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Competing many-body instabilities and unconventional superconductivity in graphene
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The band structure of graphene exhibits van Hove singularities (VHSs) at dopings x = ±1/8 away from the
Dirac point. Near the VHS, interactions effects, enhanced due to the large density of states, can give rise to various
many-body phases. We study the competition between many-body instabilities in graphene using the functional
renormalization group. We predict a rich phase diagram, which, depending on band structure as well as the range
and scale of Coulomb interactions, contains a d + id-wave superconducting (SC) phase, or a spin-density-wave
phase at the VHS. The d + id state is expected to exhibit quantized charge and spin Hall response, as well as
Majorana modes bound to vortices. Nearby the VHS, we find singlet d + id-wave and triplet f -wave SC phases.
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Introduction. Graphene, a monolayer of carbon, hosts
a two-dimensional electronic system (2DES) with unique
properties.1 In particular, the Coulomb interaction plays
an important role,2 giving rise to many-body phenomena
including marginal Fermi-liquid behavior,3 energy-dependent
renormalization of the Fermi velocity,4 and many-body quan-
tum Hall states.1

Experimentally, graphene offers a high degree of tunability.
In particular, carrier density can be controlled in a broad range.
Near the Dirac point (filling level of electrons n = 1/2), such a
control is achieved by back gates and local top gates.1 Recently,
it was demonstrated that chemical doping5 and electrolytic
gating6 enable doping graphene far away from the Dirac
point. In particular, the density can be tuned to the vicinity
of the van Hove singularities (VHSs) in the band structure,
which occur at fillings n = 3/8,5/8. In the case of chemical
doping, the dopants form a superlattice on top of the graphene
sheet. This strongly reduces the amount of disorder induced
by doping. Furthermore, the spacing of the superlattice is so
large that hybridization in the dopant layer can be neglected
and, hence, transport measurements of the graphene sample
remain unaffected.

Before the strong doping of graphene, which has been
recently accomplished experimentally, superconductivity had
been predominantly studied around the Dirac point. This in-
cludes p + ip-wave predictions from electron-phonon or plas-
monic interactions,7 Kekule order,8 and f - or d + id-waves
from electron-electron9 interactions. Mean-field theories10,11

have arrived at Tc > 1000 K, with only slightly lower results
for variational approaches.12 Despite these predictions, super-
conductivity has not been observed in this regime, due to small
electronic density of states (DOS) and weak phonon effects.13

Near a VHS, opposed to the Dirac point regime, electronic
interaction effects are expected to be strongly enhanced due
to the logarithmically diverging DOS and near-nested Fermi
surface.5 In this regime, many-body states with appreciable
critical temperatures may arise. Possible candidate states
include charge-density wave (CDW), a spin-density wave
(SDW), or a superconducting (SC) state. The latter has been re-
cently considered within a perturbative three-patch renormal-
ization group (3RG)14 that only takes into account the saddle

points of the Fermi surface. Generally, however, a subtle inter-
play of kinetic and interaction parameters is expected to decide
which many-body instability is preferred at the VHS, which
is the subject of this Rapid Communication. For graphene, the
additional complication arises that as the bandwidth (∼17 eV)
is of the order of the interaction scale (∼10 eV), graphene
cannot be suitably described from the viewpoint of strict weak
coupling approaches, and adopting a picture of intermediate
coupling is necessary. Rephrased in terms of diagrammatic
expansions starting from the noninteracting problem, this
amounts to investigating the leading and subleading divergent
classes of diagrams. In particular, this is relevant for the compe-
tition between magnetic and SC phases in this kind of systems,
one recent example of which has been the iron pnictides.15,16

Main results. In this Rapid Communication, we use the
functional renormalization group (FRG) method17–20 to study
the competition between many-body states in graphene doped
to the vicinity of the VHS. We analyze this problem at a
level which provides a detailed connection to the experimental
setup including both the possibility of long-range hopping
and Coulomb interactions. From our analysis, we obtain a rich
phase diagram which, depending on the range of chosen kinetic
and interaction parameters, contains magnetic and different SC
phases, summarized in Fig. 1. For a certain range of parameters
described below, we find a d + id SC phase which has
been previously studied by the random phase approximation
(RPA)5,21 and 3RG.14 To analyze all possible many-body
phases and their dependence on the system parameters, FRG
provides a systematic unbiased summation of diagrams in both
particle-particle channels and particle-hole channels as well
as vertex corrections, and keeps track of the whole Fermi
surface [Fig. 2(a)]. We investigate in detail how different
band structure parameters affect the phase diagram. We find
that rather small variations of the longer-ranged hopping
parameters such as next-nearest (t2) and next-next-nearest
(t3) hopping can shift the position of perfect Fermi surface
nesting against the VHS (Fig. 2). As we will see below, this
significantly influences the competition between magnetism
and SC. Moreover, away from the exact VHS, the reduced
screening of the Coulomb interaction does not justify the
assumption of a local Hubbard model description. For this
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FIG. 1. (Color online) Phase diagram for graphene around van
Hove filling as obtained by FRG. �c serves as an upper bound for
Tc as a function of doping. Left inset: Dominant d + id instability
at van Hove filling for U0 = 10 eV and the band structure in Ref. 5.
Away from van Hove filling [dark shaded (blue) area], �c drops.
Whether d + id- or f -wave SC instability is preferred depends on
the long rangedness of the interaction (right inset: U1/U0 = 0.45 and
U2/U0 = 0.15).

