, and the resulting spectra
for the Ti and O edges show no unphysical behavior. There
is still a small systematic discrepancy between measured and
calculated reflectivity near the Ti edge, and some misfitting of
the O edge in the θ = 30◦ data, although that may be due to
higher levels of noise in the data at that angle. All in all, this
is a good model, and might well be considered sufficient for
this set of data. Evidently there is a surface region of the STO
which shows a Ti depletion and/or a corresponding enrichment
of Sr which extends roughly 21 Å into the material. Such a
depletion in Ti atoms need not affect the Ti L2,3 resonant
structure if the remaining atoms are still at the center of
undistorted O octahedra, as they are in bulk STO. However,
such a chemical change, extending over these length scales,
has strong implications for understanding the properties of the
STO near-surface region.

In the spirit of completeness, and to explore the limits of this
technique, we consider model 3b, with distinct Ti and O spectra
for the surface and bulk regions of the STO. The starting point
for this refinement will be the result of the refinement for
model 3a, and we let the surface and bulk STO spectra refine
away from this point. The results of the refinement for model
3b are shown in Fig. 5. The thicknesses, roughnesses, and
composition of the surface layers has changed only slightly

024102-5



STONE, VALVIDARES, AND KORTRIGHT PHYSICAL REVIEW B 86, 024102 (2012)

FIG. 4. (Color online) Results of refinement of model 3a. Reflectivity (a) across the Ti L2,3 and O K edges measured at θ = 14◦,15◦,16◦,17◦,
and 30◦ (black circles) and calculated from the refined model (red line) is shown top to bottom. The Ti L2,3 edge is shown in finer detail in (b).
All data shown were considered in the refinement of this model. The resulting spectra for the atomic scattering factors f are shown in (c) for
Ti and (d) for O, along with the step functions from the tabulated data for that edge for comparison (dotted lines).

from those obtained for model 3a (Table I). The nonresonant
surface layers in both models 3a and 3b appear to be nearly
10 Å thick, and only 1 g/cm3 in density. It should be noted
that these two parameters are highly correlated, such that
their product (giving the total amount of material present)
constitutes the more meaningful parameter. This is simply
because the effect of such a thin nonresonant surface layer is
primarily an absorptive effect with very little contribution to
the interference between the reflectivity from the other layers.

The improvement beyond model 3a is subtle, and best seen
in the decrease in the figure of merit by roughly 35%. Given
that the number of parameters being fitted has nearly doubled,
it is unclear just how significant this improvement is. It is
also clear that the differences in spectra between the resonant
surface region and the bulk STO are subtle at best. Presumably
questions as to the significance of these differences could be
addressed with a more complete data set, including R(hν) at
a larger set of incidence angles as well as R(Q) at discrete
hν; for the data considered here they likely fall within the
range of uncertainty. While this method is capable of refining
multiple spectra, even for the same element, it seems apparent
that the distinct surface region in STO exhibits little, if any,
spectral variation from the bulk, and is instead due primarily
to compositional changes. As such it seems unnecessary to
consider models of any greater complexity.

IV. DISCUSSION AND CONCLUSIONS

Variational fitting of reflectivity spectra is a powerful
approach for extracting resonant optical constants for a

material. We have taken as an example the case of a bare
STO substrate. We find evidence for both a resonant STO-like
surface region as well as a nonresonant contamination layer
above that. The resonant surface region exhibits only subtle
spectroscopic variation from the bulk, but does have a distinct
composition with an enhanced SrO:TiO2 ratio which provides
optical contrast. This result is not in complete agreement with
a previous study on the same material using the less sensitive
Lorentzian line shape approach24 which did find evidence
for a resonant surface region of similar thickness, but did
not consider the possibility of a nonresonant contamination
layer. This may be due to the complex and dynamic nature
of the STO surface, such that the samples measured may not
exhibit the same surface behavior. It is also possible that the
nature of the STO-like surface region appears differently when
the model is constrained by a Lorentzian line shape in the
absence of a nonresonant surface layer, as in that earlier work.
Such constraints allow for a reasonable overall fit, but give
poor agreement in the fine details of the measured spectra.
The variational algorithm models this fine detail, which may
possess much of the critical information about a sample.