case, we find that longer-ranged Coulomb interactions22 can
significantly change the phase diagram, as CDW fluctuations
become more competitive to SDW fluctuations, and a triplet SC
phase can appear. In particular, we study how Cooper pairing
in the different SC phases responds to differently long-ranged
Coulomb interactions. Our results suggest that in experiment,
modifications of the band structure such as imposed by
pressure as well as by changing the dielectric environment of
the graphene sample would enable the realization of different
many-body states and possible phase transitions between
them.

(a)

(b)

(c)

(a)

(b)

(c)

FIG. 2. (Color online) (a) Band structure of graphene for t1 =
2.8 eV (red) and for t1 = 2.8, t2 = 0.7, t3 = 0.02 eV (black). (b)
Fermi surface near the van Hove point [dashed blue level in (a)], 96
patches (k points) used in the FRG and the nesting vector, and the
partial nesting vectors. (c) DOS for both band structures in (a). Inset:
Position shift of Fermi surface nesting (dashed vertical lines) vs the
VHS peak.

Model. We consider the π band structure part of graphene
approximated by a tight-binding model including up to third
nearest neighbors on the hexagonal lattice:

H0 =
⎡
⎣t1

∑
〈i,j〉

∑
σ

c
†
i,σ cj,σ + t2

∑
〈〈i,j〉〉

∑
σ

c
†
i,σ cj,σ

+ t3
∑
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∑
σ

c
†
i,σ cj,σ + H.c.

⎤
⎦ − μn, (1)

where n = ∑
i,σ ni,σ = ∑

i,σ c
†
i,σ ci,σ , and c

†
i,σ denotes the

electron creation operator of spin σ =↑ , ↓ at site i. The
resulting band structure is a two-band model due to two
atoms per unit cell (Fig. 2). There are uncertainties about the
most appropriate tight-binding fit for graphene, in particular
as it concerns the longer-ranged hybridization integrals.1,23

For dominant t1, the band structure features a van Hove
singularity (VHS) at n = 3/8,5/8. Constraining ourselves
to the electron-doped case, the n = 5/8 electron-type Fermi
surface is shown in Fig. 2(b). As depicted, this is the regime
of enhanced DOS which is the focus in what follows. For
t2 = t3 = 0 (red curve in Fig. 2), the VHS coincides with the
partial nesting of different sections of the Fermi surface for
Q = (0,2π/

√
3),(π,π/

√
3), and (π, − π/

√
3). For a realistic

band structure estimate with finite t2 and t3 (Ref. 5) (black
curve in Fig. 2), this gives a relevant shift of the perfect nesting
position versus the VHS as well as DOS at the VHS, and affects
the many-body phase found there.

We consider the long-range Hubbard Hamiltonian22

Hint = U0

∑
i

ni,↑ni,↓ + 1

2
U1

∑
〈i,j〉,σ,σ ′

ni,σ nj,σ ′

+ 1

2
U2

∑
〈〈i,j〉〉,σ,σ ′

ni,σ nj,σ ′ , (2)

where U0...2 parametrizes the Coulomb repulsion scale from
on-site to the second-nearest-neighbor interaction. It depends
on the DOS how strongly the Coulomb interaction is screened.
At the VHS, we assume perfect screening and consider the
local limit U0 only, while away from the VHS, we investigate
the effects of taking U1 and U2 into consideration. The typical
scale of the effective local repulsion has been found to be U0 ∼
10 eV < W ,22 where W ∼ 17 eV is the kinetic bandwidth.

Method. We employ the FRG and study how the renor-
malized interaction described by the 4-point function (4PF)
evolves under integrating out high-energy fermionic modes:
V�(k1; k2; k3; k4)c†k4s

c
†
k3 s̄

ck2s
ck1 s̄

, where the temperature-flow
parameter is the IR cutoff � approaching the Fermi surface,
and k1 to k4 the incoming and outgoing momenta. Within
the numerical treatment, the k’s are discretized to take on
the values representing the different patches of the Brillouin
zone. Figure 2(b) shows a 96 patching scheme. The starting
conditions of the RG are given by the bandwidth W serving
as an UV cutoff, with the bare initial interactions for the
4PF. Due to the spin rotational invariance of interactions
(we neglect spin-orbit coupling in our analysis), we constrain
ourselves to the Sz = 0 subspace of incoming momenta k1,k2

(and outgoing k3,k4) and generate the singlet and triplet
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channel by symmetrization and antisymmetrization of the 4PF
V�.19 The diverging channels of the 4PF under the flow to
the Fermi surface signal the nature of the instability, and
the corresponding �c, as a function of some given system
parameter such as doping, gives the same qualitative behavior
as Tc. At a cutoff scale where the leading instability starts to
diverge, we then decompose the different channels such as
SC or SDW into eigenmode contributions and obtain the form
factors associated with the instabilities.15,24

Phase diagram. The phase diagram as a function of doping,
obtained for realistic microscopic kinetic and interaction
parameters,5,22 is shown in Fig. 1. At the same time, however,
we also investigate trends how the system evolves when we
tune the parameters away from this setting. At the VHS
(orange-shaded area in Fig. 1), the DOS is so large that a local
Hubbard description is appropriate. (The conclusions drawn
here also persist as small long-range Coulomb components
would be taken into account at exact van Hove filling.) For
realistic U0 ∼ 10 eV, we find that the d + id SC instabil-
ity is dominant, assuming finite hopping parameters t2 =
0.1 eV and t3 = 0.07 eV.1 (The result is rather similar for
the values of Ref. 23.) Only at scales of U0 > 18 eV, the
SDW becomes dominant for this scenario. Note, however, that
only small modifications of the band structure can strongly
affect the competition of SDW and SC at the VHS: When t2 is
reduced, the system gets more biased to the SDW, as the SDW
fluctuations in the nesting channel get enhanced. For t1 only
[red curve in Fig. 2(a)], the SDW already wins for U0 > 8.5
eV, and can give rise to a helical magnet scenario. As we move
away from the VHS (blue-shaded area in Fig. 1), details of
the band structure become less relevant, and we note that the
critical instability scale �c drops more strongly towards the
Dirac point than away from it, mainly as a consequence of
the reduced DOS. As SDW fluctuations are weakened, SC
phases become dominant. Assuming rather local Coulomb
interactions (U1/U0 < 0.5), we find that the system still
favors the d + id SC state. Allowing for more long-ranged
Hubbard interactions, however, the picture changes: The CDW
fluctuations are comparable to the SDW fluctuations which
bias the system towards singlet SC, and triplet f -wave pairing
becomes competitive.

d + id-wave phase. We analyze the d-wave SC phase
at the VHS (U0 only) in more detail. The honeycomb
lattice is characterized by C6v symmetry about the center
of hexagons, and the SC order parameter transforms as one
of the irreducible representations. dx2−y2 and dxy waves
follow the two-dimensional E2 representation and are hence
degenerate. The different form factors are plotted in Fig. 3(a).
We find that the numerical solutions can be fit to f [dx2−y2 ] =
2 cos(

√
3ky) − cos[(

√
3ky − 3kx)/2] − cos[(

√
3ky + 3kx)/2]

and f [dxy] = cos[(
√

3ky − 3kx)/2] − cos[(
√

3ky + 3kx)/2].
From the Fourier transform of the momentum-resolved form
factors f (k) along the Fermi surface, we also obtain the
pairing amplitudes of the real space SC pairing function25

(Fig. 3). The Cooper pairing emerges on nearest neighbors of
the same hexagonal sublattice. As we move to the broader
vicinity of the VHS, where we assume a longer-ranged
Hubbard interaction, the form factors retain the d-wave
E2 representation, while the Cooper-pair wave function

(a1) (a2) (a3)

(b1) (b3)

(a1) (a2) (a3)

(b1) (b3)(b2)

FIG. 3. (Color online) dx2−y2 - and dxy-wave solutions for (a)
U0 = 10 eV only and (b) U1/U0 = 0.45, U2/U0 = 0.15. (a1),(a2)
and (b1),(b2) show the form factors of dx2−y2 and dxy plotted along
the Fermi surface according to patch indices defined in Fig. 2(b), as
well as the real space pair amplitude patterns. The solutions change
from (a) to (b). The analytic form factors given in the text (red) fit the
numerical data (black). (a3) and (b3) show the gap profile of d + id

along the Fermi surface (the actual connection to experimental energy
scale can still vary by a global factor). The gap anisotropy increases
from (a) to (b).

changes as shown in Fig. 3(b) (U1/U0 = 0.4, U2/U0 = 0.15).
There, the form factors change to f [dx2−y2 ] = 2 cos(3kx) −
cos[(3

√
3ky − 3kx)/2] − cos[(3

√
3ky + 3kx)/2] and f [dxy]