This example illustrates some of the more important
considerations in modeling of resonant reflectivity data. While
an initial starting spectra is necessary, no specific assumptions
about the details of the resonant spectra at a given edge need
to be made for the method to converge. An optical spectrum
will generally result, even if the structural model is inadequate,
and in such cases the result must be considered as an effective
optical spectrum within the context of a given model, such as
for model 1 above.

024102-6



KRAMERS-KRONIG CONSTRAINED MODELING OF SOFT . . . PHYSICAL REVIEW B 86, 024102 (2012)

FIG. 5. (Color online) Results of refinement of model 3b. Reflectivity (a) across the Ti L2,3 and O K edges measured at θ = 14◦,15◦,16◦,17◦,
and 30◦ (black circles) and calculated from the refined model (red line) is shown top to bottom. The Ti L2,3 edge is shown in finer detail in (b).
All data shown were considered in the refinement of this model. The resulting spectra for the atomic scattering factors f are shown in (c) for
Ti and (d) for O, along with the step functions from the tabulated data for that edge for comparison (dotted lines).

It is thus essential to have criteria available to judge whether
a given refined spectral-structural model is acceptable. Such
criteria should include physical constraints on the resultant
absorption spectra, which should be positive with proper
limiting behavior in the pre- and post-edge regions. The
uniqueness and accuracy of the final spectra ultimately rely on
the self-consistency between the structural and spectral aspects
of a model. Spectral self-consistency derives from explicit
inclusion of KK consistency, and structural self-consistency
from modeling spectral behavior at many angles, as done here,
or through the explicit inclusion of angle-dependent scans
at one or more energies. Provided that self-consistency is
reached, the optical spectra can be considered as absolute and
free from measurement artifacts that plague many soft x-ray
spectroscopies.

In addition to self-consistency, results from modeling of
reflectivity data should be consistent with other forms of
measurement. For a suitably conductive sample, it is generally
a simple matter to measure absorption spectra by total electron
yield (TEY) concomitantly with reflectivity. While TEY
measurements may be subject to saturation effects, which tend
to reduce the observed intensity of strong absorption features
as seen in Fig. 6, the refined spectra should have the same
general features as the TEY spectra. Similar issues arise from
self-absorption in fluorescence yield measurements (FY). Both
TEY and FY measurements of absorption spectra suffer from
ambiguities in normalization, especially the choice of energy
at which to match the post-edge intensity. Such ambiguities
are exacerbated in the case of overlapping edges, which are
dealt with more naturally in the approach considered here

as evidenced by the weakly overlapping Ti and O spectra.
Scattered intensities are generally easy to measure so, by
modeling scattering data, we obtain absorption spectra which
may be considered exact to within the limitations of the
model being considered. Such results should thus serve to
provide more stringent constraints on theoretical calculations
of spectra. While our method does not build in any form of
consistency with, e.g., crystal field multiplet calculations of
absorption spectra, results should be in agreement with such
calculations, as are ours for Ti.38

FIG. 6. (Color online) Comparison of the Ti L2,3 f ′′ spectra
obtained from the refinement of model 3a (blue) and those obtained
from a total electron yield (TEY) measurement of the same sample
measured at θ = 15◦ (red). The tabulated values for the step
function are shown for comparison (dotted line). Note the systematic
depression of the peaks in the TEY measurement, a common result
of saturation effects.
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The approach presented here may be readily extended to
any form of resonant scattering, not just specular reflectivity,
provided a suitable expression for the scattering intensity is
available for refinement. Reflectivity from stratified systems
represents an obvious and broad class of problems amenable
to this analysis, as demonstrated here. This approach of
fitting reflectivity data, or indeed any resonant scattering data,
solves a number of outstanding problems in spectroscopy.
Spatial inhomogeneities are commonly averaged in soft x-ray
spectroscopy, whereas this approach uses them to determine
the spatial distribution of their spectral composition as a
matter of course. Most importantly, this approach ensures
a self-consistent description of spectroscopic and structural
aspects of the sample.

The computational burden required to converge to ac-
ceptable tolerances is determined by the complexity of the

structural model, both in the number of layers and the number
of parameters, and the amount of data being fitted. The method
is designed to be very efficient in this respect and can be scaled
up to problems of arbitrary size and complexity. To this end,
advances in computing power and developments in highly
parallel processing will clearly be of interest to this approach
in the future.
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