= cos[(3
√

3ky − 3kx)/2] − cos[(3
√

3ky + 3kx)/2], corres-
ponding to a doubled number of nodes along the Fermi
surface. From the pairing amplitudes, we also observe that the
pairing spreads out to the second nearest neighbor of the same
sublattice. This is a consequence of the long-range Coulomb
interactions: The Cooper-pair wave function seeks to develop
more nodes to minimize Coulomb repulsion, and is able to do
so by longer-ranged Cooper pairing. This, however, still does
not tell us about the gap function of the d-wave instability. As
the degeneracy is protected by symmetry, the system could
generically form any linear combination dx2−y2 + eiθdxy

of both d-wave solutions. We hence perform a mean-field
decoupling in the SC pairing channel and minimize the free
energy. The necessary condition for the minimum is rephrased
by the self-consistent gap equation26

�q = −1/N
∑

k

V SC
� (k,q)

�k

2E(k)
tanh

(
E(k)

2T

)
, (3)

where V SC
� (k,q) is the 4PF in the pairing channel taken at a

cutoff �c ∼ Tc. The gap functions are displayed in Figs. 3(a3)
and 3(b3). We always find d + id to be the energetically pre-
ferred state. This is rather generic in a situation of degenerate
nodal SC order parameters, since such a combination allows
the system to avoid nodes in the gap function. The gaps we find
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(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 4. (Color online) Pairing amplitudes, form factors, and gap
profiles for the f -wave phase as defined in Fig. 3, representative for
larger fillings than the VHS for (a) U1/U0 = 0.6 to (b) U1/U0 = 0.6,
U2/U0 = 0.2. The gap profile is nodal, and the nodal points shift
from (a) to (b).

are hence nodeless and only slightly change their anisotropy as
the pairing function varies [Figs. 3(a) and 3(b)]. As graphene
can be tuned rather accurately to the van Hove filling (where
we find the highest critical scale), it may be a reasonably
accessible experimental system to study such a SC phase.
The expected experimental evidence for d + id would be a
nodeless gap detectable through transport measurements and
singlet pairing due to a Knight shift drop below Tc. A minor
caveat is given by the role of impurities which may spoil the
symmetry between the two d-wave solutions. This could give
rise to a nodal gap beyond sufficient impurity concentration.27

f -wave phase. It is similarly interesting to investi-
gate the triplet f -wave instability28 which dominates for
longer-ranged Coulomb interaction (Fig. 4). It obeys the
one-dimensional B1 or B2 representation, depending on
the range of the Coulomb interaction. For U1/U0 = 0.6,
the form factor and pairing amplitudes are plotted in
Fig. 4(a) as well as for U1/U0 = 0.6, U2/U0 = 0.2 in
Fig. 4(b). We again find that the Cooper-pair distance
increases with longer-ranged interactions, which manifests
itself as a change of the form factor f [fB1 ] = sin(

√
3ky) −

2 sin(
√

3ky/2) cos(3kx/2) in Fig. 4(a) to f [fB2 ] = sin(3kx) −

2 sin(3kx/2) cos(3
√

3ky/2) in Fig. 4(b). The gap function
follows the absolute value of the form factor, showing a nodal
gap, where the points of the nodes change with increasing
Coulomb range. In the case of the f -wave, the position of
the nodes would hence indicate the Cooper-pairing distance
associated with the long-range properties of the Coulomb
interaction, and suggest experimental evidence of a nodal
gap from transport and an invariant Knight shift due to triplet
pairing. For fillings smaller than the VHS, the Fermi surface is
disconnected and the nodes might not coincide with the Fermi
surfaces. This f -wave regime is very low in Tc, depending on
preference for B1 or B2, and may be nodeless.

Summary and outlook. In summary, we have provided
a detailed analysis of the competing many-body phases of
graphene at and around van Hove filling. We find that,
for realistic band-structure parameters and interactions, the
exotic nodeless singlet d + id-wave SC phase is preferred
over an extended phase space regime around the VHS.
Variations of the kinetic parameters and effective interaction
scales can drive a transition to a spin-density-wave (helical
magnet) phase at the van Hove point. Away from the VHS,
reduced Coulomb screening and, thus, longer-ranged Coulomb
interactions change the form of the d + id Cooper-pair wave
function, and in certain limits can favor a nodal triplet f -wave
SC phase.

The possibility of the time-reversal symmetry breaking
d + id phase in graphene is very intriguing: It has been noted
early on in the context of the cuprates that such a phase
would have various interesting properties such as quantized
edge currents.29,30 Furthermore, provided a Rashba spin-orbit
interaction is present, the d + id phase supports Majorana
modes in the vortex cores obeying non-Abelian statistics.31

The tunability of the Rashba interaction in graphene32 may
enable realization of the Majorana modes; due to the two-
dimensional nature of graphene and its tunability, their
observation and manipulation should be easier than in other
materials.
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